
TREECODE GUIDE

Joshua E. Barnes

Institute for Astronomy, University of Hawai‘i,
2680 Woodlawn Drive, Honolulu, Hawai‘i 96822

treecode is a new program for self-consistent N-body simulation. It is faster than previous codes, and
generally provides better error control. This document provides an overview of the algorithm and links
to the actual source code.

0. Introduction

Hierarchical force calculation algorithms (e.g. Greengard 1990) provide fast, general, and reasonably
accurate approximations for gravity and other inverse-square forces. They fill the gap between direct
sum methods, which are accurate and general but require O(N2) operations for a complete force
calculation, and field methods, which have limited generality and accuracy but require only O(N)
operations. All hierarchical methods partition the mass distribution into a tree structure, where each node
of the tree provides a concise description of the matter within some spatial volume. This tree structure is
used to introduce explicit approximations into the force calculation. Hierarchical methods require either
O(N) or O(N log N) operations per force calculation, depending on the representation employed. The
algorithm described here improves on an earlier hierarchical O(N log N) method (Barnes & Hut 1986,
hereafter BH86) which has been widely employed in astrophysical simulations.

Below, Section 1 outlines the general strategy of the new code. The data structures used in the tree
construction and force calculation are discussed in Section 2. Routines for tree construction, force
calculation, control & integration, and input/output are described in Section 3. Instructions for copying,
compiling, and running treecode are given in Section 4. Finally, system-level software used in the code
is described in the Appendix.

1. Strategies

treecode reduces the overhead of tree search by using the fact that neighboring bodies have similar
interaction lists. This idea was previously used to speed up hierarchical force calculation on vector
machines (Barnes 1990), but the earlier code simply performed a tree search for some small volume
defined by a single cell. In the new code this idea is applied to all levels of the tree.

Forces on bodies are computed during a single recursive scan of the entire tree. This scan maintains and
continuously updates an interaction list; at each level, the fact that a body b lies somewhere within a cell
c is used to winnow the set of possible interactions that b might have. (The information used to define
interaction lists is thus similar to that used in an early parallel code (Barnes 1986), and a similar strategy
figures in the Fast Multipole Method (Greengard & Rokhlin 1987).) The cost of this winnowing is
spread over all bodies within c, promising a significant speed-up over codes which construct a separate

interaction list for each body (e.g. BH86). When the recursive scan arrives at a body b, the interaction
list on hand is used to obtain the gravitational force and potential at b.

Typical hierarchical N-body codes spend about half their time searching the tree (Hernquist 1987); thus
one might hope that a factor of two could be gained by quickly generating interaction lists for all bodies
in a single scan of the tree. In practice, since the interaction lists so generated are not precisely
tailor-made for individual bodies, they must be somewhat longer for a given accuracy. Thus to obtain
the expected speed-up requires faster evaluation of interactions, achieved largely via tighter coding.
Preliminary timing tests show that treecode is indeed about a factor of two faster than the BH86 code at
a fixed level of accuracy; it also outperforms other versions of that algorithm (Barnes 1998). Moreover,
it is significantly more robust when presented with ‘perverse’ mass distributions (Salmon & Warren
1994).

The new algorithm should lend itself to efficient use of vector processors. On a scalar machine, it spends
90% to 95% of the time summing up interaction lists; a large speed-up would be realized by offloading
this task to a vector unit. This approach can make efficient use of N-body force calculation hardware
such as the GRAPE (Gravity PIpe) processor (Sugimoto et al. 1990).

Parallel implementation should also be quite straight-forward provided that each processor has enough
memory to hold a copy of the entire particle array and tree structure. At a minimum, the task of
summing each interaction list can be distributed across a small number of processors; the bottleneck is
then that each processor must search the entire tree. A better approach is to order bodies as they would
be encountered in a tree-walk, estimate the computational work required to calculate the force on each,
and give each processor the job of computing forces for a contiguous block of bodies.

2. Data Structures

The file treedefs.h has specifications for the data structures and global variables used in tree
construction and force calculation. This file requires definitions from several general-purpose C include
files, which are further described in the Appendix.

