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The zeros of hl(l) (I =1,2) are then

11 = —1

3 %
X = — = — €T = —
21 2 9 ) 22

while the zeros of [Chl(l)(g)]’ (I =1,2) are

VB
Y= 57

Y12 = —

| S
w
N | .

Since the complex frequencies are given by these zeros multiplied by ¢/a, we end
up with
Modenim Aa T/(a/c)

TEllm oo 1/2
TEi2m  47/V3 1/3
TMi1,,  47/V3 1
TM12m oo 0313

TMaa, 3.476 0.712

where the wavelength A and the energy decay time 7 is given by

2me 7
w=———

A 2T

Show that for arbitrary initial polarization, the scattering cross section of a per-
fectly conducting sphere of radius a, summed over outgoing polarizations, is given
in the long-wavelength limit by

do

O L o
20

— A A ]‘ A A nd A ~
€0, M0, 1) = k*a® 1—|60-n| —Z|n~(noxeo)\2—n0~n

where ng and n are the directions of the incident and scattered radiations, respec-
tively, while € is the (perhaps complex) unit polarization vector of the incident
radiation (€p* - €y = 1; ng - € = 0).

If all polarizations are specified, the conducting sphere scattering cross section is
given by

do— A A — — — A — A —

E(n, € Mo, €) = k4a6|e* €y — %(n X €F) - (ng % eo)]2 (11)
What we would like to do is to sum this over both orthogonal outgoing polariza-
tions. One way to do this is to introduce a linear polarization basis transverse

to the outgoing direction n. To do so, we first assume the scattering is not in



the forward direction. Then the incoming direction ng may be used to define
orthogonal polarizations

= — E°=nXxéE = .
sinf ’ sin

. n(n-ng) —ng

where 0 is the angle between 7 and 7. In particular, we may write sin®6 =
1 — (7 - fg)?. In this case, the cross section summed over outgoing polarizations
becomes

do . . k*ab A . A R o
d—Q(n;no,eo) =1 (ﬁ'ﬁo)z{ A X fg) - € — 2(A x (A X Rg)) - (g X )|
+ |((f - 7g) — 7o) - & — 5 (7 X (A2~ 7g) — 7o) - (Mg X &)|7]
ktaS 1
T 1 ()2 [[(72 % i0) - & — 5 (AR - i0) — 7o) - (o X &)
+ (7 7o) (72 - €0) — 5(Ro x 1) - (Rg X &)%)
ktaS
= T gy 1 (o X @) = (- )i (0 x &)
+ (R o) (- &) — S(R- &)%)
ka® 2 1 2
= 1_(7¢Lﬁ0)2 UTL ('ﬂo XGO)’ (1_§<n nO))

Note that we have used transversality of the initial polarization, ng - €g = 0. To
proceed, we expand the squares and rewrite the above as

do k*ab

2 (13710,€0) = 77— (7 7)? (2 = (- n0)) (|- (o % &)[* + |- &%)

ds2
— (1= (- 70)*) (3|7~ (R0 x &)[* + |71 &[]
(12)
The second line cancels the denominator. However the first line needs a bit of
work. We now use the fact that €y is a unit polarization vector orthogonal to 7.
As a result, the three vectors

no, €05 Ny X € (13)

form a normalized right-handed coordinate basis spanning the three-dimensional
space. (There is a slight subtlety if € is complex, although the end result is okay,
provided we are careful with magnitude squares.) The components of i expanded
in this basis are

ﬁ'ﬁo, ﬁ'go, ﬁ'(’fngéb)
and since 7 is a unit vector, the sum of the squares of these components must be
one. In other words

A

(- 7o) + |- &° + |A - (Ro x €)]* =1



where we have been careful about complex quantities. Using this result, we see
that the denominator in (12) can be completely eliminated, resulting in

do ,. . . R . L

<q (70,6) = K1a®[ = (- fig) — glA- (o x &)* = [A- &[] (14)
If the incident radiation is linearly polarized, show that the cross section is

do

s
where n - ng = cosf and the azimuthal angle ¢ is measured from the direction of
the linear polarization.

