Chapter 4

Magnetism

4.1 Introduction

Magnetism arises from two sources. One is the classical magnetic moment due to a current

density j:
1 3 )
= — X3 . 4.1
m= / rr X j (4.1)
The other is the intrinsic spin S of a quantum-mechanical particle (typically the electron):
qh
m = gu,S/h ; [, = —— = magneton, (4.2)
2mec

where g is the g-factor (duh!). For the electron, ¢ = —e and puo = —pg, where pg, = eh/2me
is the Bohr magneton.

The Hamiltonian for a single electron is

w2 eh h 2 (72)?
=— 4V H+——0c-VV 2y ., (43
H 2m +V(r)+ 2me 7 + Am?2c? o-VVxmt 8771202V + 8m3c? + > (43)
where m = p + £ A. Where did this come from? From the Dirac equation,
LoV me? +V co-T

The wavefunction W is a four-component Dirac spinor. Since mc? is the largest term for our
applications, the upper two components of ¥ are essentially the positive energy components.
However, the Dirac Hamiltonian mixes the upper two and lower two components of ¥. One
can ‘unmix’ them by making a canonical transformation,

H—H = He ™ | (4.5)

where S is Hermitian, to render H’ block diagonal. With E = mc? + ¢, the effective
Hamiltonian is given by (4.3). This is known as the Foldy-Wouthuysen transformation, the
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details of which may be found in many standard books on relativistic quantum mechanics
and quantum field theory (e.g. Bjorken and Drell, Itzykson and Zuber, etc.) and are recited
in §4.10 below. Note that the Dirac equation leads to g = 2. If we go beyond “tree level”
and allow for radiative corrections within QED, we obtain a perturbative expansion,

922{1+20;+0(a2)}, (4.6)

where o = €2 /he & 1/137 is the fine structure constant.!

There are two terms in (4.3) which involve the electron’s spin:

h
H, = ﬁ (Zeeman term) (4.7)
h
o= 229" VV x (p+<A) (spin-orbit interaction) . (4.8)
The numerical value for p, is
eh _9
pig/ ks = 6.717 x 107° K/G . (4.10)

So on the scale of electron volts, laboratory scale fields (H < 10° G) are rather small. (And
~2000 times smaller for nucleons!).

The thermodynamic magnetization density is defined through

1 OF
M=o (4.11)

where F(T,V,H,N) is the Helmholtz free energy. The susceptibility is then

ey = -t OF
af ~ V 9H%(r)0HP(r")

(4.12)

When the field H (7, t) is time-dependent, we must use time-dependent perturbation theory
to compute the time-dependent susceptibility function,

B 5<M0‘(r,t)>

! 4/
Xaﬂ(r,t\r,t)—m,

(4.13)

where F' is replaced by a suitable generating function in the nonequilibrium case. Note that
M has the dimensions of H.

Note that with p, = eh/2myc for the nuclear magneton, g, = 2.793 and g, = —1.913. These results
immediately suggest that there is composite structure to the nucleons, i.e. quarks.
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4.1.1 Absence of Orbital Magnetism within Classical Physics

It is amusing to note that classical statistical mechanics cannot account for orbital mag-
netism. This is because the partition function is independent of the vector potential, which
may be seen by simply shifting the origin of integration for the momentum p:

_ dNr d D _ _q
7 T H BH i A T;),T;
4) et /(QFﬁ)dN (tpi=2aCord) (4.14)
_ [d"rd"p —BH({pimi}) _ _
= /(27rh)dN e =Z(A=0). (4.15)

Thus, the free energy must be independent of A and hence independent of H = V x A, and
M = —90F/0H = 0. This inescapable result is known as the Bohr-von Leeuwen theorem.
Of course, classical statistical mechanics can describe magnetism due to intrinsic spin, e.g.

ZHeisenberg(H) - H \/’47‘( 65J2<”> 2 QJ eﬁg'uoH.zi nl (416)
Tran(H) = > €7 X 7073 ePamel o (4.17)
{oi}

Theories of magnetism generally fall into two broad classes: localized and itinerant. In the
localized picture, we imagine a set of individual local moments m; localized at different
points in space (typically, though not exclusively, on lattice sites). In the itinerant picture,
we focus on delocalized Bloch states which also carry electron spin.

4.2 Basic Atomic Physics

4.2.1 Single electron Hamiltonian

We start with the single-electron Hamiltonian,

1 1
H= oo (p+ A) FV) +gupH s/h+ s s VY x (p+£4) . (418)
For a single atom or ion in a crystal, let us initially neglect effects due to its neighbors. In
that case the potential V() may be taken to be spherically symmetric, so with I = r x p,

the first term in the spin-orbit part of the Hamiltonian becomes

1 1 1 6V
= _— -1 4.1
Hso 2m2c? s-VVxp T om2 81" ’ (4.19)

with VV = #(0V/0r). We adopt the gauge A = SH x 7 so that
2 2

(p+§A>2:p H-1+

2m 2me &m

5 5 (H x r)? . (4.20)
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Finally, restoring the full SO term, we have

2
P 1 1 10V
= — 1+ 2 H l- 4.21
7 2m+V()+hMB(+ s): +2m02r8r 8 (4.21)
e? Hy TV( ) - .
R (H x7)* + 5 A 28 [H—-r(H- 7). (4.22)

The last term is usually negligible because 7V'(r) is on the scale of electron volts, while
mc? = 511keV.?2 The (H x r)? breaks the rotational symmetry of an isolated ion, so in
principal we cannot describe states by total angular momentum J. However, this effect is of
order H?, so if we only desire energies to order H?, we needn’t perturb the wavefunctions
themselves with this term, . ¢. we can simply treat it within ﬁrst order perturbation theory,

leading to an energy shift 8mc2 < v ‘ H xr)? ‘ \Il> in state | n

4.2.2 The Darwin Term

If V(r) = —Ze?/r, then from V2(1/r) = —4n5(r) we have

K2, Zne’h?
o =22 S(r) (4.23)

which is centered at the nucleus. This leads to an energy shift for s-wave states,

232 2
AE; vave = % ()" = 5 Z %} [w(0)[* - — . (4.24)

s—wave 22 a

where o = %z ~ ﬁ is the fine structure constant and a, = mh—; ~ 0.529 A is the Bohr
radius. For large Z atoms and ions, the Darwin term contributes a significant contribution
to the total energy.

4.2.3 Many electron Hamiltonian

The full N-electron atomic Hamiltonian, for nuclear charge Ze, is then

N p? N
= A1 - s,
H ' 2m Z’TZ—TJ‘ +Z§(T‘) 7 S’L
i= 1<J i=1
N i 02
s (1, +2s)-H Hxr)} . 4.25

where I, = r, x p, and

=2 1 _Z <€2>2 < (%)3 , (4.26)

2m2¢2 r3 h?2 \(he) 2ag \r

2Exercise: what happens in the case of high Z atoms?
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The total orbital and spin angular momentum are L = >, I, and S = ), s,, respectively.

The full many-electron atom is too difficult a problem to solve exactly. Generally progress
is made by using the Hartree-Fock method to reduce the many-body problem to an effective
one-body problem. One starts with the interacting Hamiltonian

N 2 2 N 2
Ze e
H = ;)Z — ' + E I (427)
— |2m 7 — |r; — 74
7 <]

and treats Hg, as a perturbation, and writes the best possible single Slater determinant
state:

(ra)| s (4.28)

N

N4 . (rla'-"'rN):A[Qplgl(rl)"'(p]v

where A is the antisymmetrizer, and ¢, (7) is a single particle wavefunction. In second-
quantized notation, the Hamiltonian is

H= Z ch’ wJU + Z Jkl w]a wka wlo ) (4'29)
ijo ij/l
where
h? Ze?
TC = * _ 2 4.

7 /d%w(T){ om” Tl }%U( ) (4.30)

2

oo’ €
ijkl = /d3 /dT P (1) Pl (7 )W%a'(r’) P (T) - (4.31)

The Hartree-Fock energy is given by a sum over occupied orbitals:

Z + > (Vi = Vi baw) - (4.32)

ijoo’!

The term V;;‘;‘Z is called the direct Coulomb, or “Hartree” term, and V"" d,, 1s the exchange

term. Introducing Lagrange multipliers €;, to enforce normahzatlon of the {pis(r)} and
subsequently varying with respect to the wavefunctions yields the Hartree-Fock equations:

OE
Pic\T (T T)=1
io 90@'0(71) = { - %vz }(pw Z /d3 e (pio(r)
J#i,0’
occC
=Y fa BV (439
J#i

which is a set of N coupled integro-differential equations. Multiplying by ¢} (7) and inte-

grating, we find
[e]e]e;

£ :T;;+2Z (Vg; Ve s a) (4.35)
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It is a good approximation to assume that the Hartree-Fock wavefunctions ¢, (r) are spher-
ically symmetric, i.e.

Pig(r) = R,y (r) Y, (0,9) , (4.36)
independent of o. We can then classify the single particle states by the quantum numbers
ne{l,2,...},1€{0,1,....,n—1}, m; € {—I,...,+l}, and m, = i%. The essential physics
introduced by the Hartree-Fock method is that of screening. Close to the origin, a given
electron senses a potential —Ze?/r due to the unscreened nucleus. Farther away, though,
the nuclear charge is screened by the core electrons, and the potential decays faster than
1/r. (Within the Thomas-Fermi approximation, the potential at long distances decays as
—Ce?a3 /r*, where C ~ 100 is a numerical factor, independent of Z.) Whereas states of
different [ and identical n are degenerate for the noninteracting hydrogenic atom, when the
nuclear potential is screened, states of different [ are no longer degenerate. Smaller [ means
smaller energy, since these states are localized closer to the nucleus, where the potential
is large and negative and relatively unscreened. Hence, for a given n, the smaller [ states
fill up first. For a given [ and n there are (2s 4+ 1) x (21 + 1) = 4l + 2 states, labeled by
the angular momentum and spin polarization quantum numbers m; and m,; this group of
orbitals is called a shell.

4.2.4 The Periodic Table

Based on the energetics derived from Hartree-Fock®, we can start to build up the Periodic
Table. (Here I follow the pellucid discussion in G. Baym’s Lectures on Quantum Mechanics,
chapter 20.) Start with the lowest energy states, the 1s orbitals. Due to their lower angular
momentum and concomitantly lower energy, the 2s states get filled before the 2p states.
Filling the 1s, 2s, and 2p shells brings us to Ne, whose configuration is (1s)? (2s)? (2p)°.
Next comes the 3s and 3p shells, which hold eight more electrons, and bring us to Ar:
152 252 2p% 352 3p% = [Ne] 352 3p®, where the symbol [Ne| denotes the electronic configuration
of neon. At this point, things start to get interesting. The 4s orbitals preempt the 3d
orbitals, or at least most of the time. As we see from table 4.1, there are two anomalies

H The 3d transition metal series ([Ar] core additions) H
Element (A“) Sc?! Ti* v Cr# Mn?®
Configuration || 4s3d! | 4s?3d? | 4s23d3 | 4s'3d® | 4s%3d°
Element (A%) Fe?° Co?" Ni?8 Cu? Zn?Y
Configuration || 4s?3d® | 4s23d7 | 4s?3d® | 4s'3d10 | 452340

Table 4.1: Electronic configuration of 3d-series metals.

in the otherwise orderly filling of the 3d shell. Chromium’s configuration is [Ar]4s' 3d®
rather than the expected [Ar]4s?3d*, and copper’s is [Ar] 4s! 3d!? and not [Ar]4s?3d?. In

3Hartree-Fock theory tends to overestimate ground state atomic energies by on the order of 1 eV per
pair of electrons. The reason is that electron-electron correlations are not adequately represented in the
Hartree-Fock many-body wavefunctions, which are single Slater determinants.
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reality, the ground state is not a single Slater determinant and involves linear combinations
of different configurations. But the largest weights are for Cr and Cu configurations with
only one 4s electron. Zinc terminates the 3d series, after which we get orderly filling of the
4p orbitals.

Row five reiterates row four, with the filling of the 5s, 4d, and 5p shells. In row six, the
lanthanide (4f) series interpolates between 6s and 5d (see also table 4.2), and the actinide
(5f) series interpolates in row seven between 7s and 6d.

Shell: 1s 2s 2p 3s 3p 4s 3d 4p 5s
Termination: | 2He | *Be | Ne | PMg | ®Ar | 2°Ca | 39Zn | 3Kr | 38Sr

Shell: | 4d 5p 6s 4f 5d 6p 7s | 5f/6d
Termination: | ¥Cd | ®*Xe | ®Ba | "'Lu | 8°Hg | ®Rn | ¥Ra | ?No

Table 4.2: Rough order in which shells of the Periodic Table are filled.

4.2.5 Splitting of Configurations: Hund’s Rules

The electronic configuration does not uniquely specify a ground state. Consider, for exam-
ple, carbon, whose configuration is 1s2 2s? 2p2. The filled 1s and 2s shells are inert. However,
there are (g) = 15 possible ways to put two electrons in the 2p shell. It is convenient to
label these states by total L, S, and J quantum numbers, where J = L + S is the total
angular momentum. It is standard to abbreviate each such multiplet with the label 25+1L 7>
where L = S, P, D, F, H, etc.. For carbon, the largest L value we can get is L = 2, which
requires S = 0 and hence J = L = 2. This 5-fold degenerate multiplet is then abbreviated
1D2. But we can also add together two [ = 1 states to get total angular momentum L = 1
as well. The corresponding spatial wavefunction is antisymmetric, hence S = 1 in order
to achieve a symmetric spin wavefunction. Since |L — S| < J < |L + S| we have J = 0,
J =1, or J = 2 corresponding to multiplets 3P0, 3P1, and 3P2, with degeneracy 1, 3, and
5, respectively. The final state has J =L =5 = 0: 180. The Hilbert space is then spanned
by two J = 0 singlets, one J = 1 triplet, and two J = 2 quintuplets: 060814 2d 2. That
makes 15 states. Which of these is the ground state?