2.1. Tree Structure

The primary data structure used in the code is an eight-way tree (or ‘oct-tree’), composed of bodies and
cells. Bodies are the leaves of the tree, while cells are the internal branches. The entire tree can be
reached starting from a single cell, known as the root. A simple tree is shown here:

node structures contain the information common to both bodies and cells. In principle, each element of
the tree could be represented as a union of a body and a cell, but this would be inefficient since bodies
and cells require different amounts of memory. Instead, a node is a common header for bodies and cells,
and casts are used to convert a pointer of arbitrary type into a pointer to a node, cell or a body. All of
this ugly code is hidden in macros; the macros used to access the components of nodes are:

Type(q) is the actual type of node q; the only possible values are the constants BODY and CELL.
Update(q) is a boolean value which governs the scope of force calculation. Bodies with Update
equal to TRUE get updated forces; cells with Update equal to TRUE are searched for bodies needing
updated forces.
Next(q) is a pointer to the next node encountered in a recursive scan of the tree after q’s
descendents (if any) have been visited.
Mass(q) is the mass of a body, or the total mass of all bodies within a cell.
Pos(q) is the position of a body, or the position of the center of mass of all bodies within a cell.

body structures represent particles. The macros used to access the components of bodies, besides those
for nodes, are:

Vel(b) is the velocity of body b.
Acc(b) is the acceleration of body b.
Phi(b) is the potential of body b.

cell structures represent the eight-way internal branchings of the tree. The macros used to access the
components of cells, besides those for nodes, are:

Subp(c) is an array of pointers to the descendents of cell c.
More(c) is a pointer to the first of these descendents.
Quad(c) is a matrix of quadrupole moments.
Rcrit2(c) is the square of the critical radius beyond which the cell c can safely appear in
interaction lists. This is not defined if the QUICKSCAN version is compiled.

(Note that the Subp and Quad fields share memory; thus only one of each is defined at any point in the
calculation.)

The Next and More fields of the tree are initialized in the second phase of tree construction. In this

phase, the structure is ‘threaded’ in such a way that a tree search can be performed by a simple iterative
procedure. This transforms the tree sketched above into the following:

In essence, the More link is followed to get more detailed information on the mass distribution, and the
Next link is followed to move on to the next part of the tree. Threading was originally done to speed up
force calculation; now, however, it’s used to free up the memory previously used to store the Subp array.

Before threading, the standard idiom to iterate over the immediate descendents of a cellptr p is

 int i;
 for (i = 0; i < NSUB; i++)
 if (Subp(p)[i] != NULL)
 <process Subp(p)[i]>;

where NSUB = 23 is the maximum number of direct descendents, while after threading, the idiom is

 nodeptr q;
 for (q = More(p); q != Next(p); q = Next(q))
 <process q>;

2.2. Global Variables

Global variables are declared with the symbol global, introduced to deal with ANSI C’s requirement
that the extern keyword be used in all but one compilation module. In compiling the tree construction,
force calculation, and input/output routines, global expands to extern; in the main module
treecode.c, the global symbol is predefined before treedefs.h is included:

 #define global /* don’t default to extern */

This definition prevents global from expanding to extern when compiling the main module.

a) Input parameters for tree construction and force calculation are as follows:

theta governs the accuracy of the force calculation. This parameter is not defined if the QUICKSCAN
version is compiled.
options is a string listing various run-time control options.
usequad is a flag governing the use of quadrupole corrections.

b) Tree construction assigns values to the following variables:

root is a pointer to the root cell.
rsize is the linear size of the root cell.
ncell counts the number of cells used to build the tree.
tdepth counts the number of levels in the tree below the root.
cputree is the CPU time required for tree construction.

c) Force calculation assigns values to the following variables:

actmax is the maximum length of the active list during force calculation.
nbbcalc is the total number of interactions between bodies and bodies.
nbccalc is the total number of interactions between bodies and cells.
cpuforce is the CPU time required for force calculation.

3. Routines

The routines implementing treecode are grouped into four categories: tree construction, force
calculation, control & integration, and input/output. Each set of routines is defined in a separate file.

3.1. Tree Construction

The tree construction task is handled by the routines in treeload.c. Construction begins by fitting a
cube, of linear dimension rsize, around the body positions. This cube is identified with the root cell of
the tree. Bodies are then loaded into the tree one at a time. A given cell can hold up to eight bodies if
each one happens to fall in a different octant. Whenever two bodies fall in the same octant, a new cell is
allocated and the tree is extended to another level. Once all bodies are loaded, total mass and
center-of-mass information is propagated from the bodies towards the root.

maketree supervises the process of tree construction. Its prototype is

 void maketree(bodyptr btab, int nbody);

where btab is an array of nbody body structures. When maketree returns, the root of the tree is
addressed by the global cell pointer, root; also updated are the root cell size, rsize, the number of cells
in the tree, ncell, the depth of the tree, tdepth (counting from 0), and the CPU time used, cputree.