5) 3
(€0, 70,7) = k*a® g(l + cos? ) — cos ) — 3 sin? 6 cos 2¢

As stated, the scattering angle 6 is given by n - ng = cosf. The azimuthal angle
¢ is the one between n and €, measured in the plan perpendicular to ng. What
this means is that, using the basis vectors (13) with €y real, the components of #
can be written as

N = fig cos O + € sin @ cos ¢ + (ng X ) sin sin ¢
or alternatively
n-ng = cosB, n - €y = sin @ cos ¢, n - (ng X €y) = sinfsin ¢
Substituting this into (14) gives

;%(97 ¢) = k*a®[3 — cos 0 — % sin® O sin® ¢ — sin” f cos® ¢]

5
4
= k*a®[2 — cos 0 — £ sin® 0(1 — cos 2¢)) — 3 sin” (1 + cos 2¢)]
5
8

8
= k*a®[3(1 + cos® ) — cos O — %SiHQ 6 cos 2¢)

What is the ratio of scattered intensities at § = /2, ¢ =0and 0 = 7/2, ¢ = 7/27
Explain physically in terms of the induced multipoles and their radiation patterns.

At 6 = 7/2, we have
do

m(w/l o) = k4a6[g — %cos 29|

Hence q q
d—g(ﬂ/Q,O) — 1paS, d—g(ﬂ/Z,ﬂ/Q) = Ek4ab

Scattering at 90° is fairly easy to understand physically. For ¢ = 0, the scattered
wave is lined up with the incident polarization €y. Since the polarization is given
by the electric field vector, this indicates that the induced electric dipole of the
sphere is lined up with the direction of the scattered wave. Since the radiation
must be transverse, no dipole radiation can be emitted on axis, and in this case
the scattering must be purely magnetic dipole in nature. On the other hand, for
¢ = /2, the scattered wave is lined up with the incident magnetic field, and
hence the scattering must be purely electric dipole in nature. This demonstrates
that the maximum strength of magnetic dipole scattering is a quarter that of
electric dipole scattering. This is in fact evident by the factor of 1/2 in the
magnetic dipole term in the cross section expression (11).



To lowest order in ¢, this is simply
Tabs ~ 3m(kd)a’
On the other hand, for 4 = a, we find

Tabs ~ 3m(kd)a? x (g)

Hence the true value of the absorption cross section for 6 = a is 2/5 as large as
the simple first order approximation. (This is all done in the long wavelength
approximation, of course. Note furthermore that when 6 = a, the skin depth is
comparable to the size of the sphere. In this case, we can hardly expect to trust
the analysis of Section 8.1.)

10.9 In the scattering of light by a gas very near the critical point the scattered light is
observed to be “whiter” (i.e., its spectrum is less predominantly peaked toward the
blue) than far from the critical point. Show that this can be understood by the fact
that the volumes of the density fluctuations become large enough that Rayleigh’s law
fails to hold. In particular, consider the lowest order approximation to the scattering
by a uniform dielectric sphere of radius a whose dielectric constant e, differs only
slightly from unity.

a) Show that for ka > 1, the differential cross section is sharply peaked in the
forward direction and the total scattering cross section is approximately

™

5 (ka) e, — 1|2 2

o=

with a k2, rather than k*, dependence on frequency.

Since ¢, differs only slightly from unity, we may use the first Born approximation.
The scattering amplitude then has the form

=k A»g(:'l;) k2 [N 6 5
€ B _ E et T |:€»* . goe_s + (ﬁ < g*) (TLO X EO) IUJ’L: d3x
where ¢ = k(ng — n), so that
2 2 20
q® = k*(2 — 2cos ) = (2k)? sin? 3 (10)

Here 6 is the angle between n and ng (ie the incident and scattered waves). For
the dielectric sphere, we set du = 0. Noting that
de { & —1 r<a

€0 0 T>a



we end up with

= —(e — 1)(€F - & e TE 3y
DO 47T( )( 0) /T<a

The integral can be performed in spherical coordinates

/ TPy = / €' €982 drd cos vyd¢p
r<a r<

a
a 1 )
= 27r/ dr/ dcosyrQe’q’"CO87
0 -1
4 4

S rsin(gr)dr = —g[sin(qa) — qacos(qa)]
4 Jo q

As a result
& A (ka)? e - .sin(qa) — gacos(qa)
= (e, — 1)(€" - €) 5
Dy q (qa)