The ordering of the multiplets is determined by the famous Hund’s rules:
1. The LS multiplet with the largest S has the lowest energy.

2. If the largest value of S is associated with several multiplets, the multiplet with the
largest L has the lowest energy.

3. If an incomplete shell is not more than half-filled, then the lowest energy state has
J =|L — S|. If the shell is more than half-filled, then J = L + S.
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4f series
H*

3d series

Figure 4.1: Variation of L, S, and J among the 3d and 4f series.

Hund’s rules are largely empirical, but are supported by detailed atomic quantum many-
body calculations. Basically, rule #1 prefers large S because this makes the spin part of the
wavefunction maximally symmetric, which means that the spatial part is maximally anti-
symmetric. Electrons, which repel each other, prefer to exist in a spatially antisymmetric
state. As for rule #2, large L expands the electron cloud somewhat, which also keeps the
electrons away from each other. For neutral carbon, the ground state has S =1, L = 1,
and J = |L — S| = 0, hence the ground state term is *P,.

Let’s practice Hund’s rules on a couple of ions:

P: The electronic configuration for elemental phosphorus is [Ne| 3s% 3p3. The unfilled
3d shell has three electrons. First maximize S by polarizing all spins parallel (up,
say), yielding S = % Next maximize L consistent with Pauli exclusion, which says
L =-14+0+1= 0. Finally, since the shell is exactly half-filled, and not more,

J =|L— S| =3, and the ground state term is 483/2.

Mn**: The electronic configuration [Ar]4s”3d?® has an unfilled 3d shell with three
electrons. First maximize S by polarizing all spins parallel, yielding S = % Next
maximize L consistent with Pauli exclusion, which says L = 2+ 14 0 = 3. Finally,
since the shell is less than half-filled, J = |[L— S| = 3. The ground state term is F, /2°

Fe?": The electronic configuration [Ar]4s” 3d° has an unfilled 3d shell with six elec-
trons, or four holes. First maximize S by making the spins of the holes parallel,
yielding S = 2. Next, maximize L consistent with Pauli exclusion, which says
L =2+14+0+(-1) 2 (adding L, for the four holes). Finally, the shell is
more than half-filled, which means J = L + S = 4. The ground state term is °D,.

Nd3*: The electronic configuration [Xe]6s”4f® has an unfilled 4f shell with three
electrons. First maximize S by making the electron spins parallel, yielding S = %
Next, maximize L consistent with Pauli exclusion: L = 3+ 2 + 1 = 6. Finally, the

shell is less than half-filled, we have J = |L — S| = 3. The ground state term is 11, /2
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4.2.6 Spin-Orbit Interaction

Hund’s third rule derives from an analysis of the spin-orbit Hamiltonian,

Hyo = ZC(TZ‘) li-s;. (4.37)

This commutes with J?, L?, and §?2, so we can still classify eigenstates according to total
J, L, and S. The Wigner-Eckart theorem then guarantees that within a given J multiplet,
we can replace any tensor operator transforming as

RTJM RT = ZDI\JJM’(C%B"Y) TJM’ ) (438)
M/

where R corresponds to a rotation through Euler angles «, 3, and v, by a product of a
reduced matrix element and a Clebsch-Gordon coeflicient:

J J/ J//
J,M/> = C<M M’ M”) <JHT "

In other words, if two tensor operators have the same rank, their matrix elements are
proportional. Both H,, and L-S are products of rank L =1, .S = 1 tensor operators, hence
we may replace

(TM | Ty

J (4.39)

H,— H,=AL-S, (4.40)

where A = A(N, L, S) must be computed from, say, the expectation value of H,, in the
state ‘ JLSJ > This requires detailed knowledge of the atomic many-body wavefunctions.
However, once A is known, the multiplet splittings are easily obtained:

Hyo = 3A(J* — L7 = §%)
= $RPA(J(J+1) = L(L+1) = S(S+1)) . (4.41)

Thus,
E(N,L,S,J)— E(N,L,S,J—1)=AJh*. (4.42)

If we replace ((r;) by its average, then we can find A by the following argument. If the
last shell is not more than half filled, then by Hund’s first rule, the spins are all parallel.
Thus S = LN and s; = S/N, whence A = (¢)/2S. Finding (¢) is somewhat tricky. For
Z=' < r/ay < 1, one can use the WKB method to obtain ¢ (r = a,/Z) ~ v/Z, whence

(¢) ~ (th)z 77;14 (4.43)

and
A~ Z%a*h 2Ry, (4.44)

where a = 2 /he ~ 1/137. For heavy atoms, Za ~ 1 and the energy is on the order of that
for the outer electrons in the atom.
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For shells which are more than half filled, we treat the problem in terms of the holes relative
to the filled shell case. Since filled shells are inert,

Heo=—> ;-5 , (4.45)

where N, =4l +2— N. [ j and s ; are the orbital and spin angular momenta of the holes;

L=-3l;and S =—3 8, We then conclude A = —(¢)/25. Thus, we arrive at Hund’s
third rule, which says

N <2L+1 (< half-filled) = A>0 = J=|L-§| (4.46)
N >2L+1 (> half-filled) = A<0 = J=|L+85]. (4.47)

4.2.7 Crystal Field Splittings

Consider an ion with a single d electron (e.g. Cr3T) or a single d hole (e.g. Cu®") in a cubic
or octahedral environment. The 5-fold degeneracy of the d levels is lifted by the crystal
electric field. Suppose the atomic environment is octahedral, with anions at the vertices of
the octahedron (typically O?~ ions). In order to minimize the Coulomb repulsion between
the d electron and the neighboring anions, the dw2_y2 and d, , ., orbitals are energetically

disfavored, and this doublet lies at higher energy than the {dyy, ds-,dy.} triplet.
The crystal field potential is crudely estimated as

nbrs

(nbrs)
Vee= > V(r-R), (4.48)
R

where the sum is over neighboring ions, and V is the atomic potential.

The angular dependence of the cubic crystal field states may be written as follows:

() = 5Ys (F) — 5Y0()
d,,(7) = %Ym(f’) + %YQ,—I("Q)
d,.(r) = %Yzfl(f’) - %Yzl(ﬁ) : (4.49)

Note that all of these wavefunctions are real. This means that the expectation value of
L7, and hence of general L®, must vanish in any of these states. This is related to the
phenomenon of orbital quenching, discussed below.

If the internal Hund’s rule exchange energy Jy which enforces maximizing S is large com-
pared with the ground state crystal field splitting A, then Hund’s first rule is unaffected.
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duaga da
Figure 4.2: Effect on s, p, and d levels of a cubic crystal field.

However, there are examples of ions such as Co?* for which J; < Vge. In such cases, the
crystal field splitting wins and the ionic ground state is a low spin state. For Co**t in an
octahedral crystal field, the five 3d electrons all pile into the lower 3-fold degenerate ta,
manifold, and the spin is S = % When the Hund’s rule energy wins, the electrons all have
parallel spin and S = g, which is the usual high spin state.

4.3 Magnetic Susceptibility of Atomic and Ionic Systems

To compute the susceptibility, we will need to know magnetic energies to order H?. This
can be computed via perturbation theory. Treating the H = 0 Hamiltonian as Hg, we have

1 62 Zion
En(H)=En(0)+7—iuBH-<n‘L+2.S"n>+SmCZ (n] ;(erif |n)
n‘Lo‘+25a‘n’><n’ L6+255‘n>

1 (64
+ﬁ#§H H Y { +O(H?) , (4.50)

n'#n En - En’

2

where Z,_ is the number of electrons on the ion or atom in question. Since the (H X ;)

Larmor term is already second order in the field, its contribution can be evaluated in
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One-electron energy diagrams

#
p -9
5
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field-free octahedral tetragonal trigonal monoclinie
ion 0, Dy T 5

Figure 4.3: The splitting of one-electron states in different crystal field environments.

first order perturbation theory, i.e. by taking its expectation value in the state ‘n > The
(L+2S)-H term, which is linear in the field, is treated in second order perturbation theory.

4.3.1 Filled Shells: Larmor Diamagnetism

If the ground state ’ G> is a singlet with J‘ G> = L‘ G> = S| G> = 0, corresponding to a
filled shell configuration, then the only contribution to the ground state energy shift is from
the Larmor term,

AE,(H) = eHi (G szr? a), (4.51)
12me
and the susceptibility is
N 9*AE, ne? Zion 9
X= 3 ot = =5 (G ;r |G, (4.52)

where n = N/V is the density of ions or atoms in question. The sum is over all the electrons
in the ion or atom. Defining the mean square ionic radius as

ion

(r?) %(Gy Zr2}G> (4.53)

we obtain

X = Z (r®) = =17 na} <€2>2 ol (4.54)
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Note that X is dimensionless. One defines the molar susceptibility as

e\ 2
XmORE = N X /n = —17, N,a? (m) ((r/as)?)
= -7.91x 1077 Zion<(r/aB)2> cm? /mol . (4.55)

Typically, ((r/ag)?) ~ 1. Note that with na ~ 0.1, we have x| <107° and M = XH is
much smaller than H itself.

H Molar Susceptibilities of Noble Gas Atoms and Alkali and Halide Ions H

Atom or Molar Atom or Molar Atom or Molar
Ion Susceptibility || Atom or Ion | Susceptibility || Atom or Ion | Susceptibility
He -1.9 Lit -0.7
F~ -94 Ne -7.2 Na™ -6.1
Cl~ -24.2 Ar -19.4 KT -14.6
Br— -34.5 Kr -28 Rb* -22.0
I~ -50.6 Xe -43 Cst -35.1

Table 4.3: Molar susceptibilities, in units of 107% ¢cm?®/mol, of noble gas atoms and alkali
and halide ions. (See R. Kubo and R. Nagamiya, eds., Solid State Physics, McGrow-Hill,
1969, p. 439.)

4.3.2 Partially Filled Shells: van Vleck Paramagnetism

There are two cases to consider here. The first is when J = 0, which occurs whenever the
last shell is one electron short of being half-fille. Examples include Eu?t (4%), Cr?*+ (3d%),
Mn3* (3d%), etc. In this case, the first order term vanishes in AE,, and we have

2
2 Zion ‘<n‘LZ+28Z‘G>‘
ne
X=—6m62<G‘ ;r?‘G>+2nu§7§) E,— I (4.56)

The second term is positive, favoring alignment of M with H. This is called van Vieck
paramagnetism, and competes with the Larmor diamagnetism.

The second possibility is J > 0, which occurs in all cases except filled shells and shells which
are one electron short of being half-filled. In this case, the first order term is usually domi-
nant. We label the states by the eigenvalues of the commuting observables {J?2, .J*, L?, §?}.
From the Wigner-Eckart theorem, we know that

(JLSJ,|L+28 |JLSJ.) =g.(J,L,S)(JLSJ,|J | JLSJ.) (4.57)

where

S(S+1)— L(L+1)
2J(J +1)

9.(J,L,S) =3+ (4.58)



14 CHAPTER 4. MAGNETISM

0 By/a(x) (Gd3*)

AR

’ 0421 K
x3,00K
A2,00K
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m, ug/at

L L 1 H/T, 106 Am~! K-!

Figure 4.4: Reduced magnetization curves for three paramagnetic salts and comparison with
Brillouin theory predictions. £(z) = Bj_o(z) = ctnh (x) — 27! is the Langevin function.

is known as the Landé g-factor. Thus, the effective Hamiltonian is
Heg =g psd - H/N . (4.59)

The eigenvalues of H g are E; = jvyH, where j € {—J,...,+J} and v = g, ;. The
problem is reduced to an elementary one in statistical mechanics. The partition function is

J . 1
7 — e—F/k’BT — Z e—j'yH/k‘BT _ Sll’lh.((J + 5)’}/H/kBT) ) (460)
= sinh (vH/2k,T)
The magnetization density is
N OF
where B (x) is the Brillouin function,
Bj(z) = (1+ 35) ctnh [(1+ 55)2] — 55 ctnh (z/2J) . (4.62)
The magnetic susceptibility is thus
OM  nJ*y?
HT)=—=—"DB H/k,T
2/ 3y (.2 2 (€ /ag ’
= (70,02 nad) (/e ( SL02) B (guy TH/R,T)  (4.63)
B

J+1)

X(H =0,T) = 3(g.15)° n
3 LB kBT

(4.64)

The inverse temperature dependence is known as Curie’s law.