After initializing an empty root cell, maketree loops over btab, calling loadbody to install each body
in the tree. It then propagates information from the leaves to the root, threads the tree structure, and
optionally computes quadrupole moments.

newtree scavenges the cells in the existing tree and prepares to build a new one. Its prototype is

 void newtree(void);

makecell returns a pointer to a free cell. Its prototype is

 cellptr makecell(void);

In addition, makecell also updates ncell.

expandbox fits a box around the body distribution. Its prototype is

 void expandbox(bodyptr btab, int nbody);

where btab is an array of nbody body structures. The result is stored in rsize.

To take advantage of the exact floating-point representation of powers of two in binary computers, the
box size is successively doubled until it fits the bodies. This insures that the corners and midpoints of
cells have exact binary representations.

loadbody inserts a body in the tree. Its prototype is

 void loadbody(bodyptr p);

where p is the body in question.

To find the appropriate place to insert the body, loadbody traces out a path from the root node toward
the leaves of the tree. At each level, it calls subindex to decide which branch to take. Eventually, one of
two things happens. First, the indicated subcell may be empty; the body p is then stuffed into the empty
slot. Second, the indicated subcell may already hold a body; then a new cell is allocated to extend the
tree and both bodies are installed within the new cell.

subindex decides which of a cell’s octants a body falls in. Its prototype is

 int subindex(bodyptr p, cellptr q);

where p is the body in question and c is the cell.

The subindex function uses the fact that during the first phase of tree construction the Pos vector of a
cell is its geometric midpoint. Note that it’s assumed that p actually lies within the volume represented
by c; this assumption is checked for the entire tree when hackcofm is called.

hackcofm propagates cumulative information towards the root cell. Its prototype is

 void hackcofm(cellptr p, real psize, int lev);

where p is the current cell, psize is its linear size, and lev is its level in the tree, counting the root as
level 0.

In outline, hackcofm is a simple depth-first recursive tree scan; it loops over the descendents of p and
calls itself on those which point to cells. It thereby accumulates total masses, center-of-mass positions,
and update flags. This done, hackcofm checks that the center-of-mass actually lies in the volume
represented by p; failure indicates a bug in tree construction. Optionally, setrcrit is called to set the
critical opening radius for this cell.

setrcrit assigns each cell a critical squared opening radius. Its prototype is

 void setrcrit(cellptr p, vector cmpos, real psize);

where p is the cell, cmpos is its center-of-mass position, and psize is its size.

This routine is defined only if the QUICKSCAN version is not compiled. It offers several different methods
to compute the squared critical radius, Rcrit2, beyond which a force calculation need not open p. The
default is a criterion which is extra careful with cells having relatively off-center mass distributions
(Barnes 1995); also provided are Salmon & Warren’s (1994) bmax criterion (option sw94) and BH86’s
original criterion (option bh86).

threadtree relinks the tree using the Next and More pointers. Its prototype is

 void threadtree(nodeptr p, nodeptr n);

where p is any node and n will be its successor.

In outline, threadtree is also a depth-first recursive tree walk. First, it makes n the Next link of p.
Then, if p is a cell, it makes a list its descendents and sets p’s More link to be the first of these; finally it
calls itself on each member of the list, passing the next member as the successor (note that the successor
of the last member is the successor of p).

hackquad propagates quadrupole moments towards the root cell. Its prototype is

 void hackquad(cellptr p);

where p is the current cell.

Again, this routine does a depth-first tree walk. The only trick is that the storage used for the Subp
pointers is reused to store the quadrupole matrix, so the latter are first copied to a temporary array.
(Note: this routine could be simplified using the post-threading idiom to iterate over descendents.)

3.2. Force Calculation

The force calculation code is implemented by routines provided in treegrav.c. As described above,
forces are calculated during a single recursive scan of the tree, which visits every body whose Update
flag is set. Gravitational forces and potentials are assigned to these bodies.

gravcalc supervises the process of force calculation. Its prototype is

 void gravcalc(void);

The tree structure to be used by gravcalc is addressed by the global root pointer; also referenced are
the tree depth tdepth and root cell size rsize.