= (er —1)(€" - €0)J1(qa)

where j;1 is the [ = 1 spherical Bessel function

sin(  cos(

¢? ¢

J1(¢) =

The differential cross section is then

2
do

e AY
aQ

4 6 2 j1(qa) ? 2
Dy =k%a’|e, — 1|7 | ——= | |€" - &]

qa

where ¢ is given by (10). The unpolarized cross section is

do 4 ¢ o (71(qa)\* 1+ cos? 6
dQ_ka|€T 1] ( ” 5 (11)

Note that in the long wavelength limit (ka < 1) we also have ga < 1. In this
case, we use the small argument expansion of the spherical Bessel function

BORS - (C=0)

to obtain p ) 2
o a 1+ cos
— ~ —(ka)* T—12—
70 9(a) lep — 1 5



which agrees with the long wavelength dipole approximation when €, is close to
unity.

We are, of course, more interested in the short wavelength limit ka > 1. In this
case, we note that the argument of the spherical Bessel function is

6
qa = 2kasin 3 (12)

This quantity vanishes in the forward direction (§ = 0), but otherwise is very
large when ka > 1. In fact, the behavior of j;(()/( is as follows

nQ) 173 (<1
¢ —cos(C/C? (>1

This is peaked when ¢ ~ 0

110/ ¢

As a result, the cross section (11) falls off as

do 1 1
dQY  (ga)*  [2kasin(f/2)]*

(ka > 1)

away from the forward direction. Looking at the figure, we see that the cross
section is large for qa 52 but rapidly falls off for ga < 2. From (12), we see that
this forward peak corresponds to a cone with

2
I<— <1
Nk;a<<

With this in mind, we may make a rough estimate of the total cross section

. 2 2
1
o= ]{74a6|€r - 1|2/ <j1(qa)) + cos HdQ
qa 2

1\ 2
~ k*a®le, — 1]? <—) X (7r92)’
3 0=2/ka
4n

= ?k2a4|er — 1




We can make a better estimate by approximating the integral more carefully.
Since the integrand is highly peaked at 6 ~ 0, we take

/(jl(q“)) Lt cos eszzw/ (Jl(q“)> sin 6 d
qa 2 0 qa

This gives an approximate value of the total cross section

2
o~ ﬂ(kza)Q!er — 1)

2



This results in the asymptotic forms of the coefficients (8)

l
Blwwlcot(x'—g)—lﬁoo

] -/ . d .
tan &, = Ji(x) ’ tan 5] = mji(x) + 5i(z) _ Cilmx]l(gc)
n () anj(z) +m(z)  Lan(z)

which reproduce exactly the perfectly conducting sphere phase shifts.

10.10 The aperture or apertures in a perfectly conducting plane screen can be viewed as the
location of effective sources that produce radiation (the diffracted fields). An aperture
whose dimensions are small compared with a wavelength acts as a source of dipole
radiation with the contributions of other multipoles being negligible.

a) Beginning with (10.101) show that the effective electric and magnetic dipole mo-
ments can be expressed in terms of integrals of the tangential electric field in the
aperture as follows:

p= eﬁ/(f-ﬁtan)da

2 —
T (ﬁ X Etan) da
iwp

m

where Etan is the exact tangential electric field in the aperture, n is the normal to
the plane screen, directed into the region of interest, and the integration is over
the area of the openings.

The diffraction result (10.101) states

B(F) = —% x/ (i x B)*-da ()
apertures

In the radiation zone, we may take

gikR  gikr
R T

Furthermore, for a small aperture (long wavelength limit), we may expand the

second exponential
elk;R ezkzr

T - (1—ik-@)




Inserting this into (9) and noting that we may use the replacement V — ik in
the radiation zone, we obtain the expansion

. i eikr . 5 .
[ l{:x/(ﬁ’xE)(l—ikz-f’)da’ (10)
2T r
We start with the first term in the expansion
- ikr
E1:Le kX/fL'XEda'
2r r

which may be compared with the electric field of magnetic dipole radiation (in

the radiation zone)

. ZO eikr

E=-221"kxm
4 r
This allows us to read off the effective magnetic dipole moment
2 — 2 —
m= - /'fz'xEda’:, /'fz'xEda' (11)
ikZy W

The effective electric dipole moment is somewhat trickier to extract. It is related
to the second term in (10), which we write as