Does Curie’s law work in solids? The 1/T dependence is very accurately reflected in insu-
lating crystals containing transition metal and rare earth ions. We can fit the coefficient of
the 1/T behavior by defining the ‘magneton number’ p according to

p2

3k, T

X(T) = nu? (4.65)
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The theory above predicts
p=g. VI +1). (4.66)

One finds that the theory works well in the case of rare earth ions in solids. There, the 4f
electrons of the rare earths are localized in the vicinity of the nucleus, and do not hybridize
significantly with orbitals from neighboring ions. In transition metal compounds, however,

H Calculated and Measured Magneton Numbers of Rare Earth Ions H

Electronic Ground State | magneton || magneton

Ion | Configuration || Term 2S+D [ J Ptheory Pexpt
La3™ [Xe] 4f0 1S, 0.00 <0
Ce?t [Xe] 4f! °F, 2.54 2.4
Pr3+ [Xe] 4f* SH, 3.58 3.5
Nd3+ [Xe] 4f3 L5 3.62 3.5
Pm3* [Xe] 4f* °T, 2.68 -
Sm3+ [Xe] 4f° °H, 0.84 1.5
Eu’t [Xe] 4f° F, 0.00 3.4
Gd3+ [Xe] 47 ®S1 )9 7.94 8.0
Th3+ [Xe] 4f8 F 9.72 9.5
Dy** [Xe] 4f? °H, 10.63 10.6
Ho** [Xe] 4f1V °Tg 10.60 10.4
Er?t [Xe] 4f11 59 9.59 9.5
Tm3+ [Xe] 4f12 SHy 7.57 7.3
Yb3F [Xe] 413 °F. 4.54 4.5
Lu’t [Xe] 414 IS, 0.00 <0

Table 4.4: Calculated and measured effective magneton numbers p for rare earth ions.
(From N. W. Ashcroft and N. D. Mermin, Solid State Physics.) The discrepancy in the
cases of Sm and Eu is due to the existence of low-lying multiplets above the ground state.

one finds poor agreement except in the case of S states (L = 0). This is because crystal
field effects quench the orbital angular momentum, effectively rendering L = 0. Indeed, as
shown in Table 4.5, the theory can be rescued if one ignores the ground state terms obtained
by Hund’s rules, and instead takes L = 0 and J = .9, yielding g, = 2.

4.4 TItinerant Magnetism of Noninteracting Systems

4.4.1 Pauli Paramagnetism

In a metal, the conduction electrons are delocalized and described by Block states. If we
ignore the orbital effects of the magnetic field, we can easily compute the susceptibility at
low fields and temperatures. At T = 0 and H = 0, T and | electrons fill respective Fermi
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H Calculated and Measured Magneton Numbers of Transition Metal Ions

H

Electronic Ground State | magneton | magneton || magneton

Ton | Configuration || Term 25tV [, tJ;LIr';E S p;];fry Pescpt
Ti%* [Ar] 3d! "Dy sy 1.55 1.73 -
VAt [Ar] 3d! Dy 1.55 1.73 1.8
V3t [Ar] 3d? 3F, 1.63 2.83 2.8
Vv [Ar] 3d° F, 0.77 3.87 3.8
Crit [Ar] 3d? ¥, 0.77 3.87 3.7
Mn*+ [Ar] 3d3 ¥, 0.77 3.87 4.0
Cr+ [Ar] 3d* °D, 0.00 4.90 4.8
Mn3+ [Ar] 3d* °D, 0.00 4.90 5.0
Mn?* [Ar] 3d° °S. 5.92 5.92 5.9
Fe3+ [Ar] 3d° °S. 5.92 5.92 5.9
Fe?*t [Ar] 3d° °D, 6.70 4.90 5.4
Co** [Ar] 3d” Fy 6.54 3.87 4.8
Ni?* [Ar] 3d® °F, 5.59 2.83 3.2
Cu?™ [Ar] 3d° “D; 3.55 1.73 1.9

Table 4.5: Calculated and measured effective magneton numbers p for transition metal
ions. (From N. W. Ashcroft and N. D. Mermin, Solid State Physics.) Due to the orbital
quenching, the angular momentum is effectively L = 0.

seas out to wavevector kp. In an external field H, the Zeeman interaction splits the energies

of the different polarization states:
Hy = pugo - H . (4.67)

Taking H = H 2, and summing over all electrons, the Zeeman Hamiltonian becomes

Hy = pg H (NT - Ni) ’ (4.68)
and the magnetization density is (still at 7' = 0)
1 0H NJ, - NT
Moo LM , 4.69

Now since the energies of the 1 and | electrons are shifted by +u,H, the change in their
number is

AN, = —AN, = p,H - 39(ex) V (4.70)

where g(er) is the density of states per unit volume (including both spin species), at the
Fermi energy. Putting this all together, we find

M =y gles) H= X, H | (4.71)
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where X, = p2 g(ey) is the Pauli susceptibility. The Pauli susceptibility is positive, and
hence is paramagnetic.

Using the formula for the density of states,

m*ky
g(gF) = 7T2h2 9 (472)
we find
o LMV (4.73)
P4n2 m \ he rp) - '

Using e2/hc ~ 1/137.036 and assuming krpa, ~ 1, we find X, ~ 10~%, which is comparable
in magnitude (though opposite in sign) from the Larmor susceptibility of closed shells.

4.4.2 Landau Diamagnetism

Next, we investigate the orbital contribution. We assume a parabolic band, in which case

1
5P+ €A 4 o H . (4.74)

Y =

Appealing to the familiar results of a quantized charged particle in a uniform magnetic field,
the energy levels are given by

h2k2
2m

e(n, ko) = (n+3) hw, + oy

s Mgy

(4.75)

where w, = eH/m™c is the cyclotron frequency. Note that u,H = (%) -%hwc. The three-
dimensional density of states is a convolution of the two-dimensional density of states,

goa(e) = o 52 Z(S 1) hw,) (4.76)

where ¢ = \/hc/eH is the magnetic length, and the one-dimensional density of states,

Vak_ Vi 1
7Td€_\/§7rh\/g'

91a(€) = (4.77)

Thus,

oty =2 P Sle o) (1.78)

Thus, the grand potential,

T,V j, H) = —Vk,T / de g(<) In {1+ -9/ ) (4.79)
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may be written as the sum,

vm*eH
QT,V,u,H) = —-Vk,T— F(p, —nhw,) , 4.80
TV, H) = Vi, T ZOE;E (g = ) (4.50)

with A = m*/m,

o = p— 3(14 oA hw, , (4.81)
and -
dw
_ |2 (v—w)/kgT
Fv)= [ {1 te . } . (4.82)
0

We now invoke the Euler-MacLaurin formula,

o0

S () = [dn f(@)+ 510 = 1'0)+ ey O+ .. (4.83)
n=0

0

which gives

[y

Vk, T m*3/? {

Q= _ 3 /dsF(s)JrlhwcF(uo)Jrl(th)2F’(uo)+... (484
2[71’2713 =\ 2 12

We now sum over ¢ and perform a Taylor expansion in fw, x H, yielding

Vi, Tm*3/2 fiped - \
QT,V,p, H) = - EV TR 2 {/dsF + 2(N = D) (hw,)? F'(n) + O(H?Y)
=31+3(1- w2 L om o v o 4.85
o +§( 3/\2)(/’LB ) 87M2+ ( ) ( y Vi Uy ) ( . )
Thus,
1
M=-=(1-502 - 4.86
V( 3)\2) alu Heo ) ( )
and the zero field magnetic susceptibility is
1 2 an
X= (1 - 3?) g, (4.87)

The quantity X, = p2 (On/0u) is simply the finite temperature Pauli susceptibility. The
orbital contribution is negative, i.e. diamagnetic. Thus, X = X, + X, where

X, = —3% (m/m*)* X, (4.88)

is the Landau diamagnetic susceptibility. For free electrons, A = m*/m = 1 and X, =
—%XP resulting in a reduced — but still paramagnetic — total susceptibility. However, in
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semiconductors it is common to find m* ~ 0.1 m, in which case the Landau diamagnetic
term overwhelms the Pauli paramagnetic term, and the overall susceptibility is negative.

In order to probe X, without the diamagnetic X, contribution, nuclear magnetic resonance
(NMR) is used. NMR measures the effect of electron spins on the nuclear spins. The two
are coupled via the hyperfine interaction,

2gxpp . . 16T gy gt
th—w{L.1_5.1+(r-5)<r.I>}+:jh“s Is(r),  (4.89)
where g, is the nuclear g-value, I is the nuclear total angular momentum, and g, is the
nuclear magneton.

4.5 Moment Formation in Interacting Itinerant Systems

4.5.1 The Hubbard Model

A noninteracting electron gas exhibits paramagnetism or diamagnetism, depending on the
sign of X, but never develops a spontaneous magnetic moment: M (H = 0) = 0. What gives
rise to magnetism in solids? Overwhelmingly, the answer is that Coulomb repulsion between
electrons is responsible for magnetism, in those instances in which magnetism arises. At
first thought this might seem odd, since the Coulomb interaction is spin-independent. How
then can it lead to a spontaneous magnetic moment?

To understand how Coulomb repulsion leads to magnetism, it is useful to consider a model
interacting system, described by the Hamiltonian

H=—t Z ( Cio jg—i—cjacZU) —i—Uanan—i—uBH Z Cia Oup Cip - (4.90)
i,

This is none other than the famous Hubbard model, which has served as a kind of Rosetta
stone for interacting electron systems. The first term describes hopping of electrons along
the links of some regular lattice (the symbol (ij) denotes a link between sites ¢ and j). The
second term describes the local (on-site) repulsion of electrons. This is a single orbital model,
so the repulsion exists when one tries to put two electrons in the orbital, with opposite spin
polarization. Typically the Hubbard U parameter is on the order of electron volts. The last
term is the Zeeman interaction of the electron spins with an external magnetic field. Orbital
effects can be modeled by associating a phase exp(iAij) to the hopping matrix element ¢

between sites ¢ and j, where the directed sum of Aij around a plaquette yields the total
magnetic flux through the plaquette in units of ¢, = hc/e. We will ignore orbital effects
here. Note that the interaction term is short-ranged, whereas the Coulomb interaction falls
off as 1/|R; — Rj|. The Hubbard model is thus unrealistic, although screening effects in
metals do effectively render the interaction to be short-ranged.

Within the Hubbard model, the interaction term is local and written as U nyn on any given
site. This term favors a local moment. This is because the chemical potential will fix the
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mean value of the total occupancy ny+ng, in which case it always pays to maximize the

difference |n, —n|.

4.5.2 Stoner Mean Field Theory

There are no general methods available to solve for even the ground state of an interacting
many-body Hamiltonian. We’ll solve this problem using a mean field theory due to Stoner.
The idea is to write the occupancy n,, as a sum of average and fluctuating terms:

Nig = <nia> + 6”720 . (491)

Here, (n,,) is the thermodynamic average; the above equation may then be taken as a defi-
nition of the fluctuating piece, dn,,. We assume that the average is site-independent. This
is a significant assumption, for while we understand why each site should favor developing
a moment, it is not clear that all these local moments should want to line up parallel to
each other. Indeed, on a bipartite lattice, it is possible that the individual local moments
on neighboring sites will be antiparallel, corresponding to an antiferromagnetic order of the
pins. Our mean field theory will be one for ferromagnetic states.

We now write the interaction term as

(fluct®)?
—_——
nyn = (ng) (n) + (ng) on, + (n)) ong,+ ny on, (4.92)
= —(ny) (n)) + (ny)ny + () ny + O((én)2)
= 1(m® —n?) + in (ngp +ny)) + 3m (g —nyy) + O((6n)?) ,
where n and m are the average occupancy per spin and average spin polarization, each per
unit cell:

n=(n)+ (ng) (4.93)
m=(n;)—(n,) , (4.94)

i.e. (ny) = 2(n —om). The mean field grand canonical Hamiltonian K = H — pN, may
then be written as

1 1
ICMF =732 Z tij (Cjacja + Cj'acia) - ('u - §UTL) CIJCZ'U
©,J,0 i
+ (uaH + 3Um) Z o c;-racw + 3 Nyites U(m? — n?) | (4.95)
o

where we’ve quantized spins along the direction of H, defined as 2. You should take note
of two things here. First, the chemical potential is shifted downward (or the electron ener-
gies shifted upward) by an amount %U n, corresponding to the average energy of repulsion
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with the background. Second, the effective magnetic field has been shifted by an amount
2Um/ iy, so the effective field is

Um

H .
24

eH:H+

(4.96)

The bare single particle dispersions are given by ¢, (k) = —t(k) + o, H, where

f(k) =) t(R)e *F, (4.97)

R

and ¢;; = t(R,; — Rj). For nearest neighbor hopping on a d-dimensional cubic lattice,

t(k) = —t Zzzl cos(k,a), where a is the lattice constant. Including the mean field effects,
the effective single particle dispersions become

g,(k) = —t(k) — Un+ (upH + 1Um) o . (4.98)

We now solve the mean field theory, by obtaining the free energy per site, ¢(n, T, H). First,
note that ¢ = w + pn, where w = Q/Ngites is the Landau, or grand canonical, free energy
per site. This follows from the general relation {2 = F' — uN; note that the total electron
number is N = nNjes, since n is the electron number per unit cell (including both spin
species). If g(e) is the density of states per unit cell (rather than per unit volume), then we
have?