The main job of gravcalc is to set up the initial call to the worker routine walktree. It begins by
allocating temporary storage for several lists; the length of these lists is estimated from the depth of the
tree. The interact pointer addresses a linear array of cells which list all the interactions acting on a
body; body-cell interactions are listed from the front toward the back, while body-body interactions are
listed from the back toward the front. The active pointer addresses an array of node pointers which will
be examined when constructing interaction lists. With these arrays in place, gravcalc places the root

node on the active list and calls walktree to scan the tree.

walktree is the main recursive routine for force calculation. Its prototype is

 void walktree(nodeptr *aptr, nodeptr *nptr, cellptr cptr, cellptr bptr,
 nodeptr p, real psize, vector pmid);

The effect of walktree is to compute gravity on bodies within node p. This is accomplished via a
recursive scan of p and its descendents. At each point in the scan, information from levels between the
root and p is contained in a set of nodes which will appear on the final interaction lists of all bodies
within p; this set is split into separate lists of cells and bodies, addressed by cptr and bptr, respectively.
The rest of the tree is represented by a set of active nodes which include node p and surround it in space;
pointers to these nodes are stored in an array between aptr and nptr. Node p has linear size psize and
geometric midpoint pmid.

In the main loop of the routine, walktree examines the active nodes, deciding which may be appended
to the interaction lists, and which are so close that their descendents must be examined at the next level
of recursion. Cells are tested by the function accept to determine if they are sufficiently well-separated
from p. If so, they are placed on the cell interaction list, headed by cp; if not, their descendents are
placed on the new active list, headed by np. Bodies, unless they happen to be the body p itself, are
placed directly on the body interaction list, which is headed by bp.

(It may be worth testing the type of a node before placing it on the new active list; that way, bodies can
be copied once and for all to the body interaction list, instead of being copied again for each immediate
descendent of p. But this will complicate the handling of self-interaction.)

If some active cells were rejected by accept, recursion continues to the next level of the tree, taking as
active the descendents of the rejected cells. The actual recursive descent is performed by walksub.
Otherwise, p points to a body, and the interaction lists are complete, so gravsum may be called to sum
up the interactions.

accept determines if a cell passes the separation test. Its prototype is

 bool accept(nodeptr c, real psize, vector pmid);

where c is the cell under consideration, and psize and pmid specify the volume represented by the
current node p.

Two versions of accept exist. The default version insures that the squared distance from c to the nearest
point within p is greater than Rcrit2(c). But if the QUICKSCAN version is compiled, a minimal criterion
is used; no cell touching p, even at a single corner, is accepted.

walksub performs the actual recursive call-back to walktree. Its prototype is

 void walksub(nodeptr *nptr, nodeptr *np, cellptr cptr, cellptr bptr,
 nodeptr p, real psize, vector pmid);

and all parameters have exactly the same values that they do at the calling point in walktree.

Two possible cases arise in walksub. Most often by far, the node p is a cell. In this case, walksub loops

over its descendents, invoking walktree for each, with the appropriately shifted cell center. Much more
rarely, p is actually a body. In this case, the active list contains nodes which can’t be sorted into the
interaction lists at the present level; walksub calls walktree exactly once, continuing the search to the
next level by ‘virtually’ extending the tree.

gravsum supervises the process of evaluating forces from the cell and body interaction lists. Its
prototype is

 void gravsum(bodyptr p0, cellptr cptr, cellptr bptr);

where p0 is the body requiring updated forces and cptr and bptr are pointers to the cell and body
interaction lists, respectively.

The main job of gravsum is to call the worker routines sumnode and sumcell to sum up interaction
terms. The latter routine is only invoked if quadrupole moments are included.

sumnode sums up interactions without quadrupole corrections. Its prototype is

 void sumnode(cellptr start, cellptr finish,
 vector pos0, real *phi0, vector acc0);

where start and finish point to the front and back of the interaction list, pos0 is the place where the
force is evaluated, and phi0 and acc0 are the resulting potential and acceleration.

sumcell sums up interactions, including quadrupole corrections. Its prototype is

 void sumcell(cellptr start, cellptr finish,
 vector pos0, real *phi0, vector acc0);

where the arguments have the same meanings they do for sumnode.

This routine is similar to sumnode, but includes quadrupole-moment corrections (Hernquist 1987) to
improve the forces and potentials generated by cells.

NOTE: sumnode and sumcell together account for upwards of 90% of the cycles in typical
calculations; optimizing their performance is critical. Under the IBM AIX compiler, better results are
obtained when intermediate variables are stored in double precision. The contrary is the case on other
systems which have been tested (SGI & MIPS compiler, Sun & gcc).