Ey = — Ex [ (7' x E)k-2")dd 12
2= 5n o x [ BYE-2) (12)
Since we have a flat screen, the normal vector n’ is constant. Furthermore, the
outgoing momentum vector k is unrelated to the integration coordinates (which
line on the screen). Thus these two vectors may be pulled out of the integral.
This means, we need to evaluate the integral (given in components)

/ Bz’ da’

where the indices ¢ and j only lie in the screen directions (ie i,j = 1,2 if we take

n' = 2). We now show that

/Elx; da' = %6” E : f/ da’ (13)

where we reemphasize that ¢ and j lie in the screen directions only. Perhaps the
most direct way to prove this is to write sz; in tensor form

E ® f’ _ Elxll EllL‘/Q _ 1 Elxll + EQCUIQ 0
E2$I1 EQQ?IQ 2 0 Elx’l + EQ.TIQ
+ 1 Elilj'& — E2$/2 2E1.f17/2
2 2E2:L’/1 —Ell‘/l + Egl'/z

= 16;(E-7') + L[Eir) — (W x T'); (7 x E);]
(14)



The second term vanishes when integrated over the openings. This is because we
may use V X E = 0 in a source-free region. Then

0= /x;x;ﬁ’ (V' x E)dd' = egmny, /m;x;(?lEm da’

= —€kimy, /8l(x§x;~)Em da' = . /(eikmx; + €jkm;) B, da’ (15)

—

:/mmwﬁh+%wxEMM'

Note that the surface term arising from the integration by parts vanishes because
it is proportional to Ej, which must vanish on the boundaries of the openings.
Substituting in explicit components ij = 11, 12, and 22 then proves that the
integral of Fox), E1x} — Eaxh, and Eyx), vanish, as needed to remove the second
term from (14). This can also be seen directly by taking a cross product of (15)
with 7’ in the ith component to get

In any case, the result is simply (13), which may be substituted into (12) to
obtain

— 1 e’Lk’”’_» N — iy — ’
Ey = — kx(n' xk) | Z'-FEda
T r
1 ik:'r’_‘ . .
:_Eer kx(kxﬁ’)/f’.Eda’

Comparing this with the radiation patter for electric dipole radiation

. k,2 eikr
E=-—

kx (k x p)

dmeg T

gives an effective electric dipole moment
ﬁ:mﬁ/fﬂﬁmﬂ

Note the curious fact that the magnetic dipole term comes from the lowest order
in the expansion of (9), while the electric dipole term comes from the next order.
This is ‘backwards’ from what happens for a conventional source given by a
specified current density.

b) Show that the expression for the magnetic moment can be transformed into

2 —
m:—/ﬂﬁBMa
W



Be careful about possible contributions from the edge of the aperture where some
components of the fields are singular if the screen is infinitesimally thick.

To relate the electric field to the magnetic field, we may use Faraday’s equation
for harmonic fields V x F —iwB = 0 to write

A (V' x E) = iw(@/ - B)
Multiplying this by a vector Z’ and integrating gives
iw/f’(ﬁ’~§) da' = /:E’[ﬁ’~(v’ x E)] da’
= /i"eijkﬁ;@jEk da’
= — / 8; (2" )eijun By, da’ = / A x E dd’

Note that for integration by parts, we use the fact that n’ is a constant surface
normal vector and that E vanishes at the edges of the aperture. More precisely,
the generalization of Stokes’ theorem indicates that the surface term is of the

form
]{f’(ﬁ-df)

so the electric field contribution indeed arises only from the parallel component
to the edge of the aperture. Finally, substituting this integrated relation between
E and B into (11) gives

m =

. 2 .
/ﬁ’ x Eda' = — [ Z'(d'- B)dd

W ito 1o



1. Jackson 10.20. A suspension of transparent fibers is modeled as a collection of scatters,
each being a right circular cylinder of radius a and length L of a uniform dielectric
material whose dielectric constant differs from the surrounding medium by a fractional
amount de/e®.

(a) We want to calculate the differential scattering cross section per scatterer in the
first Born approximation, for unpolarized incident light. The general result is

@~ DO @

where the scattering amplitude in the first Born approximation is

*‘A
GDOSC: —¢€" eo/dxe 0 (2)

For the cylinder,

—) 0
/dsl‘ elax 2((;)() — € /Cyhnder dglL’ €qu X | Fiq)z (3)

56 a 2 ) i
_ / pdp/ d¢/ dz etaLpcos otiq)z
L/2

Eﬂa2L2J1((ua) sin(qL/2)
€0 qgLa q||L/2 .

