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Overview 

 To understand basic Molecular Simulation structure 
 To understand basic MC code: NVT 
 Modification for NPT, µVT 
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Molecular Simulation: System Size 

o  Typical system size: 500-1000	


o  Molecules at the surface O(N-1/3)	


o  How do we mimic infinite bulk 
large system?	
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Periodic boundary conditions 

Two –dimensional version of PBC	



•  Number density of the central box is conserved ( and hence the 
entire system)	


•  It is not necessary to store the coordinates of all the images in 
a simulation; just the central box molecules.	
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 For cube of side L, the periodicity will suppress any density 
waves with a wavelength greater than L 
•  Thus not possible to simulate a liquid close to v-l critical point, 

where the range of critical fluctuation is macroscopic 

 PBC has little effect on the equilibrium thermodynamic 
properties and structure  of fluids away from phase 
transitions and where the interactions are short-ranged. 

 Check if this is true for each model studied. 
 Standard practice is to increase the number of molecules and 

the box to keep the same number density and rerun the 
simulations 

PBC: Suppression of fluctuation 
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PBC: Macroscopic vs. Microscopic 

 Important to ask if the properties of a small infinitely 
periodic system and the macroscopic system which it 
represents are the same? 

 Depends on the range of intermolecular potential and the 
phenomenon under investigation 

   LJ fluid: possible to obtain bulk equilibrium properties with 
L=6σ 

 If  U ~ r-v where v < d of the system  
•  Substantial interaction between a particle and its own images in 

the neighbouring boxes  
 Methods to treat long range interactions 

•   U ~ 1/r (charges) U ~1/r3 (dipolar fluids) 



7 Truncating the potential 

 Most extensive calculation in MC/MD simulation is the 
calculation of U of the configuration or F acting on all 
molecules 

 Must include interaction between molecule i with every other 
molecule j (assuming pairwise additivity): N-1 terms 

 But, in principle, we must also include all interactions between 
molecule I and images in the neighbouring boxes. 
•  Impossible to calculate 

 For a short range  U, we may calculation this summation by 
making an approximation 
•  Truncation 



8 Implementing Cubic Periodic Boundaries: 
Central-image codes 

 Involved in most time-consuming part of simulation 
   (-1/2, 1/2), decision based 

•  if(r(0) > 0.5) r.x =r.x- 1.0 

•   if(r(0) < -0.5) r.x = r.x+1.0;  //only first shell 

•  examples:  -0.2 → -0.2; -1.4 → -0.4; +0.4 → +0.4; +0.6 → -0.4; +1.5 → +0.5 

bs	



   (0, bs), function based (aint ; rounding) 
 if(xnew< 0.0) xnew=xnew+bs 
If(xnew > bs) xnew=xnew-bs 
if (xnew > bs) xnew = xnew - bs * aint( xnew / bs )  
if( xnew < 0.0 )  xnew = xnew - bs * aint( xnew / bs - 1.0 ) 
aint(x) =0 if x < 1  and if x > 1 it returns the largest whole no 

that does not exceed its magnitude 
nint(x) rounds its argument to the nearest whole number. 



9 Implementing Cubic Periodic Boundaries: 
Nearest-image codes 

 Simply apply (-1/2,1/2) central-image code to raw difference! 
•  dxij = xj - xi //unit box length 
•  if(dxij > 0.5) dxij =dxij -1.0 
•  if(dxij < -0.5) dxij =dxij+ 1.0 
•  dxij *= bs; 

 Or… 
•  dxij = xj –xi; //true box length   

if(dxij > bs-dxij) dxij=dxij-bs  

if(dxij <-bs-dxij) dxij=dxij+bs 

 Take care not to lose correct sign, if doing force calculation 
 Nearest image for non-cubic boundary not always given simply 

in terms of a central-image algorithm 
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Structure of Molecular Simulation 1 
Initialization	



Perform MC Cycle	



If production cycle, record 
average and write out	



Initialize the lattice, read variables such as T, rho etc., initialize all other 
variables 	