3.3. Control & Integration

The routines governing the N-body integration are collected in treecode.c. Parameters and state
variables associated with control and integration are defined in treecode.h.

main is the main controlling routine. Its prototype is

 void main(int argc, string argv[]);

treeforce is the supervisory routine for force calculation. Its prototype is

 void treeforce(void);

stepsystem advances the system by one time-step. Its prototype is

 void stepsystem(void);

Integration is performed using a ‘synchronized leap-frog’, which is computationally equivalent to the
traditional time-centered leap-frog but retains the synchronization of positions and velocities. The
formula to advance the positions r and velocities v from step n to step n+1 is:

 vn+1/2 = vn + an / 2 f ,

 rn+1 = rn + vn+1/2 / f ,

 vn+1 = vn+1/2 + an+1 / 2 f ,

where a = a(r) is the acceleration computed from positions at the corresponding step, and f is the
integration frequency, equal to the inverse of the time-step.

startrun initializes parameters and data for the N-body run. Its prototype is

 void startrun(void);

testdata sets up a Plummer model (Aarseth, Henon, & Wielen 1974). Its prototype is

 void testdata(void);

3.4. Input/Output

The routines responsible for input & output of N-body data are in treeio.c.

inputdata reads initial conditions from an input file. Its prototype is

 void inputdata(void);

startoutput prints a header describing the calculation. Its prototype is

 void startoutput(void);

forcereport prints statistics on tree construction and force calculation. Its prototype is

 void forcereport(void);

output prints diagnostics and determines if a data output is required. Its prototype is

 void output(void);

outputdata outputs the actual N-body data. Its prototype is

 void outputdata(void);

diagnostics computes various dynamical diagnostics. Its prototype is

 local void diagnostics(void);

savestate writes current program state to a binary file. Its prototype is

 void savestate(string pattern);

restorestate restores the program state from a binary file. Its prototype is

 void restorestate(string file);

4. Instructions

4.1. Distribution

A complete version of treecode may be down-loaded from this web site. The entire code is available as
a single gzipped tar file:

treecode.tar.gz

Alternatively, individual files may be saved as plain text (with the appropriate .c and .h extensions).
The files required are treecode.h, treedefs.h, treecode.c, treegrav.c, treeio.c, and
treeload.c. Some general-purpose include files and library routines are also needed; these are found in
getparam.h, mathfns.h, stdinc.h, vectdefs.h, vectmath.h, clib.c, getparam.c, and mathfns.c.
A Makefile is also provided to help organize the compilation process.

The treecode sources are provided as free software with no restrictions on their use or modification.
You may redistribute this software at will provided that you do so without restricting its use,
modification, or redistribution by others. See the GNU General Public License for details.

This software is provided ‘as is’; no warranty is expressed or implied. Naturally, I have run extensive
tests of this software before releasing it; just as naturally, there are probably bugs or limitations not
identified in these tests. If you encounter problems in using this software, please let me know!

If you publish results obtained using treecode, I would appreciate a brief acknowledgment (and a
preprint or reprint). I will not be able to improve this software and continue making it available without
adequate research support; acknowledging the use of this software is an investment in future
developments as well as a basic courtesy.

4.2. Compilation

treecode is written in ANSI C; while some I/O operations may depend on the operating system, the bulk
of the code should work on any system with an ANSI C compiler. The instructions below assume that a
UNIX-like operating system is available.

Begin by placing the files in a single directory. If you have copied the treecode.tar.gz file, this may
be done by giving the following commands:

 % gunzip treecode.tar.gz

 % tar xvf treecode.tar

The directory should then contain all of the .h and .c files listed above, as well as the Makefile.

Before actually compiling the code, you may need to edit the Makefile and modify some of the
parameters or switches. The defaults provided produce good code on an SGI machine with a MIPS
compiler; suggestions for other operating system/compiler combinations will be included in the
Makefile.

Both single-precision and double-precision versions of the code can be generated by changing the value
of the PRECISION parameter in the Makefile. Single-precision is good enough for most calculations, so
that is the default. Some run-time libraries, however, do not provide single-precision versions of
floating-point functions. On such systems, use the MIXEDPREC option for best performance. Note that if
you change the PRECISION parameter, you must delete any existing .o and .a files before recompiling.

Once the Makefile has been edited, build a version of the code by giving either of these commands:

 % make treecode
 % make treecode_q

The first of these builds the standard version, while the second builds the QUICKSCAN version.