Assuming that the incident light is unpolarized, we have €* - €y = (1 + cos? 6) /2.

Pulling all of these results together,

? ktatL?
32

do _
aQ

de

EO)

(4)

2J1(qra)sin(q L/ 2)] ’
qLa qL/2

(1 + cos® ) l

(b) Next, assume that the cylinders in the suspension are slender, in the sense that
ka < 1. Then 2Jy(qra)/q1a = 1, and the cross section is

sin(qL/2) 2
qL/2 ] ' ®)

If we have an ensemble of cylinders with random orientations, we can average over
the orientations; this is equivalent to averaging over ¢ = /¢* — q? , which ranges

do

-

o€

2 KAatL?
€(0)

2
" (14 cos”0) [




between 0 and g. Therefore,

(]} = ihom [ 0
L,
qL Jo u?

_ 2o [sin(eL/2) ?
= grolad) l qL/2 ]

where the last line was obtained by integrating by parts, and Si(x) is the sine
integral,

Si() = [ 2 du, (7)
0o u
Therefore,
do Se 2 EAgd 2
<d_Q> = |- 3—2(1 + cos® 0) F(qL), (8)
where

2. sin(z/2)]? [ 1-22/36+0(z") rx1
F(z) = ESI(m) B [ x/2 ] n { m/z + O(x2) x>1 9)

and ¢ = ky/2(1 — cos ).

In the limit kL < 1, the ensemble averaged differential cross section is

do de |” k*atL?
<E> = m T(l +COSQ 9), (].0)
which when integrated over solid angles gives
72| e ° 4 409

The k* dependence is characteristic of Rayleigh scattering.
In the limit kL > 1 (but ka < 1) we have

do oe |? ktatL? T
— V= |5~| ————(1+4cos?0) . (12)
<d9> O 32 kLy\/2(1 — cos6)
Integrating over solid angles, we have
e | nk3aiL 1 1 29
= |45 e [ d(cos ) 57 (13)
€ 32 -1 2(1 — cos6)




The integral has the value 44/15, so the final result is

B 1172

2
= Ea*L. 14

Note that in this frequency regime there is less scattering at short wavelengths
than the Rayleigh case (k* vs. k%).



Problem 10.11

A perfectly conducting flat screen occupies half of the -y plane
(i.e., = =< 0 ). A plane wave of intensity J; and wave number [ is

incident along the : axis from the region = < (). discuss the values of
the diffracted ficlds in the plane parallel to the z-y plane defined by
z = Z =l Let the coordinates of the observation point by (X ,0,2).
i
|

dilTraction screen at Z>0

r
¢

conducting plate ,

x incident radiation plane wave
with wave number k

a. Show that, for the usual scalar Kirchoff approximation and in
the imit £ >> X and +v£5 == 1, the diffracted ficld is

I = 1_”7. (1 s ‘)r-'”-"' ,',I'IIE f i

L] TJ-=

[SS

where = = X{%}' .

e 1ikry

dA’

||:‘|
P(r) = ﬁ'.'-"llf_nf

'||I?\-:.I'|I|.I'<. Illlu-

rg i the observation point. and r, = -,_.-'f(;r’ - AP+ -Y)P+(-2Z) is
the distance from the area point at the aperture to the ohservation point.
The small letters denote the aperture values while the large letters denote

values at the observation point. dA" = dx'dy’ in this case because the screen
iz in the ry plane.

[ proceed first by evaluating the integral over the y coordinate.

oo g 1krg

h =

: dy’

o0 il.“'
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[ exploit the symmetry of the integral about y = 0, and replace o = (2’ —

Xy +(2—2Z)2
il
@ Y -V +p?

dyf

Substitute = /(3 — ¥)? + p.

e il
_gf

Remember from basic calenlus,

oo ginf Ax)

0 yri-—1

= posAr)

0 r-—1

Jo 2 a Bessel function and N, 8 a Nenmann function. [ will use these to

reduce the integral to a more tractable form. By Euler's handy formula,
¥ = cosr +1isinT. S0 We can write

T
dr = E.Iﬂl::.'q.]l

T
-I'f.‘l" = —E J"'nrnli."!.]l

|Ji.'1-'

e B
Let £ = v/p and df = ;rfy

[cosi ki) + i mnl[."..af]l]
=2 L T v

oo [{m{kﬂi}:{%— is:ilnl[n’cﬂ{]'] &t = 2[_3;1.,.'“.:.{;‘._}} + i%.fn{k,ﬂ}]

And so the first part of the surface integral is done.
Now, I will attempt to integrate over dr'. Don't forget p is a inction of 2.