[e.e]
¢ =1U(m?* +n?) + fin — ;k:BT/ds 9(€) { In (1 + e(ﬁ—E‘A)/’“BT) +1In (1 + e<ﬂ—€+A)/kBT)}
—0o0
(4.99)
where ot = p — %U n and A = pyH + %U m. From this free energy we derive two self-
consistent equations for p and m. The first comes from demanding that ¢ be a function of
n and not of p, i.e. dp/du = 0, which leads to

o0

n:é/dsg(s){f(e—A—ﬂ)+f(6+A—ﬁ)}, (4.100)

—00
where f(y) = [exp(y/k,T) + 1] ~! is the Fermi function. The second equation comes from
minimizing f with respect to average moment m:

[e.e]

m:;/deg(s){f(g_A_g)_f(s+A—g)}. (4.101)

—00

Here, we will solve the first equation, eq. 4.100, and use the results to generate a Landau
expansion of the free energy ¢ in powers of m?. We assume that A is small, in which case

“Note that we have written un = fin + %UnQ, which explains the sign of the coefficient of n?.
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we may write
n= /dsg<e> {fe—m+3af"e—p)+H A - +...} . (4102)

We write fi(A) = iy + 6t and expand in §fi. Since n is fixed in our (canonical) ensemble,

we have
o

n= /da g(e) f(e = Rg) , (4.103)

—00

which defines fig(n, T).? The remaining terms in the dfi expansion of eqn. 4.102 must sum
to zero. This yields

D(fig) 6p+ $A% D' (i) + 3(61)° D' () + 3D (i) A* 6 + o5 D" (fig) A* + O(A%) =0,

(4.104)
where -
Din) = [d=g(e) (e 1) (4.105)

is the thermally averaged bare density of states at energy u. Note that the k' derivative is

D) =~ [deg(e) e~ n) (4.106)
Solving for djz, we obtain
ofi = —2a; A% — £ (3a} — 6ajay + ag) A* + O(AY) | (4.107)
where ®
D™ ()
ap = ———2 . 4.108
£ = "Dag) (4105)

After integrating by parts and inserting this result for §fi into our expression for the free
energy f, we obtain the expansion

D' ()]’
o(n.T,m) = go(n, T) + 1Um? — 1D () A + | ( | D((Z“))] - %,D"mO)) Ay
0
(4.109)
where prime denotes differentiation with respect to argument, at m = 0, and

[o¢]

0o(n,T) = 1Un2+nn0—/de/\/(e)f(e—go) , (4.110)
—0o0

5The Gibbs-Duhem relation guarantees that such an equation of state exists, relating any three intensive
thermodynamic quantities.
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where g(g) = N(¢), so N(e) is the integrated bare density of states per unit cell in the
absence of any magnetic field (including both spin species).

We assume that H and m are small, in which case

UX,

@ =@y + sam® + Tom" — $x, H? — o Hm+ ..., (4.111)
B
where X, = p2 D(jiy) is the Pauli susceptibility, and
1 1 1 (D/)Q 1Ly pra
a=3U(1-3UD) , b=z 53D Ut (4.112)

where the argument of each D®*) above is fip(n,T). The magnetization density (per unit
cell, rather than per unit volume) is given by

Op UX,
M=——=XH . 4.113
oOH Xott 2y " ( )
Minimizing with respect to m yields
U
am +bm® — 20 =0, (4.114)
2
which gives, for small m,
H
pg 1 —35UD
We therefore obtain M = X H with
X = XOU : (4.116)
-
where 5
U. = — . 4.117
¢ D(fig) ( )

The denominator of X increases the susceptibility above the bare Pauli value X, and is
referred to as — I kid you not — the Stoner enhancement (see Fig. 4.5).

It is worth emphasizing that the magnetization per unit cell is given by
1 0H
Nsites 0H

This is an operator identity and is valid for any value of m, and not only small m.

MM . (4.118)

When H = 0 we can still get a magnetic moment, provided U > U.. This is a consequence
of the simple Landau theory we have derived. Solving for m when H = 0 gives m = 0 when
U < U, and

m(U) = i( v )1/2 VU =T , (4.119)

20U,

when U > U,, and assuming b > 0. Thus we have the usual mean field order parameter
exponent of g = %
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Figure 4.5: A graduate student experiences the Stoner enhancement.

4.5.3 Antiferromagnetic Solution

In addition to ferromagnetism, there may be other ordered states which solve the mean field
theory. One such example is antiferromagnetism. On a bipartite lattice, the antiferromag-
netic mean field theory is obtained from

<ni0'

y=1n4 loe@Bing (4.120)

where Q = (7/a,7/a,...,7/a) is the antiferromagnetic ordering wavevector. The grand
canonical Hamiltonian is then

1 1 T 1 T
K = —35 Z lyj (Ciacja + Cjacia) — (n—3Un) Z CioCio
0

i7j7o-
+ %Umz QR chacw + ;lleiteS U(m2 - n2) (4.121)
i
1 1
1 + + ) e(k) —p+5Un s0Um ko
2 kZ (Ck,a ‘k+Q.o ( %a Um ek+Q)—pn+ %Un et Q0

g k)

+ 3 Naites U(m? — n?) | (4.122)

where £(k) = —t(k), as before. On a bipartite lattice, with nearest neighbor hopping only,
we have e(k + Q) = —e(k). The above matrix is diagonalized by a unitary transformation,
yielding the eigenvalues

Ay =+e2(k)+A%2—[ (4.123)
with A = %Um and i = p — %Un as before. The free energy per unit cell is then

p= Z%U(m2 +n?) + an (4.124)

o

- %kBT/dﬁ g(e) { In (1 + e(f“VE“N)/’“BT) +1n (1 + e(ﬁ+V52+A2)/kBT>} .

—00
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The mean field equations are then

[e.9]

n= ;/deg(a){f(—\/es?—i—AQ—ﬁ) +f(\/52—|—A2—/1>} (4.125)

— o0

oo 2D { (VIR ) (VTR )}

As in the case of the ferromagnet, a paramagnetic solution with m = 0 always exists, in
which case the second of the above equations is no longer valid.

4.5.4 Mean Field Phase Diagram of the Hubbard Model

Let us compare the mean field theories for the ferromagnetic and antiferromagnetic states
at T'= 0 and H = 0. Due to particle-hole symmetry, we may assume 0 < n < 1 without
loss of generality. (The solutions repeat themselves under n — 2 —n.) For the paramagnet,

we have
fi
n= /de g(e) (4.127)
fi
0= }lUnQ—{—/dsg(s)e , (4.128)

with 1 = p — %U n is the ‘renormalized’ Fermi energy and g(¢) is the density of states per
unit cell in the absence of any explicit (H) or implicit (m) symmetry breaking, including
both spin polarizations.

For the ferromagnet,

i—A B+A
n= %/da g(e) + %/da g(e) (4.129)
A i+A
= _ /dgg(é-) (4.130)
U
TN
i—A A
A2
p=tUnt = T+ fage)e + [degle)e (4.131)

Here, A = %U m is nonzero in the ordered phase.
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Finally, the antiferromagnetic mean field equations are

Np<o = /d€ g(e) ; Npso =2 — /d&? g(e) (4.132)

€ €0

2 7 9(€)

== [de = 4.133
€o

A2 T
Q= }lUn2+U—/deg(5)\/62+7A2 , (4.134)
€o

where gy = /12 — A2 and A = LUm as before. Note that || > A for these solutions.
Exactly at half-filling, we have n =1 and it = 0. We then set ¢, = 0.

The paramagnet to ferromagnet transition may be first or second order, depending on the
details of g(e). If second order, it occurs at U = 1/g(fi,), where [ip(n) is the paramagnetic
solution for p. The paramagnet to antiferromagnet transition is always second order in
this mean field theory, since the RHS of eqn. (4.133) is a monotonic function of A. This

oo
transition occurs at U = 2 / [de g(e)e~!. Note that U — 0 logarithmically for n — 1,
Bp
since fi, = 0 at half-filling.
For large U, the ferromagnetic solution always has the lowest energy, and therefore if U2 <
U, there will be a first-order antiferromagnet to ferromagnet transition at some value
U* > U!. Infig. 4.6, I plot the phase diagram obtained by solving the mean field equations
assuming a semicircular density of states g(g) = % W—2yW?2 — 2. Also shown is the phase
diagram for the d = 2 square lattice Hubbard model obtained by J. Hirsch (1985).

How well does Stoner theory describe the physics of the Hubbard model? Quantum Monte
Carlo calculations by J. Hirsch (1985) found that the actual phase diagram of the d =
2 square lattice Hubbard Model exhibits no ferromagnetism for any n up to U = 10.
Furthermore, he found the antiferromagnetic phase to be entirely confined to the vertical
linen =1. Forn # 1 and 0 < U < 10, the system is a paramagnet. These results were
state-of-the art at the time, but both computing power as well as numerical algorithms for
interacting quantum systems have advanced considerably since 1985. Yet as of 2018, we still
don’t have a clear understanding of the d = 2 Hubbard model’s T' = 0 phase diagram! There
is an emerging body of numerical evidence” that in the underdoped (n < 1) regime, there are
portions of the phase diagram which exhibit a stripe ordering, in which antiferromagnetic
order is interrupted by a parallel array of line defects containing excess holes (i.e. the
absence of an electron)®. This problem has turned out to be unexpectedly rich, complex,

SA theorem due to Nagaoka establishes that the ground state is ferromagnetic for the case of a single
hole in the U = oo system on bipartite lattices.

"See J. P. F. LeBlanc et al., Phys. Rev. X 5, 041041 (2015) and B. Zheng et al., Science 358, 1155
(2017).

8The best case for stripe order has been made at T = 0, U/t = 8, and hold doping z =

L (ieen=21).
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Figure 4.6: Mean field phase diagram of the Hubbard model, including paramagnetic (P),
ferromagnetic (F), and antiferromagnetic (A) phases. Left panel: results using a semicir-
cular density of states function of half-bandwidth W. Right panel: results using a two-
dimensional square lattice density of states with nearest neighbor hopping ¢, from J. E.
Hirsch, Phys. Rev. B 31, 4403 (1985). The phase boundary between F and A phases is
first order.

and numerically difficult to resolve due to the presence of competing ordered states, such
as d-wave superconductivity and spiral magnetic phases, which lie nearby in energy with
respect to the putative stripe ground state.

In order to achieve a ferromagnetic solution, it appears necessary to introduce geometric
frustration, either by including a next-nearest-neighbor hopping amplitude ¢’ or by defin-
ing the model on non-bipartite lattices. Numerical work by M. Ulmke (1997) showed the
existence of a ferromagnetic phase at T' = 0 on the FCC lattice Hubbard model for U = 6
and n € [0.15,0.87] (approximately).

4.6 Interaction of Local Moments: the Heisenberg Model

While it is true that electrons have magnetic dipole moments, the corresponding dipole-
dipole interactions in solids are usually negligible. This is easily seen by estimating the
energy scale of the dipole-dipole interaction:

my - my — 3(my - n)(my - n)

Eq_q = (4.135)

)

[ry =7y
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where n = (ry — 7,)/|ry — 71| is the direction vector pointing from 7; to r,. Substituting
m = —u, 0, we estimate Eq_q as

wy _ @ (Y (ap
B4l —==—1|+— — 4.136

and with R ~ 2.5A we obtain F4_q ~ 1 eV, which is tiny on the scale of electronic energies
in solids. The dominant magnetic coupling comes from the Coulomb interaction.

4.6.1 Ferromagnetic Exchange of Orthogonal Orbitals

In the Wannier basis, we may write the Coulomb interaction as

=153 3¢ RlRQ\| ~ |R,Ry) ch ok o Cryor Cryo (4.137)

Rl R2 o’o’
R3,Ry

where we have assumed a single energy band. The Coulomb matrix element is
2
e
(R Ry| —— T ,| |R, R3) /d3 /d (r—Ry) ¢*(r'—Ry) mg@(r’—Rg) o(r—Ry) .
(4.138)

Due to overlap factors, the matrix element will be small unless Ry = R3 and Ry = Ry, in
which case we obtain the direct Coulomb interaction,

V(R-R)=(RR|

~— |RR)
fr =l (4.139)

2
e
:/dsr/d?’r"gp(r—R)‘ = ‘go(r’—R’)‘z

The direct interaction decays as |R — R/|~! at large separations. Were we to include only
these matrix elements, the second quantized form of the Coulomb interaction would be

Vdirect = % Z V(R - R/) (nRU NRigr — 5RR’ 500’ chr)

RR/

= ZV(O)nRTnRi—I-% Z V(R—R)ngng ,
R RAR'

(4.140)

where np = Npy +npg - The first term is the on-site Hubbard repulsion; one abbreviates

U =V(0).

A second class of matrix elements can be identified: those with Ry = R3 = R and Ry =
Ry = R/, with R # R/. These are the so-called exchange integrals:

J(R-R)=(RR| |R'R)

e

| — /]
2

— /d3r/d3r' o' (r—R)¢*(r' — R) irl| o' — R)p(r — R) (4.141)

2
* € *
_ﬁﬁﬁwwwmw+R—RMW4q@W+R—RWWW
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Note that J(R — R') is real. The exchange part of V' is then

_ 1 WA T
Vvexchange -2 Z J(R -R ) CRo CRo’' CR'6' R0

R#R/

=-1 ) J(R-R) (anR’+GR'UR’) :
RAR'

(4.142)

The npnp piece can be lumped with the direct density-density interaction. What is new
is the Heisenberg interaction,

Vies =— Y, J(R—R)Sp - Sp . (4.143)
RAR/

J(R — R') is usually positive, and this gives us an explanation of Hund’s first rule, which
says to maximize S. This raises an interesting point, because we know that the ground
state spatial wavefunction for the general two-body Hamiltonian

2

H= —%(V%V%) +V(|ry —ryl) (4.144)
is nodeless. Thus, for fermions, the ground state spin wavefunction is an antisymmetric
singlet state, corresponding to S = 0. Yet the V3T ion, with electronic configuration
[Ar] 3d?, has a triplet S = 1 ground state, according to Hund’s first rule. Why don’t the
two 3d electrons have a singlet ground state, as the ‘no nodes theorem’ would seem to
imply? The answer must have to do with the presence of the core electrons. Two electrons
in the 1s shell do have a singlet ground state — indeed that is the only possibility. But
the two 3d electrons in V31 are not independent, but must be orthogonalized to the core
states. This in effect projects out certain parts of the wavefunction, rendering the no nodes
theorem inapplicable.