4.3. Operation

A test calculation using a self-generated Plummer model (Aarseth, Henon, & Wielen 1974) may be run
by giving the either of these commands

 % treecode
 % treecode_q

This calculation uses nbody=4096 bodies, an integration frequency (inverse timestep) of freq=32, a
smoothing length of eps=0.025, an accuracy parameter theta=1.0 (for the standard version), and no
quadrupole moments. A log of the calculation is printed out; no other output is generated. On a SGI O2,
this test calculation takes about 2.5 minutes.

treecode uses the getparam command-line package to get all input parameters, including the names of
any input and output files. To see a full list of parameters, along with their default values and
descriptions, give either of these commands:

 % treecode -help
 % treecode_q -help

In response, the standard treecode prints out the following:

 treecode Hierarchical N-body code (full scan)
 in= Input file with initial conditions
 out= Output file of N-body frames
 freq=32.0 Fundamental integration frequency
 eps=0.025 Density smoothing length
 theta=1.0 Force accuracy parameter
 usequad=false If true, use quad moments
 options= Various control options

 tstop=2.0 Time to stop integration
 freqout=4.0 Data output frequency
 nbody=4096 Number of bodies for test run
 seed=123 Random number seed for test run
 save= Write state file as code runs
 restore= Continue run from state file
 VERSION=1.3 Joshua Barnes January 10 1999

(the QUICKSCAN version produces a similar listing with one less parameter). This printout lists the name
of each parameter, its default value if any, and a brief explanation of its function. The getparam package
accepts argument values on the command line, and matches them to parameters either by position or by
name. Initially, positional matching is used: the first argument is matched to the first parameter, and so
on. However, if any argument has the form name=value, that argument and any that follow it are
matched by name. An error results if a name does not match any parameter or if more than one value is
assigned to a parameter.

At somewhat greater length than above, the parameters accepted by treecode are interpreted as follows:

in, if given, names an input file containing initial conditions for the calculation. The format of this
file is described below.
out, if given, is a pattern naming output files for N-body snapshots taken at regular intervals. This
pattern is used as an argument to sprintf, along with the integration step number, to generate an
actual file name. If the resulting file already exists, the new data is appended. The format used is
similar to the format used for input files.
freq is the inverse of the integration time-step. It’s convenient to take an integer number of steps
per unit time, so a frequency is a more natural than parameter than a time increment. Powers of
two are particularly convenient since times are then represented exactly as floating-point numbers.
If freq=0, treecode does a single force calculation and output, and exits.
eps is the smoothing length used in the gravitational force calculation. In effect, the mass
distribution is smoothed by replacing each body by a Plummer sphere with scale length eps, and
the gravitational field of this smoothed distribution is calculated.
theta is the opening angle used to adjust the accuracy of the force calculation. Values less than
unity produce more accurate forces, albeit at greater computational expense. The QUICKSCAN
version does not use or accept this parameter.
usequad determines if quadrupole corrections are used when calculating gravitational fields.
These corrections can significantly improve the accuracy of force calculation at a fairly modest
computational cost.
options is a list of comma-separated key words used to obtain various run-time options. The
options available are

reset-time: set the time to zero, regardless of the value in the input file;
new-tout: reschedule the first snapshot output;
out-phi: include potential values in the output files;
out-acc: include acceleration vectors in the output files;
bh86: use the BH86 criterion to set critical cell radii;
sw94: use Salmon & Warren’s (1994) bmax criterion to set critical cell radii.

tstop is the time at which the N-Body integration terminates.
freqout is the inverse of the time interval between output files. To insure that outputs are
performed when expected, freqout should divide freq.
nbody is the number of bodies used to self-generate initial conditions. This parameter is only used

if no input or restore file is given.
seed is the random number seed used to self-generate initial conditions. This parameter is only
used if no input or restore file is given.
save, if given, is a pattern naming binary files used to record the state of the code after each step.
This pattern is used as an argument to sprintf, along with the lowest bit of the step number, to
construct the actual file name.
restore names a binary file written using the save function above. The calculation resumes from
that point. New values of the eps, theta, usequad, options, tstop, and freqout parameters may
be supplied; if not, the values from the saved calculation are used. If N-body data outputs are
required, a new value for out must be given.