- L T —r Nolkp) + imJo(kp)de’ = im f Jalkp) + tNgikp)da’

In the limit &2 >> 1 — kZ >> 1 and pk >> 1, the Bessel function and
its friend can be approximated by the following:

[ —

Jo(A) ~ .yl"fq cos(A — %}

i



'_

Ng(A) ~ —ul'l—im{*i—i}

And the integral reduces to

i T_ L. R S
A A 1.rr|||||'lm[{.m{ﬁp E}H—mm{ﬁp E}]rfr’

Which easily reduces to
f 211' =Dy = v or fme"[""‘t_f:' flldr’
\f 0 V Ep
Lest | loose track of all the coeflicients. I'1] rewrite ¥,

. oo gilpk=%) a0 iy ( =~ X2+ = -2}
7 T%ﬁﬂ—nw’ﬂf = L.yn'{j_“ % dz’
e o Vok " £ uﬂ“mﬁ[f - X+ (¥ — Z)F

I have written p in explicitly to remind us that p depends on ', Now, [ label
the integral as I3 and tackle this integration.

dx’

e iy [P =X+ -Z )
!'1 —-_— f
il

,I,fk S — X2+ (¢ = Z)?

So far. I haven't make use of the fact that 2 = 0. I'll do that noW.
If (' — X) << Z. we can expand ,,j(f - XY +21~24+ 255 50

‘u"{_ -=

where u = yffz_z{:r’ A}, and the limits of integration have been changed
accordingly, = = Xﬁl,-'k,."l[_. ). This gives the result:

||'|—.-="‘ i

ok '2_ 8oy
-.-|r..||'| fﬂ —|_I = 'IIT.IE’/;=EIE'|'-{“

A little work with an Argand dmgrmn should convinee vou that

e v_%_iﬁ _"""{_(1‘.;:)
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and then, T reduces to Jackson's result.

w—a_ff—n(lﬂ) s f‘f__ e iy

e | ’ ] .
where = = K(%}w. Note: I didn’t assume time dependence from the start,

but if I did the derivation would be the same. I would have simply factored
the ¢ ™" out from the start. So I just put it back here.

b. Find the intensity. Determine the asymptotic behavior of [ for
£ large and positive (illuminated region) and £ large and negative

(shadow region). what is the value of | at X = (0?7 Make a sketch
of I as a function of X for fixed 7.

We need to rewrite [, is a suggestive way.

Iy = fﬁa e g

Evervbody should know the friendly Fresnel Integrals:

C(A) = fn A{I:ﬁ{%}:ﬁ*

a

S
S(A) —ﬁ sin(™ - )dx
And using Euler’s handy relationship,
f e dr = C(X) + iS(A)
0

In our case.

f_mp'"";m = ,E[{T(x} +i8(aa) — C(-E) — i8(-3)

[ will use the symmetry of C'(z) and Siz), namely, C'(z) = —C{—=x) and
S{r) = —S(—=x) to get rid of all the unwanted minus signs.

f_ “_"" ey = 1,-'% [C(oc) + iS(00) + C(Z) + iS(Z)]
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T{: find C'{x) and S{x) at infinity, we trrd li;—go0 C'(F) = £3 and bimy 40, S(E) =

. Iy is evidently representable by 2 zi1+ i) + C(E) + i5(Z). The intensity
is glwu bw |¥|* s0

a

7=y —ﬁ(l =) eszwp 22D o) +ist)| =

2

()3 [(c@+3) + (s@+3)

And finally, we have what Jackson wants.

o ;_“ l({?’{E}+ %) i (sqzn %)]

Az = — oot, T — Iy, and we have a bright a‘p-c:t As 5 s o00—, T — (), and
we have ashadow. At X =0, Z2=0,and T =

The graph is coming soon!

Greged o -y T 5. 6.9
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