4.6.2 Heitler-London Theory of the Hy, Molecule

The Hamiltonian for the Hy molecule is

4 Pt ¢’ p3 e?
-t = - —
2m  |ry - R, 2m |ry— R,|
. - - p (4.145)
+ - - + :
R, —Ry| [ry— Ry [ry— R, [|r—7y
The total wavefunction is antisymmetric: V(r; oy, 790 4) = —¥(ry0,, 7107). The N =2

electron case is special because the wavefunction factorizes into a product:

U(ryoy,m909) = ®(1ry,79) X(07,07) - (4.146)
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The spin wavefunction may either be symmetric (triplet, S = 1), or antisymmetric (singlet,
S =0):
(| 11) §=1

L) +la)) s=1
|X) = (4.147)
[ 44) S=1

(1) -14)) s=o.

A symmetric spin wavefunction requires an antisymmetric spatial one, and vice versa.

Despite the fact that H does not explicitly depend on spin, the effective low-energy Hamil-
tonian for this system is
Heg = K+ JS1- 52 . (4.148)

The singlet-triplet splitting is AE = Eg_j — Eg_; = —J, so if J > 0 the ground state is
the singlet, and if J < 0 the ground state is the three-fold degenerate triplet.

The one-electron 1s eigenfunction v (r) satisfies the following eigenvalue equation:

L P (1.149)
2m r 0 ' '
In the Heitler-London approach, we write the two-electron wavefunction as a linear combi-
nation
O(ry,ry) = a®(ry,7y) + L Py(ry,75) , (4.150)
with
y(ry,m9) =Y(r) — Ry) ¥(ry — Ry) = 9,(ry) ¥y, (1)

(4.151)
Py(ry,ry) = Y(ry — Ry) (ry — R,) =y (1)) Y,(ry)

Assuming the atomic orbital ¢ (r) to be normalized, we define the following integrals:

A= [dz(r) iy (r) (4.152)
X = /d3r1/d3r2 |, (7, 7) | <62 - . €2> (4.153)

ab 12 T T2a

2 2 2 2
2 e e e e
= /d?’rl/d3r2 ’¢11("°17"°2)’ < +———- >
Ry, T2 ™ Toh
2 2 2 2
. e e e e
Y = /d3T1 d37”2 <I)I (7"1,7‘2) <I>H(r1,'l°2) ( 4 ——— > ,
Ry T2 T, Toa

(4.154)

with 7, = r; — Ra, etc. The expectation value of H in the state ® is

(@|H|®) = (o> +|8]*) (250 + X) + ("B + B*a) (2¢|AP +Y) (4.155)
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and the self-overlap is
(@]@)=laf* + 8] + AP (B + ) . (4.156)

We now minimize (H) subject to the condition that ® be normalized, using a Lagrange
multiplier £ to impose the normalization. Extremizing with respect to a* and g* yields

2¢0+ X 250|AP+Y <a> < 1 ]AP) <a>
=F ) 4.157
(250\A]2+Y 2e + X g AP 1 s ( )

and extremizing with respect to F yields the normalization condition
ol + 1B + AP (@*8 + *a) = 1. (4.158)

The solutions are symmetric and antisymmetric states, with 8/a = +1, corresponding to

the energies
X+Y

1L AR

Note that E, is the energy of the spatially symmetric state, which means a spin singlet
while E_ corresponds to the spatially antisymmetric spin triplet.

E, =2, + (4.159)

The singlet-triplet splitting is

Y — X|A?

J=E B, =25

(4.160)
If J > 0, the triplet lies higher than the singlet, which says the ground state is antiferro-
magnetic. If J < 0, the triplet lies lower, and the ground state is ferromagnetic. The energy
difference is largely determined by the Y integral:

2 2 2
Y = /d3r1/d37’2 T*(ry) Y(ry) (e + e) — 2A* [d% 1/1;(1")67 Pp(r), (4.161)
Ry T r— R,
with Y(r) = ¥ (7)1, (r). The first term is positive definite for the Coulomb interaction.
The second term competes with the first if the overlap is considerable. The moral of the
story now emerges:

weak overlap = ferromagnetism (J < 0) (4.162)

strong overlap = antiferromagnetism (J > 0) .

One finds that the Hy molecule is indeed bound in the singlet state — the total energy has
a minimum as a function of the separation |R, — R, |. In the triplet state, the molecule is
unbound.

4.6.3 Failure of Heitler-London Theory

At large separations R = |R, — R,| the Heitler-London method describes two H atoms
with tiny overlap of the electronic wavefunctions. But this tiny overlap is what determines
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whether the ground state is a total spin singlet or triplet (we ignore coupling to the nuclear
spin). Sugiura obtained the following expression for the singlet-triplet splitting in the

R — oo limit:
. R R 5 62 R
J(R)~ ¢ 38— 157~ 1510 () () () e 2o (4.163)
Ay Ay ay

where v = 0.577 ... is the Euler constant and where 9 (r) = (7ad)~ /2 exp(—r/a,) is the
hydrogenic wavefunction. This is negative for sufficiently large separations (R > 50ay).
But this is a problem, since the eigenvalue problem is a Sturm-Liouville problem, hence the
lowest energy eigenfunction must be spatially symmetric — the singlet state must always lie
at lower energy than the triplet. The problem here is that Heitler-London theory does a
good job on the wavefunction where it is large, i.e. in the vicinity of the protons, but a
lousy job in the overlap region.

4.6.4 Herring’s approach

Conyers Herring was the first to elucidate the failure of Heitler-London theory at large
separations. He also showed how to properly derive a Heisenberg model for a lattice of
hydrogenic orbitals. Herring started with the symmetric spatial wavefunction

N
U(ry, ..., ry) = []e(r, - R;) . (4.164)
=1

This wavefunction would be appropriate were the electrons distinguishable. If we permute
the electron coordinates using a spatial permutation P, € Sy, we obtain another wavefunc-
tion of the same energy, F,. However, there will be an overlap between these states:

Jp=(V|H—-Ey|P. V). (4.165)
The effective Hamiltonian is then
Mg =Ey+ Y JpP, . (4.166)
PeSy

A complete permutation P is a product of spatial and spin permutations: P = P, P_, and
the product when acting on an electronic wavefunction is (—1)F, which is +1 for an even

permutation and (—1) for an odd one®. Thus,

Mg =Eo+ Y (=) JpP, . (4.167)
PESy,

The spin permutation operators P, may be written in terms of the Pauli spin matrices,
once we note that the two-cycle (ij) may be written

Pijy=3+30,-0;. (4.168)

9Here, ‘even’ and ‘odd’ refer to the number of 2-cycles into which a given permutation is decomposed.



4.7. MEAN FIELD THEORY 33

Thus, accounting for only two-cycles, we have
1753
For three-cycles, we have
Pligry = ) Figmy
(14+0,-04)(140; 0) (4.170)

[1+0-i'0j+0j'o-k+o-i'o-k+io-iXaj'ok

N

4.7 Mean Field Theory

We begin with the Heisenberg Hamiltonian
H:—%ZJZ']‘SZ‘-S]‘—’}/ZHZ'-SZ‘, (4.171)
i,j i
and write
Si=m;+46S;, (4.172)
where m; = (S;) is the thermodynamic average of S;. We therefore have
Si'Sj :mi-mj—l—mz--5Sj+mj-55i+55i-55j

(4.173)
:—mi-mj—l—mi-Sj—l—mj-SZ-—I—(SSZ--(SS’J- .

The last term is quadratic in the fluctuations, and as an approximation we ignore it. This
results in the following mean field Hamiltonian,

HME :+%2Jijmi'mj—Z(’YHi+ZJijmj) - S
b7 ' J (4.174)
=Ey—v) H".S;,

i

where

E Jijm;-m;

(4.175)
H = H, +7‘IZ
Note how the effective field Hieff is a sum of the external field H; and the internal field
H iint =~y jdim;. Self-consistency now requires that
Tr S, exp (WHieicf -8, /ksT)

’ Trexp (vHET - S, /k,T) ( )
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where Tr means to sum or integrate over all local degrees of freedom (for site 7). The free

energy is then

F({ml}) == %Z Jij m; - my — ]{ZBTZIHTI’ exp (’nyff : SZ/kBT) .

12
For classical systems, there are several common models:
e Ising Model with S = +1:

m; = tanh(yH [k, T)
— tanh By H; + BY Jiym; ) -

J

The free energy is

F= %ZJijmimj —kBTZhl2cosh <57H¢+62Jijmj> )
J

ij i
e Ising Model with S = —1,0,+1:

2sinh (B'yHi + B2 i mj)
m; =
1+ 2C05h(5’sz‘ +4 Zj Jij mj)

and

A am b s sem £ )

2% ( J
e XY model with S; = (cosb;,sinb;), H = H &

27
[ db; cos6; exp (YHE cos 0, /k,T)
_ 0

m; = <cos 9i> o

[ db; exp (vHE® cos 6, /k,T)
0

I (57H¢ + 8>, Jij mj)
I, (BVHZ- + B2 i mj) 7

where I,,(z) is a modified Bessel function. The free energy is

F=3> Jiymim; — kBTZIHQWI()(ﬂ'VHZ’ +62Jijmj> '
J

%,J %

(4.177)

(4.178)

(4.179)

(4.180)

(4.181)

(4.182)

(4.183)
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e O(3) model with S; = (sin 6; cos ¢;, sin 6; sin ¢;, cos ;). Suppose that m,; points in the
direction of H¢T. Then

27
2T f df; sinf; cosb; exp (’nyH cosb;/ k:BT)
0

m; = <cos 97;> = =

2 [db; sin6; exp (vHET cos 0, /k,T)
0

LT (4.184)
_ eff
= ctnh(’yHi /kBT) — VEfﬁ
kT
= Ctnh<6'yHi + Jlm) — L :
Z T AH 3 Jiym

J

The free energy is

47 sinh (ﬂ’yHi + 8> Jij mj)
F=1N"Jimim; — kTS 1 ’ . 4.1

EXERCISE: Show that the self-consistency is equivalent to F/dm; = 0.

4.7.1 Ferromagnets

Ising Model — Let us assume that the system orders ferromagnetically, with m; = m on all
sites. Then, defining

J(@) =) J(R)eE, (4.186)
R
we have that the free energy per site, f = F/N, is
F(m) = LJ(0)m? — kyTIn Tr exp { (YH + J(0)m) - S/kBT} . (4.187)
For the Zy (Ising) model, we have
m = tanh (67H + ﬁj(())m) ) (4.188)

a transcendental equation for m. For H = 0, we find m = tanh(J(0)m/k,T'), which yields
the Curie temperature Ty, = J(0)/k,.

O(3) Model — We have m = mH lies along H. In the H — 0 limit, there is no preferred
direction. The amplitude, however, satisfies

of _

=0 = m= ctnh(JO)m/k,T) — = 4.189
With z = J(0) m/k,T, then,
kT 1 z 23
= = ctnher ——=—- — — + ... 4.190
J(O)m ctnhz ==3 45—|— , ( )

hence T, = J(0)/3k,.
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4.7.2 Antiferromagnets

If the lattice is bipartite, then we have two order parameters: m, and mg. Suppose
Jij = —J < 0if ¢ and j are nearest neighbors, and zero otherwise. The effective fields on
the A and B sublattices are given by

H® =H —~v'2Jmg, , (4.191)

Note that the internal field on the A sublattice is —y~'zJmy, while the internal field
on the B sublattice is —y~!'zJm,. For the spin-S quantum Heisenberg model, where
S# e {-S,...,+S}, we have

sinh (S + 3)¢

Trexp(&-S) = smhle (4.192)

hence, with & = yHSS /k, T, we have
(8) = €5 Bg(5¢) (4.193)

where Bg(x) is the Brillouin function,
Bgy(x) = (1 + %) ctnh ((1 + %) x) - % ctnh (%) . (4.194)

In order to best take advantage of the antiferromagnetic interaction and the external mag-
netic field, the ordered state is characterized by a spin flop in which m, and mg are, for
weak fields, oriented in opposite directions in a plane perpendicular to H, but each with a
small component along H.

When H = 0, the mean field equations take the form

my = SBg(2JSmy/k;T)

(4.195)
mg = SBS(ZJSmA/kBT) ,

where we have assumed m, and myg are antiparallel, with m, = m, n and my = —mgn,

where n is a unit vector. From the expansion of the Brillouin function, we obtain the Néel

temperature Ty, = 2J/k;,.