Perform, MC move such as displacement move. During each cycle 
displacement for every atom is attempted.  During equibriation period 
number of cycles (~5000 cycles) are performed to relax the structure (to 
“forget” artificial initial configuration)	



Averages are accumulation only after equibriation period. Write out 
running average. Configuration output is also generated typically even 
during equibriation period for debugging/rerunning mode	
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Structure of a Molecular Simulation 2 

Δt 

m1 m2 m3 m4 m5 
m6 

m7 m8 m9 mb-1 mb m7 

MD time step 
or MC cycle	


⇒ property	


value mi	



…. 

Progress of simulation 
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Structure of a Molecular Simulation 2 

Δt 

m1 m2 m3 m4 m5 
m6 

m7 m8 m9 mb-1 mb m7 

MD time step 
or MC cycle	


⇒ property	


value mi	



Simulation block	


⇒ block average	



…. 

…. 

Progress of simulation 

€ 

m2 =
1
b

mi
i=1

b

∑
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Structure of a Molecular Simulation 2 

Δt 

m1 m2 m3 m4 m5 
m6 

m7 m8 m9 mb-1 mb m7 

MD time step 
or MC cycle	


⇒ property	


value mi	



Simulation block	


⇒ block average	



Complete simulation	


⇒ simulation average	



⇒ simulation error bar	



…. 

…. 

Progress of simulation 

€ 

m2 =
1
b

mi
i=1

b

∑
€ 

m =
1
nb

mi
i=1

nb

∑

€ 

σ m =
σm

nb −1
;σm =

1
nb

mk
2
− m 2( )

k=1

nb

∑
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Initial Configuration 
 Read from a File 
 Placement on a lattice is a common choice 

2D; square lattice : N = 2n2
 (8, 18, 32, 50, 72, 98, 128, …) 

3D, face-center cubic : N = 4n3 (32, 128, 256,…)  

 Other options involve “simulation” 
•  place at random, then move to remove overlaps 
•  randomize at low density, then compress 
•  other techniques invented as needed 

 Orientations done similarly 
•  lattice or random, if possible 



15 Monte Carlo Move: generating new 
configuration 

New configuration 

Monte Carlo Move 

Select type of trial move 
each type of move has fixed probability of being 
selected 

Perform selected trial move 

Decide to accept trial configuration, or 
keep original 
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Basic MC structure 
Program mc_nvt	


Integer 	

:: i,j, k	



	

call readinfo ! Input file	


	

call lattice   ! Creating the lattice from scratch or reading from the file	



	

do k=1, 2	


	

 	

ncycle=Nequil	


	

 	

if(k .eq. 2) ncycle =Nprod	



	

do i=1, ncycle	


	

 	

do j=1, npart	


	

 	

 	

call displace(success)	


	

 	

 	

natt =natt+1	


	

 	

 	

if(success) nacc=nacc+1	


	

 	

end do	


	

 	

if( k .eq. 1) then	


	

 	

 	

if (mod (i, nadjust) .eq. 0) call newMaxima	

	

	

	

	

	


	

 	

else 	


	

 	

 	

if( mod(i, nsample) .eq. 0) call sample	


	

 	

end if	


	

end do	



	

End do 	

	


End 	
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Metropolis Algorithm 
 Given a desired limiting probability distribution, for example, 
π=πNVT , what transition probabilities will yield π. 