For example, to run a test calculation using a Plummer model with 32768 bodies and an opening angle
of 0.75, type

 % treecode nbody=32768 theta=0.75

To compute forces for a N-body configuration in the input file input.data, writing the result to
forces.data, type

 % treecode input.data forces.data freq=0 options=out-phi,out-acc

To run the initial conditions in input.data with a timestep of 1/64, writing results at intervals of 1/16
to separate files run_000.data, run_004.data, ..., type

 % treecode input.data run_%03d.data freq=64 freqout=16

To perform the same calculation using the QUICKSCAN version, while saving the program’s state after
each step, type

 % treecode_q input.data run_%03d.data freq=64 freqout=16 save=state.data

To continue this calculation until time 4, type

 % treecode_q restore=state.data out=run_%03d.data tstop=4

4.4. File Formats

By default, the input and output files used by treecode are written in ASCII. Each file contains one or
more snapshots. Input files have the following format:

 nbody
 NDIM
 time
 mass[1]

 mass[n]
 x[1] y[1] z[1]

 x[n] y[n] z[n]
 vx[1] vy[1] vz[1]

 vx[n] vy[n] vz[n]

Thus an input file contains a total of 3+3*nbody lines. A similar format is used for output files. If the
out-phi and/or out-acc options are set, velocities are followed by potential values and/or acceleration
vectors, respectively.

While ASCII output is easy for people to read, it is relatively inefficient. If treeio.c is compiled with
the BINARYIO preprocessor symbol defined, input and output are performed in binary. This is
recommended for production calculations!

Thanks

The bucolic scenery of Leiden inspired the invention of this algorithm and I thank Tim de Zeeuw for his
hospitality. I’m also grateful to Jun Makino for hospitality while I developed the public version
described here. Initial development of treecode was supported by NASA grant NAG-2836.

Appendix. Zeno System Software

The treecode software depends on a number of include files and function libraries, collectively known
as the ‘Zeno System’. These files define keywords, data types, and library routines useful in C programs.

A.1. Standard Include File

stdinc.h is a standard include file. It defines some constants and data types, and provides prototypes for
a few functions from a general-purpose C library. The following constants and types are used in
treecode.

NULL indicates a pointer to no object. This definition is identical to the one in C’s I/O include file
stdio.h; it is included here for completeness.
local is a synonym for static, used to indicate that a file-level data object or routine is defined
only within that file.
bool is a storage type for logical values. Also defined are the constants TRUE and FALSE.
string is a storage type for a pointer to a null-terminated sequence of characters.
real is a storage type for real-valued numbers. The precision of real values is fixed at compile
time; real is synonymous to float if either SINGLEPREC or MIXEDPREC is defined, and to double
if DOUBLEPREC is defined. For more details, see the description of mathfns.h below.

The following functions, used in treecode, have prototypes in stdinc.h; their source code is given in
clib.c.

allocate is a memory-allocation function. Its prototype is

 void *allocate(int nbyte);

where nbyte is the number of bytes to allocate. The allocate function exits via error if it can’t get the
requested amount of memory. The memory is cleared before allocate returns.

cputime returns the total process CPU time in minutes. Its prototype is

 double cputime(void);

error reports an error and exits. Its prototype is

 void error(string fmt, ...);

The fmt string and any further arguments are interpreted exactly like the system routine printf, but
output to stderr instead of stdout.

scanopt scans an option string for a keyword. Its prototype is

 bool scanopt(string opts, string word);

where opts is a series of words separated by commas, and word is a single keyword; it returns TRUE if
word appears in opts, and FALSE otherwise.

stropen opens a stdio.h stream for input/output. Its prototype is

 stream stropen(string file, string mode);

A.2. Real Functions

mathfns.h defines real versions of the math functions in math.h, along with some extensions. Most
function name are derived from their counterparts in math.h by prepending the letter ‘r’ (for real). The
following functions are used by treecode; sources appear in mathfns.c.

rsqrt computes a real-valued square root. Its prototype is

 real rsqrt(real x);

rsqr computes the inverse of rsqrt. Its prototype is

 real rsqr(real x);

rpow computes a real-valued power. Its prototype is

 real rpow(real x, real y);

rabs computes a real absolute value. Its prototype is

 real rabs(real x);

xrandom generates a random number between specified limits. Its prototype is

 double xrandom(double x1, double x2);

pickshell picks a point on the surface of a shell in an n-dimensional space. Its prototype is

 void pickshell(real *point, int ndim, real radius);

A.3. Getparam Package

getparam.h defines a general command-line argument processing package. Source code is given in
getparam.c. This package provides the client program with a simple self-documenting user interface.
The user may specify arguments by position or by keyword; defaults are supplied for all arguments not
specified. Used in treecode are the following.