4.7.3 Susceptibility

For T > T, the system is paramagnetic, and there is a linear response to an external field,

W OM' oml 9%

9 " BHY ~ '9HY ~  OHI'0HY
2
’Y 14 14
= LSS = (s (s}

(4.196)
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where {1, j} are site indices and {y, v} are internal spin indices. The mean field Hamiltonian
is, up to a constant,

WM = —y> HT. S, (4.197)

which is a sum of single site terms. Hence, the response within H™" must be purely local
as well as isotropic. That is, for weak effective fields, using M; = ym,,

M, = X H{" = X, H, + 7y X, J;; M , (4.198)
which is equivalent to
(0, =7 Xo i) M, = X, H, (4.199)
and the mean field susceptibility is
X =[xt =y e (4.200)

It is convenient to work in Fourier space, in which case the matrix structure is avoided and

one has
Xo

x(q) = ——F7——. (4.201)
1—772Xy J(q)
The local susceptibility X, is readily determined:
M — ’y<5’“> _ Tr S exp(vH - S/k,T)
Tr exp(vH - S/k,T) (4.202)

— S Bg(SvH [k, T) A" |

where Bg(z) is the Brillouin function from eqn. 4.194. As H — 0 we have M = X, H,
with
N v2 Tr(SHSY)
O T kT Tri
where X, = % Tr(S?)/ Tr 1, where N is the number of components of S¥. Thus, for the Ising

model (N = 1) we have X" = 42/k,T, while for the spin-S quantum Heisenberg model

we have X = S(S + 1)72/3k,T. Note that X, oc T~1; the splitting of the degenerate
energy levels by the magnetic field is of little consequence at high temperatures.

= X, 0", (4.203)

In many cases one deals with ‘single ion anisotropy’ terms. For example, one can add to
the Heisenberg Hamiltonian a term such as

Ha=D>_ (57)”, (4.204)

which for D < 0 results in an easy axis anisotropy (i.e. the spins prefer to align along the
z-axis), and for D > 0 results in an easy plane anisotropy (i.e. the spins prefer to lie in
the (z,y) plane). Since this term is already the sum of single site Hamiltonians, there is no
need to subject it to a mean field treatment. One then obtains the mean field Hamiltonian

W=D ($5)? -4 H S (4.205)
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In this case, X, is now anisotropic in spin space. The general formula for X, is

2
v_ v
Xy = T (SHS¥) (4.206)

where the thermodynamic average is taken with respect to the single site Hamiltonian.©

One then has
N _ -~ <~ —1
%7 (@) =x6* [1-772J(q) Xo ], - (4.207)

where the matrix inverse is now in internal spin space.

4.7.4 Variational Probability Distribution

Here’s another way to derive mean field theory. Let €) represent a configuration and let P,
be a probability distribution, normalized such that ) o P, = 1. We define the entropy of
the distribution as

S[P]=~ky» PolnPy. (4.208)
Q
We now ask what distribution Py, minimizes the free energy F' = (H) —T'S. Working in an
eigenbasis of H, we have

F=) PyEq+kT» PylnP,. (4.209)
Q Q

We extremize F' subject to the normalization constraint, which is implemented with a
Lagrange multiplier A\. This means we form the extended function

F*({Po}\) =Y Py Eq+kyTY Py ln Py — A(ZPQ - 1) , (4.210)
Q Q Q

and demand dF*/dP, = 0 for all Q as well as dF"*/d\ = 0. This results in the Boltzmann
distribution,

Pei— %e—Eg/kBT L Z=Y e kT (4.211)
l

Thus, any distribution other than P! results in a larger free energy.

Mean field theory may be formulated in terms of a variational probability distribution.
Thus, rather than working with the Boltzmann distribution PS5, which is usually in-
tractable, we invoke a trial distribution Py, (zy,z,,...), parameterized by {z,,z,,...}, and
minimize the resultant F' = (H) — T'S with respect to those parameters.

As an example, consider the Ising model with spins o; = +1. Each configuration is given
by the set of spin polarizations: Q = {oy,...,0,}. The full equilibrium probability distri-
bution,
P = Z"1 exp (ﬁJZaio—j) , (4.212)
(i)

'"Note that in (4.203) the single site Hamiltonian is simply Ho = 0.
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with = 1/k;T, is too cumbersome to work with. We replace this with a variational
single-site distribution,

N
P, = P;(o;
. Hl (o) (4.213)
Pi(oi) = 5(1+mi) 65, 11+ 5(1 —mi) 65, 1 -

The variational parameters are {m,,...,my}. Note that P, is properly normalized, by
construction.

The entropy of our trial distribution is decomposed into a sum over single site terms:

SIP) =Y s(my)

1+m 14+m 1—m 1—m (4.214)
smo:—%{ 2 () + 2w () )}
The thermodynamic average (o;) is simply
(0i) = Tr Pi(03) oi = m; , (4.215)
hence from
H=—3) Jijoioj—v) Hioi, (4.216)
i i

we derive the free energy

{mz} ZJW mimj — ZHZ m;
1+ 1+ 1 1 (4.217)
m; m; —m; —m;
+kBT;{ 2 m( 2 )+ 2 ln< 2 )}

Varying with respect to each m;, we obtain the coupled nonlinear mean field equations,

m; = tanh [( > Jijm; + ’yHi> /kBT} . (4.218)

For uniform magnetization (m; = m V i), the free energy per site is

" 14+ m 14+ m 1—-m 1—-m
2
—5J(0)m 7Hm+kBT{ 5 In ( 5 )+ 2 In 2 )} (4.219)

~

= L(kyT — J(0)) m? — yHm + 35 kyTm* + Lk, Tm + ...

2

To compute the correlations, we may use the expression
2

X (1) = (i) — (o) (o) } (4.220)
B
- 8M1 o Bml _ 82F
~oH;  '0H; 0H,0H;

(4.221)
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Thus, there are two ways to compute the susceptibility. One is to evaluate the spin-spin
correlation function, as in (4.220). The other is to differentiate the magnetization to obtain
the response function, as in (4.221). The equality between the two — called the “fluctuation-
dissipation theorem” — is in fact only valid for the equilibrium Boltzmann distribution Pq’.
Which side of the equation should we use in our variational mean field theory? It is more
accurate to use the response function. To roughly see this, let us write P = P*4 4 )P, with
0P small in some sense. The free energy is given by

oF
F[P] = F[P*) + 6P - — +O((6P)?) . (4.222)
OP | p_pea
Our variational treatment guarantees that the second term vanishes, since we extremize F
with respect to P. Thus, in some sense, the error in F is only of order (§P)2. If we compute
the correlation function using (A) = Tr (P A), where A is any operator, then the error will
be linear in 6 P. So it is better to use the response function than the correlation function.

EXERCISE: Articulate the correspondence between this variational version of mean field
theory and the ‘neglect of fluctuations’ approach we derived earlier.

4.8 Magnetic Ordering

The g-dependent susceptibility in (4.201) diverges when 7_2X0j (g9 = 1. As we know,
such a divergence heralds the onset of a phase transition where there is a spontaneous
magnetization in the ordered (i.e. low temperature) phase. Typically this happens at a
particular wavevector @, or a set of symmetry related wavevectors {Q1,Q2,...}. The
ordering wavevector is that value of ¢ which results in a mazimum of J(q): maxq{j (@)} =

J (Q). The susceptibility, for isotropic systems, can be written

. Xo
X(q) = - . —. (4.223)
[1 — 772X, J(Q)] +772X, [J(Q) - J(Q)]
The critical temperature 7, is determined by the relation
772X (Te) J(Q) = 1. (4.224)
Expanding about T' = T, and about q = Q, where
J@)=J@{1-(a- QR +...}, (4.225)
we have ,
S XO/R*
~ , 4.226
D™~ =1y 4 (g - Q) (4.226)
where T
ey = X0 pr op gy (4.227)
Xo(Te)

Thus, £(T) o (T—T.)~'/2. The real space susceptibility X(R; — R;) oscillates with wavevec-
tor @ and decays on the scale of the correlation length &(T).
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e Ferromagnet: J;; = +J > 0 if 7 and j are nearest neighbors; otherwise J;; = 0. On a
hypercubic lattice (d dimensions, 2d nearest neighbors), we then have

J(q) = JZ e — 2J{cos(q a) + cos(gya) + ... + cos(qya)} . (4.228)
6

The ordering wavevector is Q = 0, and J (Q) = 2dJ. For the spin-S Heisenberg
model, then, Ti, = %d S(S + 1) J/kg, and the susceptibility is

N . %725(5 +1)/kg
xa) = (T —To) + T d™t S, [1— cos(gva)] ' (4.229)

The uniform susceptibility X = x(g = 0) is then

25(S+1

x(r) = 56+ (4.230)

3ks(T —Tp)

Ferromagnetic insulators: ferrites, EuO, TDAE-Cgg.
o Antiferromagnet: J;; = —J < 0 if ¢ and j are nearest neighbors; otherwise J;; = 0.

On a hypercubic lattice (d dimensions, 2d nearest neighbors), we then have
J(q) = —JZ e 0 — —2J{cos(qya) + cos(gya) + ... + cos(qa)} . (4.231)
o

The ordering wavevector is Q = (r/a, ..., 7/a), at the zone corner, where J(Q) =

2d.J. For the spin-S Heisenberg model, then, Ty = 2d S(S 4 1) J/kg, and the suscep-
tibility is

. °S(S+1)/3k

“(a) = TS5+ 1)/3ky . (4.232)
(T —Ty) + Tyd™ 325 [1+ cos(qwa)]
The uniform susceptibility X = x(g = 0) is then
2
1

X(T) = 22T S5 +1) : (4.233)

ks (T + Ty)

which does not diverge. Indeed, plotting X~!(T') versus T, one obtains an intercept
along the T-axis at T" = —Ty. This is one crude way of estimating the Néel tem-
perature. What does diverge is the staggered susceptibility Xsag = X(Q,T), i.e. the
susceptibility at the ordering wavevector:

2
¥S(S+1
Xstag (T) = RAICR (4.234)
3k, (T —1Ty)
e Frustrated Antiferromagnet: On the triangular lattice, the antiferromagnetic state
is frustrated. What does mean field theory predict? We begin by writing primitive
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direct lattice vectors {a,, a,} and primitive reciprocal lattice vectors {b;,b,}:

4

a, = a(1,0) b, = a—\% (4, -1) (4.235)
4

a,=a(},¥L) b, = a—\% (0,1) (4.236)

where a is the lattice constant. The six nearest neighbor vectors are then
o€ {al,aQ,a2 —Qay,—a, —0y,a; — ‘12} ) (4.237)

and writing q = x,b1 + x2b,, we find
J(q) = —2J{cos(2mx1) + cos(2mw2) + cos(2mwy — 27mxa) } (4.238)

We suspect that this should be maximized somewhere along the perimeter of the
Brillouin zone. The face center lies at (z1,22) = (3, 3), where J(q) = +2J. However,
an even greater value is obtained either of the two inequivalent zone corners, (z1,x3) =
(2,%) and (z1,22) = (},2), where J(q) = +3J. Each of these corresponds to a
tripartite division of the triangular lattice in to three V3 x V3 triangular sublattices.

Antiferromagnetic insulators: MnO, CoO, FeO, NiO, LasCuQOy.

Helimagnet: Consider a cubic lattice system with mixed ferromagnetic and antiferro-
magnetic interactions:

+J1 >0 6 nearest neighbors
Jij = § —J2 < 0 12 next-nearest neighbors (4.239)

0 otherwise .
Then
j(q) =2J; [cos(qza) + cos(gya) + cos(qza)}

(4.240)
— 4J5[ cos(gza) cos(gya) + cos(gza) cos(g-a) + cos(gya) cos(g.a)]
The ordering wavevector is then
_ _ J . N A .
o-1° Leos™! (ﬁ) (Z+9+2) if Jy <4y (4.241)
0 it J1 >4Jy.

Thus, for J; < 4J5 the order is incommensurate with the lattice. The maximum value
of J(q) is

J(Q) = { 4 <4l (4.242)
6(Jy — 20) if Jy > 4 |

hence incommensurate order sets in at 7y = S(S + 1).J?/4kgJ2. The uniform suscep-
tibility is

2(0) = v2S(S +1)/3k,

- J. 205\
781 5 (1-%2)

(4.243)



4.8. MAGNETIC ORDERING 43

Thus,
o 0< Ji <2J; (like AFM)
X(T) =~ (4.244)
S 20y < Jy < 4Jy (like FM) .

4.8.1 Mean Field Theory of Anisotropic Magnetic Systems

Consider the anisotropic Heisenberg model,

intra inter

H= _ZJJ‘JSzSJ —ZJZJ]'SZS]—’)/ZHZSZ (4.245)

i<j i<j

Here, JZ”] only connects sites within the same plane (quasi-2d) or chain (quasi-1d), while
Jé only connects sites in different planes/chains. We assume that we have an adequate
theory for isolated plains/chains, and we effect a mean field decomposition on the inter-
plane/interchain term:

(Auct)?
f—/c\ﬂ
S;-S; = _<Si> . <Sj> + <S,> - S+ <Sj> - S+ 08S; - (5Sj , (4.246)
resulting in the effective field
H"(q,w) = H(q,w) +~>J"(q,) M(q,w) , (4.247)

where M (q,w) = v(S(q,w)). Thus,

X”((IWW)

= " | , (4.248)
1- 772JL(QL) X (q”>w)

X(q;w)
where X'l(q|l,w) is assumed known.

4.8.2 Quasi-1D Chains

Consider a ferromagnet on a cubic lattice where the exchange interaction along the 2-
direction (||) is much larger than that in the (z,y) plane (L). Treating the in-plane inter-
actions via mean field theory, we have

XlD(Qz)
1- ’Y_QJL(QL) X1p(¢2)

X(q,,q.) = : (4.249)

with
JHq,) = 2Jl{cos(qxa) + cos(qya)} . (4.250)
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For the Ising model we can compute X, (q2) exactly using the high temperature expansion:
Tr {O’n Opn! Hj (1 + tanh(JH/k:BT) 0;j Uj+1)}

Tr [, (1+ tanh(J”/kBT) 0j0j41) (4.251)
= tanh" (], /k,T) .

(onow) =

Thus,

9 (9]
~ v n ing,c
B

n=-—00

2

_ 1 (4.252)
ksT cosh(QJH/kBT) = sinh(2J”/kBT) cos(qc)

N 2my? 1 ¢t
- ckyT 7&2+42°

where c is the lattice spacing along the chains, and where the last approximation is valid
for ¢ — 0 and £ — oco. The correlation length in this limit is given by

(T =~ g exp(2J, [k, T) - (4.253)

Note that £(T') diverges only at 7' = 0. This is consistent with the well-known fact that
the lower critical dimension for systems with discrete global symmetries and short-ranged
interactions is d = 1. That is to say that there is no spontaneous breaking of any discrete
symmetry in one-dimension (with the proviso of sufficiently short-ranged interactions). For
continuous symmetries the lower critical dimension is d = 2, which is the content of the
Hohenberg-Mermin-Wagner (HMW) theorem.

Accounting for the residual interchain interactions via mean field theory, we obtain the
anisotropic (in space) susceptibility

) _ )ZlD(q,z) . 4.254
X(qJ" a:) 1—~2. QJL{COS(QJ:CL) + cos(qya)} “Xip(4:) ( |

Three-dimensional ordering at @ = 0 sets in at T' = T, which occurs when x(Q) has a
pole. The equation for this pole is

47
4972 Xp =1 = L — exp(—2J, /ksTe) . (4.255)
kT I
This transcendental equation is equivalent to
1
re' = - (4.256)

where x = 2J”/k:BTC and € = QJL/J”. The solution, for small e, is

I
hpTe=——"T——+... . (4.257)
In (J,/2J )
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Thus, Tc > 0 for all finite J, with T, going to zero rather slowly as J, — 0.

Similar physics is present in the antiferromagnetic insulator phase of the cuprate supercon-
ductors. The antiferromagnetic (staggered) susceptibility of the two-dimensional Heisenberg
model diverges as T' — 0 as X;%g ~ J Yexp(pJ/kyT), where p is a dimensionless measure
of quantum fluctuations. As in the d = 1 Ising case, there is no phase transition at any
finite temperature, in this case owing to the HMW theorem. However, when the quasi-2D
layers are weakly coupled with antiferromagnetic coupling J’ (the base structure is a cubic
perovskite), three-dimensional Néel ordering sets in at the antiferromagnetic wavevector
Q = (7/a,m/a,m/c) at a critical temperature Ty ~ J/k,In(J/J").

4.9 Spin Wave Theory

Recall the SU(2) algebra of quantum spin: [S%, S#] = i€,p,57 (set i =1 for convenience).
Defining S* = 5% 4 iSY, we have, equivalently,
[S#,8F]=+8F | [St,57]=257. (4.258)

The Holstein-Primakoff transformation (1940) maps the spin algebra onto that of a single
bosonic oscillator:

St =alf (25 — afa)'/?

S~ = (28 —dafa)?a (4.259)

S*=dala—5 .
The state | S* = —S5') is the vacuum |0) in the boson picture. The highest weight state,

| S* = 45') corresponds to the state | 2S') in the boson picture, i.e. an occupancy of n = 25
bosons.

EXERCISE: Verify that the bosonic representation of the spin operators in (4.259) satisfies
the SU(2) commutation relations of quantum spin.

What does it mean to take the square root of an operator like 2S5 — afa? Simple! Just
evaluate it in a basis diagonal in a'a, i.e. the number basis:

afaln)=n|n) = (25—da)?|n)=25-n)"?|n). (4.260)

Note that physical boson states are restricted ton € {0, 1,...,2S5}. What about states with
n > 257 The nice thing here is that we needn’t worry about them at all, because ST, S,
and S* do not connect states with 0 < n < 25 to states with n > 2S5. For example, when
applying the spin raising operator S* to the highest weight state | S* = +5), in boson
language we have

ST|S*=+8)=al (25 —ala)'/? |n=25)=0, (4.261)
as required.

While the HP transformation is exact, it really doesn’t buy us anything unless we start
making some approximations and derive a systematic expansion in ‘spin wave’ interactions.
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4.9.1 Ferromagnetic Spin Waves

Consider the classical ground state |F') = |]] --- 1) in which all spins are pointing ‘down’,
with S* = —5. In the boson language, the occupancy at each site is zero. This is in fact
an eigenstate of the Heisenberg Hamiltonian

H=-> J;S:-S; (4.262)
1<j
with eigenvalue Ey = —S? Yic j Jij. If all the interactions are ferromagnetic, i.e. J;; >

0V (i,7), then this state clearly is the ground state. We now express the Heisenberg
interaction S; - S; in terms of the boson creation and annihilation operators. To this end,
we perform a Taylor expansion of the radical,

(QS—aTa)l/Q_x/ﬁ{l—l<(§Sa> é(?;)i} (4.263)

so that

Si-8j =555 +5575 +5;S; (4.264)

t ala
_ o (1. %% _ %Y ‘
sal(1-%e ) (1255
+

t T
a'a.
+S<1_iSZ+”'>aia}<l_iSJ )—l—(aj-ai—S)(ajaJ—S)
=52+ S(agaj + a}ai - ajai - a}aj) + {ajaia;aj — %ajaiaiaj (4.265)
— iajajajaj - %a}a}aiaz - ia;a;ajai} +0(1/5)

Note that a systematic expansion in powers of 1/S can be performed. The Heisenberg
Hamiltonian now becomes

classical ground

state energy O(S2) spin-wave Hamiltonian Hsw lrslfe'f;”;;’ib
= -5 E Jij +8 E Jij ( a a; + a a; — aTaJ - aTa) + O0(sY) . (4.266)
1<J 1<J

We assume our sites are elements of a Bravais lattice, and we Fourier transform:

1 o R + 1 —ig-R; 1t
a, = ——= E ettt a, = —— g e g (4.267)
VN e " VN 1
q q
1 , 1 .
a, = —— E e R, al = — g etk a;r . (4.268)

Note that the canonical commutation relations are preserved by this transformation:

[ai,aT- 5., +— afl,] =0

5] =0, lag, - (4.269)

qq9
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Using the result
1 (a—a') R,
Nzez(q q')-Ri = qq' >
i

we obtain the spin-wave Hamiltonian

The above sum on R converges if J(R — o0) ~ R™(@+219) with € > 0.

4.9.2 Static Correlations in the Ferromagnet

The transverse spin-spin correlation function is
_ 1/2 1/2
(S;“Sj ) = <azT (25 — aiai) / (25 — a;aj) / aj>
=28 (ala;) + O(S°)

d ik-(R;—R;)
:2sg/dkde S
(2m) ohw/kpT _ 1

Q

The longitudinal spin-spin correlation function is

—+

(S7S7) — (S7) (S7) = (ala;ala,) — (ala,) (ala;) = O(S°) .

(2

<

J 77

Note that the average spin polarization per site is

() = =S + (a]a;)

d
:—S+Q/dkd ! .

Q

47

(4.270)

(4.271)

(4.272)

(4.273)

(4.274)

(4.275)

Now as k — 0 the denominator above vanishes as k2, hence the average spin polarization
per site diverges when d < 2. This establishes a “poor man’s version” of the HMW theorem:
as infinite spin polarization is clearly absurd, there must have been something wrong with
our implicit assumption that long-ranged order persists to finite 7. In d = 3 dimensions,

one finds (S?) = —S + O(T?/?).
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4.9.3 Antiferromagnetic Spin Waves

The case of the ferromagnet is special because the classical ground state | F) is in fact a
quantum eigenstate — indeed the ground state — of the ferromagnetic Heisenberg Hamil-
tonian.'' In the case of the Heisenberg antiferromagnet, this is no longer the case. The
ground state itself is a linear combination of classical states. What is the classical ground
state? For an antiferromagnet on a bipartite lattice,'? the classical ground state has each
sublattice maximally polarized, with the magnetization on the two sublattices oppositely
oriented. Choosing the axis of polarization as £, this means S7 = —Sisi € A and S7 = +5
if i € B. We'll call this state | N}, since it is a classical Néel state.

Let is assume that the lattice is a Bravais lattice with a two-element basis described by
basis vectors 0 and 8. Thus, if R is any direct lattice vector, an A sublattice site lies at R
and a B site at R+ §. The Heisenberg Hamiltonian is written

o= 3 (IR R)S\(R) - ,(R) + (R~ RO S,(R)- S,(R)
L (4.276)
AR FUERCIENCNS

Here S, (R) represents the spin on the A sublattice located at position R, while S;(R)
represents the B sublattice spin located at R+ . The factor of % multiplying the J,, and
Jyp terms avoids double-counting the AA and BB interactions. The Néel state will be the
classical ground state if J,, > 0 and Jg; > 0 and J,; < 0. It may remain the ground
state even if some of the interactions are frustrating, i.e. J,, <0, Jyg < 0, and/or J,, > 0
between certain sites.

We’d like the Néel state |[N) = |[141/1...) to be the vacuum for the Holstein-Primakoff
bosons. To accomplish this, we rotate the spin operators on the B sublattice by m about
the g-axis in the internal SU(2) space, sending S* — —S* SY — SY and S* — —S*. In
the language of HP bosons, we have the following;:

A Sublattice B Sublattice
ST =af(25 — ata)'/? ST = —(25 —bTb)/%
5™ = (25 —afa)?a 5™ = —bf(25 — bTp)!/? (4.277)
S* =ala— 8 S =8 —blb

HOf course, |F) is also an eigenstate — the highest lying excited state — of the antiferromagnetic Heisenberg
Hamiltonian.

12 A bipartite lattice is one which may be decomposed into two sublattices A and B, such that all the
neighbors of any site in A lie in B, and all the neighbors of any site in B lie in A. Examples of bipartite
lattices: square, honeycomb, simple cubic, body-centered cubic, hexagonal. Examples of lattices which are
not bipartite: triangular, Kagomé, face-centered cubic.
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We may now write the Heisenberg interaction as an expansion in powers of 1/S:
Sy(R)- S, (R) = 8%+ S (afyap +aly ag — afag — afyag ) + O(S°)
S.(R)-S,(R)=5%+5 (b; by + bl b — by b — bl bR,) +0(8%) (4.278)
Su(R) - Su(R) = 5%+ 8 (afap + by b — alybly — agbp ) +0(5°) .

Thus, the classical ground state energy is the O(S?) term,

By =S Z{ LJW(R—R)— %JBB(R—R’)+JAB(R—R’—6)}. (4.279)
R,R/

The spin-wave Hamiltonian is the O(S!) piece,
= { (R R)(ahag —afag) + Jon(R— R) (b bg — b bg)
RR (4.280)
+ yn (R~ R = 8)(ahag + b b — alg by — ap bR,)}

We now Fourier transform:

1 +ik-R t 1 —ik-R
= —Ze ay, ap = —Ze a, (4.281)
VN 4 \ﬁ
1 4
bR - = Z o tik-(R+9) bk R Z ¢~k (R+9) bT (4.282)
VN % VN
which leads to
1 ik R —k-R
Y T (R-R)ahap - SN JaB- R Vala,,

2y
B
=
=
2
<

>

(4.283)

>
>
—
X
~—
e
o —+
<
B

JAB(R o R/ _ 5)el(k’(R/+6)—kR) a;LbT_k/

-
=
2
R

D}Kn
o3}

Sy
SN—

S
>+

S
|
=

(4.284)

]
ék
|

=}
>
S

m—)—
:g@—*
Il

?rM = ?rM

where, assuming J, ,, Jyp and J,, are functions only of the magnitude of their arguments,
k)=> J(IR])e* R
R
k) = Z JBB(|RD ekt (4.285)
R

jAB(k) = ZJAB(|R+ 5|) eik-(R+5) .
R
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Note that J, (k) = J, (k) = [T, (k)] (similarly for Jy,), and J,,(k) = [J,5(—k)]".

The spin-wave Hamiltonian may now be written as

v=53" { (Jar (0) = Jua (k) = Jun (0)) af y + (i 0) = Jum (k) = 1 (0)) BL by
k

+ Jun (k) al bt + TE(K) ay, b_k} . (4.286)
In other words,
Z{ akak—i—QBBbTb + A, akb + Ay a,b_ k} (4.287)
k
with
Ot = §( 1,4 (0) = ya (k) = J,5(0))
) ) (4.288)
Q S(JBB<O) - ‘]BB(k) - JAB(O))
and
Ay =SJ,,(k) . (4.289)

Henceforth we shall assume J, ,(R) = Jy5(R), so Q3% = Q% = Q..