initparam initializes the command-line processing package. Its prototype is

 void initparam(string argv[], string defv[]);

where argv is the NULL-terminated vector of command-line arguments supplied to main, and defv is a
vector of parameter names, default values, and documentation messages.

getparam returns the value of a parameter. Its prototype is

 string getparam(string name);

where name is the name of the parameter as supplied to initparam. An error occurs if name is not found.

getiparam returns the integer value of a parameter. Its prototype is

 int getiparam(string name);

getdparam returns the double-precision floating-point value of a parameter. Its prototype is

 double getdparam(string name);

getbparam returns the boolean value of a parameter. Its prototype is

 bool getbparam(string name);

getparamstat returns an indication of parameter status. Its prototype is

 int getparamstat(string name);

A.4. Vectors and Matrices

vectdefs.h defines vectors and matrices. The number of dimensions is a compile-time constant, specified
by the preprocessor symbols THREEDIM, TWODIM, and NDIM; the default is THREEDIM. The types defined
are as follows.

vector is a storage type for a vector of NDIM real values.
matrix is a storage type for a matrix of NDIM2 real values.

vectmath.h defines a collection of macros for operating on vectors and matrices. Those used by
treecode are listed below.

ABSV(s,v) computes the magnitude of a vector: s = sqrt(vi vi).

ADDM(p,q,r) adds matrices: pij = qij + rij.

ADDV(u,v,w) adds vectors: ui = vi + wi.

CLRM(p) sets the elements of a matrix to zero: pij = 0.

CLRV(v) sets the elements of a vector to zero: vi = 0.

DISTV(s,u,v) computes the distance between two vectors: s = sqrt((vi - ui)(vi - ui)).

DIVVS(v,u,s) divides a vector by a scalar: vi = ui / s.

DOTVP(s,v,u) forms the dot product of two vectors: s = vi ui.

MULMS(p,q,s) multiplies a matrix by a scalar: pij = qij s.

MULVS(v,u,s) multiplies a vector by a scalar: vi = ui s.

OUTVP(p,v,u) forms the outer product of two vectors: pij = vi u j.

SETM(p,q) sets one matrix equal to another: pij = qij.

SETV(v,u) sets vector equal to another: vi = ui.

SETVS(v,s) sets all components of a vector equal to a scalar: vi = s.

SETMI(p) sets a matrix to the identity: pij = deltaij.

SUBM(p,q,r) subtracts matrices: pij = qij - rij.

SUBV(v,u,w) subtracts vectors: vi = ui - wi.

There are also some macros defining compound operations specific to treecode. These are written so as
to help the compiler produce good code in the force summation loops.

ADDMULVS(v,u,s) scales a vector, and adds the result to another: vi = vi + ui s.

ADDMULVS2(v,u,s,w,r) scales two vectors, and adds the result to a third: vi = vi + ui s + wi r.

DOTPMULMV(s,v,p,u) multiplies a vector by a matrix, and also forms the dot product: v j = pij
ui and s = v j v j

DOTPSUBV(s,v,u,w) subtracts two vectors, and forms the dot product: vi = ui - wi and s = vi vi.

References

Aarseth, S.J., Henon, M., & Wielen, R. 1974 Astr. & Ap. 37, 183.
Barnes, J.E. 1986. In The Use of Supercomputers in Stellar Dynamics, eds. P. Hut and S.
McMillan (Berlin: Springer-Verlag), p. 175.
Barnes, J.E. 1990. J. Comp. Phys. 87, 161.
Barnes, J.E. 1995. In The Formation of Galaxies, eds. C. Munoz-Tunon & F. Sanchez
(Cambridge: Cambridge University Press), p. 399.
Barnes, J.E. 1998. Dynamics of Galaxy Interactions, in Galaxies: Interactions and Induced Star
formation, by R.C. Kennicutt, Jr., F. Schweizer, & J.E. Barnes (Berlin: Springer).
Barnes, J. & Hut, P. 1986. Nature 324, 446.
Greengard, L. 1990. Computers in Physics, 4, 142.
Greengard, L. & Rokhlin, V. 1987. J. Comp. Phys. 73, 325.
Hernquist, L. 1987. Ap. J. Suppl. 64, 715.
Salmon, J.K. & Warren, M.S. 1994. J. Comp. Phys. 111, 136 .

Sugimoto, D. et al. 1990. Nature 345, 33.

Joshua E. Barnes (barnes@galileo.ifa.hawaii.edu)

Last modified: June 12, 1999