Note that the vacuum ‘ 0> for the a and b bosons is not an eigenstate of Hgy, owing to the

spin-wave pair creation term Ay a, b_,. This can be traced back to the effect on the Néel
state of the Heisenberg interaction,

Si-Sj=35"S +357 S +575%. (4.290)

Ifi € A and j € B, then the term S;- S acts on the configuration | — S, +5) and converts
it to 25| —S+1, S —1). Nevertheless, we can diagonalize Hsy by means of a canonical
(but not unitary!) transformation, known as the Bogoliubov transformation. Note that for
cach k € Q, the spin-wave Hamiltonian couples only four operators: a;rc, ag, b g and b_
We write the Bogoliubov transformation as

a = Uy, 0y — Uy, BT_k b, =u, B, — vy (XL (4.291)
a;rc = u aL — U, By bT_k = uy, BT_k — Uy, Oy, (4.292)

One can readily verify that this transformation preserves the canonical bosonic commutation
relations,

[alm ak’] [bk’ bk'] = [ak’ ak’] [ﬁka 5]@/] kk’ (4293)

provided that
Up Uy, — VeV, = 1. (4.294)
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The inverse transformation is

Q= UZ a, —l—vz bT_k Bt = uz b_, +vz a;rc (4.295)

a;fc = a,t +u, by, BT_k = Uy, bT_k + v ay, (4.296)
We'll write

uy, = exp(in,,) cosh(6,) , vy, = exp(—in,) sinh(f}) . (4.297)

We may then write

a,, = exp(in,) cosh(,) a;, — exp(in,,) sinh(6}) ﬂT_k (4.208)
b_, = exp(in,) cosh(f,) B_, — exp(in,) sinh(6,) a,:
as well as the inverse
ay, = exp(—in,,) cosh(f,) a, + exp(in,,) sinh(6,) Bik (4.299)
_j = exp(—in,,) cosh(f, ) f_, + exp(in,) sinh(6, ) a;c .
Substituting into the expressions from Hgy, we find
O (a;rc a, + b;rc by,) = Q,, cosh(26,) (oz;fc ay, + ﬂT_k B +1)—Q (4.300)
— €1, sinh(20,) (OJ}; BT_k + ay, B_k)
and
Agabal 4 Afagb = —|A] sinh(26,) (af o + BT B +1) (@301)

+ ‘Ak‘ cosh(26,,) (ozL ﬁik + Bfk) ,

where we have taken 7, = %arg(Ak). Up until now, 6, has been arbitrary. We now use

this freedom to specify 6, such that the (aL Bik + ﬂ,k) terms vanish from Hgy. This
requires

| A

|A,| cosh(26,) — € sinh(26,) =0 = tanh(26,) = o (4.302)
k
which means A
O
cosh(26,) = = | sinh(26,) = 2] (4.303)
Ek E

along with the dispersion relation

B, =2 —|A 7. (4.304)

Finally, we may write the diagonalized spin-wave Hamiltonian as

How =Y By, (kg + BL By) + Y (B —9y) . (4.305)
k k
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Note that Ey, = E_y, since J, (k) = Jis(—k). The two terms above represent, respectively,
the spin-wave excitation Hamiltonian, and the O(S') quantum correction to the ground
state energy. Since Ej, < (g, this correction is always negative.

As k — 0, we have, assuming cubic or higher symmetry,
O =-5> J(IR+6])+§Sk*) J,(IRI)R*+...
R R

=SW + SXk?+...

(4.306)

and

A=+ Ju(IR+8) — LSk U, (IR+6]) [R+6)*+...
R R (4.307)
= -SW +SYKk>+ ... .

The energy dispersion is linear: Ej = hc|k|, where ¢ = S/2W (X +Y). Antiferromag-
netic spin waves are Goldstone bosons corresponding to the broken continuous symmetry
of global spin rotation. The dispersion vanishes linearly as k — 0, in contrast to the case
of ferromagnetic spin waves, where Fj vanishes quadratically.

Reduction in Sublattice Magnetization

Let’s compute the average of S* for a spin on the A sublattice:
(S*(R)) = =S + (ap ag)

1
=-S5+ N Z(a}; ay,)

k
1 ¥ %
=-S5+ N Z <(“k O‘;fc — v, By) (g, — v, BT—k» (4.308)
k
d% Qp 1 1/ Qg
=5t / 2m)’ {Ek exp(Bi/kyT) — 1 ' 2 (Ek B 1>} ’
BZ

where v, is the Wigner-Seitz cell volume, and the integral is over the first Brillouin zone.
The deviation 65 = (aa) from the classical value (S?) = —S is due to thermal and
quantum fluctuations. Note that even at T = 0, when the thermal fluctuations vanish,
there is still a reduction in sublattice magnetization due to quantum fluctuations. The Néel
state satisfies the S7.S7 part of the Heisenberg interaction, but the full interaction prefers
neighboring spins to be arranged in singlets, which involves fluctuations about local Néel
order.

We've seen that €, ~ SW and E, ~ hc|k| as k — 0. Thus, the integrand behaves as
T/k? for the first term and as 1/|k| for the second term. The integral therefore diverges in
d <2 at finite T and in d = 1 even at T' = 0. Thermal and quantum fluctuations melt the
classical ordered state.
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4.9.4 Specific Heat due to Spin Waves

The long wavelength dispersion wq = Aq? has thermodynamic consequences. Consider a
general case of a bosonic dispersion wg = A|q|?. The internal energy for a system in d space
dimensions is then

d%  Ak°
B(T) = V/(%)d e

_AVQy <kBT>1+§ 7d ud/o
T emi\ 4 v —1

(4.309)

where Qg = 27%2/T'(d/2) is the area of the unit sphere in d dimensions. Thus, F(T)
T 1+%, leading to a low-temperature heat capacity of

ko VQy (kT\Y°
(2m)d A

At high T, one must impose a cutoff at the edge of the Brillouin zone, where k ~ 7/a, in
order not to overcount the modes. One finds

Cy =T(2+3d)¢(1+3d) (4.310)

d%
E(T)=k,T V/(27T)d = Nk, T, (4.311)
Q
where N is the number of unit cells. This simply is the Dulong-Petit result of k;T per
mode.

For ferromagnetic spin waves, we found o = 2, hence C;, o T%2 at low temperatures. As
we shall see, for antiferromagnetic spin waves, one has ¢ = 1, as in the case of acoustic
phonons, hence C}, T,

Suppose we write the long-wavelength ferromagnetic spin-wave dispersion as hwg = CJ (ga)?,
where «a is the lattice spacing, J is the nearest neighbor exchange, and C' is a dimensionless
constant. The ferromagnetic low-temperature specific heat is then

ko VQy [k, T\Y?
(2ma)d \ CJ ’

Cy =T(2+id)¢(1+ 1d) (4.312)

hence C¥ o< (T/© ;)42 with © ; = C'J/k,. Acoustic phonons with a w, = fic|k| dispersion
lead to a Debye heat capacity

CP =T(2+d)¢(1+d)

Q0 T\
ki d<kB > : (4.313)

(2ma)d \ hc/a
hence CP « (T/©p)?, with © = hic/ak,. Thus, at the lowest temperatures, the specific
heat due to spin waves dominates, but at intermediate temperatures it is the phonon specific

heat which dominates. The temperature scale T* at which the two contributions are roughly
equal is given by

(T*/0,)7? ~ (T*/6p)! = T*~06}/0,. (4.314)
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4.10 Appendix: The Foldy-Wouthuysen Transformation

Let us write
H=m?P+c - 7m+V, (4.315)

where

T=p+cA (4.316)

is the dynamical momentum and where the v* are the Dirac matrices,

'70: Lows  Oayo 7 v = 0252 O5x2 ) (4.317)
0o —1oyo —Osys  Uayo

Here o is the vector of Pauli matrices.

The idea behind the FW transformation is to unitarily transform to a different Hilbert
space basis such that the coupling in H between the upper and lower components of the
Dirac spinor vanishes. This may be done systematically as an expansion in inverse powers
of the electron mass m. We begin by defining K = ¢y - 7m + V so that H = mc?~° + K.
Note that K is of order m®. We then write

H=c"He ™
. ()2 (4.318)
where S itself is written as a power series in (mc?)~!:
So S1
=— 4+ —55+.... 4.31
S 2 + (mc)? + (4.319)

The job now is to write # as a power series in m~1. The first few terms are easy to find:

1
H=mc*7" + K +1i[S,7°] + ch([So,K] + [51,7°] = 3[So., [SO’KH> +... (4.320)

We choose the operators Sy, so as to cancel, at each order in m~1, the off-diagonal terms in
‘H that couple the upper two components of ¥ to the lower two components of ¥. To order
m?, we then demand

Ay i [So, fyo] =0. (4.321)

Note that we do not demand that z'[So, 'yo] completely cancel K — indeed it is impossible to
find such an Sy, and one way to see this is to take the trace. The trace of any commutator
must vanish, but Tr K = 4V, which is in general nonzero. But this is of no concern to us,
since we only need cancel the (traceless) off-diagonal part of K, which is to say ¢y’ - .

To solve for Sy, one can write it in terms of its four 2 x 2 subblocks, compute the commutator
with 49, and then impose eqn. 4.321. One then finds Sy = —gcy - .

STUDENT EXERCISE: Derive the result Sy = —%C‘)’ ST
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At the next level, we have to deal with the term in the round brackets in eqn. 4.320. Since
we know Sy, we can compute the first and the third terms therein. In general, this will leave
us with an off-diagonal term coupling upper and lower components of ¥. We then choose
S1 so as to cancel this term. This calculation already is tedious, and we haven’t even gotten
to the spin-orbit interaction term yet, since it is of order m =2 — yecch!

4.10.1 Derivation of the Spin-Orbit Interaction

Here’s a simpler way to proceed to order m~2. Let a, b be block indices and 4, j be indices
within each block. Thus, the component W,; is the i** component of the a"™ block; Wy—; ;=2
is the lower component of the upper block, i.e. the second component of the four-vector V.

Write the Hamiltonian as
H=mm°+co -mr°+V(r), (4.322)

where 7" are Pauli matrices with indices a,b and ¢” are Pauli matrices with indices 1, j.
The ¢ and 7 matrices commute because they act on different indices.

A very important result regarding Pauli matrices:

0 T/2 po o=i0RT/2 _ pap BBy 0gp ((50‘ﬁ — nanﬁ) P +sin@ P nf v (4.323)

STUDENT EXERCISE: Verify and interpret the above result.

Using this result, we can write
Ar* 4 Br® = AT B2 =it (B2 o2 gitan (BA) 702 (4.324)

and, for our specific purposes,

mc2 7 4o -wm =\/(m2)?2 + (co-m)2-UT*UT, (4.325)

where 4 .
U =ettan(T0)7/2 (4.326)

The fact that o -7 is an operator is no obstacle here, since it commutes with the 7* matrices.
We can give meaning to expressions like tan~!(o - /mec) in terms of their Taylor series
expansions.

We therefore have the result,

UHU =+/(me2)?+ (co-m)2- 7>+ U V(r)U . (4.327)

The first term is diagonal in the block indices. Expanding the square root, we have

ST 2 )2
mc?y 1+ (u> = mc® + (o - 7) +0O(m™®)
me 2m (4.328)
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since

2= ghoV phaV

= (" + ie’“’)‘a/\) mHaY

— %6‘”’)‘ [p“ +eAR P+ %Au] (4.329)

h
:772+6—B-0'.
c

(o m)

We next need to compute UT V(r) U to order m~2. To do this, first note that

10T l/0-m\2
U=1-1 y—f( ) - 4.330
2 mc 4 8\ mc ( )
Thus,
i 1
UTVU:V+%[a-n,V]ry—8m262[a-7r,[a-7r,1/]]+.... (4.331)

Upon reflection, one realizes that, to this order, it suffices to take the first term in the
Taylor expansion of tan~!(o - w/mc) in eqn. 4.326, in which case one can then invoke eqn.
4.318 to obtain the above result. The second term on the RHS of eqn. 4.331 is simply
o .V VY. The third term is

2mce
ih v v ih v v v av
S22 [J“ﬂ“,a 0 V] = ania ot [ﬂ“,a 0 V] + [U“,U 0 V} t
ih h Ay n_ v . VA A Qv o
= m ;8 8 VO' g +2Z€ g 3 V7T (4332)
2 h
- T vy " 5. VVxnw
SmZc? VvV + 22 @ Vv .

Therefore,

2 eh B
Ut HU = <m02+;+26B-0'>TZ+V+20'-VVTy
m me me (4.333)

12 2 h -3
g2 ¥ VT gga @ VY xmromT.

This is not block-diagonal, owing to the last term on the RHS of the top line. We can
eliminate this term by effecting yet another unitary transformation. However, this will
result in a contribution to the energy of order m ™3, so we can neglect it. To substantiate
this last claim, drop all the block-diagonal terms except for the leading order one, mc? 77,
and consider the Hamiltonian

+

h
IC:mCQTZ—I—TmCU-VVTy. (4.334)

We now know how to bring this to block-diagonal form. The result is

2
= met 1 (P2 TV
mee (4.335)

h2 2
= <mc2+(vv)+...)72,

8m3ct
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and the correction is of order m™>, as promised.

We now assume all the negative energy (7% = —1) states are filled. The Hamiltonian for
the electrons, valid to O(m~3), is then
~ 2 h h? h
H=m?+V+-—+-"""B.o+ VW4 sV X (4336)
m

2m  2mce 8m2c? c?