 Construct transition probabilities to satisfy detailed balance 
 Metropolis Algorithm 

•  with probability τij, choose a trial state j for the move (note: τij 
= τji) 	



•  if πj > πi, accept j as the new state	


•  otherwise, accept state j with probability πj/πi	



generate a random number R on (0,1); accept if R < πj/πi	



•  if not accepting j as the new state, take the present state as the 
next one in the Markov chain 	





18 Generating the desired distribution: Detailed 
balance 

€ 

π iπ ij = π jπ ji

€ 

π ij = τ ijacc(i→ j) = τ ijmin 1,χ( )

π ji = τ jiacc( j →i) = τ jimin 1,
1
χ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

acc(i→ j)
acc( j →i)

=
π jτ ji

π iτ ij
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Implementation of Metropolis Method 

 Necessary to specify the underlying stochastic matrix τ	


 Freedom to choose τ but τmn=τnm   	


 A useful but arbitrary definition of neighbouring state	



 Displace one atom random from its position ri
m 	



With equal probability to any point ri
n inside the	



square/cube R of side 2δmax and is centered 	


at  ri

m	



- Large but finite no. of new position, NR,  for atom i and 	


-  τmn   = 1/NR        if ri

n belongs to R	


-           =0            if ri

n does not belongs to R	


- δmax: maximum displacement is adjustable parameter that 
governs the size of the region R and controls the convergence of 
the Markov Chain. 	



R	



system in m state	





20 Displacement Trial Move  

 Gives new configuration of same volume and number of molecules 
 Basic trial: 

•  displace a randomly selected atom to a point chosen with uniform 
probability inside a cubic volume of edge 2δ centered on the current 
position of the atom 

Examine underlying transition probabilities to 
formulate acceptance criterion 

? 
Forward-step transition probability, τij= 

Prob of selecting a molecule	

 X Prob of moving a new 
position, r new	



€ 

τ ij =
1
N

1
2δ( )d

= τ ji



21 NVT-ensemble 

€ 

π i ∝ exp −βU i( )[ ]

€ 

acc(i→ j)
acc( j →i)

=
π jτ ji

π iτ ij
acc(i→ j)
acc( j →i)

= exp −β U j( ) −U i( )( )[ ]

Acceptance probability  

Limiting probability distribution	





22 Subroutine displace move 
Subroutine displace(success)	



	

mol=int(Nmol*rand(seed))+1	


	

call energy(mol, enmolOld)	


	

 xold=X(mol)	


	

dx=(2.0*rand(seed) -1.0)*bs*ds	


	

Xnew=xold+dx	


	

If(xnew > bs) xnew=xnew-bs*aint(xnew/bs)	


	

If(xnew < 0) xnew =xnew-bs*aint(xnew/bs-1.0)	


	

X(mol)=xnew	


	

call energy(mol, enmolNew)	


	

lnpsi=-beta*(enmolNew-enmolOld)	


	

if(rand(seed) .lt. exp(-beta*(enmolNew-enmolOld)) then	


	

! Success	


	

 else	


	

! Reject 	


	

 	

X(mol)=xold ! Note old conf is retained	


	

end if	



End if	
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Need to consider old configuration again?  

Transition probability:	



Probability to accept the old configuration:	



€ 

π ij = τ ij × acc(i→ j)

π ij
j
∑ =1

€ 

π ii =1− π ij
j, j≠ i
∑
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Keeping old configuration? 



25 

Displacement: not too small, not too big! 
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Displacement Trial Move :  
Tuning 

 Size of step is adjusted to reach a target rate of acceptance of 
displacement trials 
•  typical target is 50% 
•  though there is no theoretical basis 

•  for hard potentials target may be lower (rejection is 
efficient) 

•  Large step leads to less acceptance but bigger moves 
•  Small step leads to less movement but more acceptance 



27 Subroutine: adjust 
Subroutine newMaxima	



tarRatio=0.5	


If(natt > 0) then	



	

simRatio=nacc/natt	


	

if(simRatio > tarRatio) ds=ds*1.05	


	

if(simRatio < tarRatio) ds=ds*0.95	


	

ds=min(ds,0.5)	



End if	



nacc=0	


natt=0	


End subroutine	
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Lennard Jones potentials 

• The truncated and shifted Lennard-Jones potential	



• The truncated Lennard-Jones potential	



• The Lennard-Jones potential	
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Pair correlation function 

  

€ 

U /N =
1
2
ρ u r( )g r( )

0

∞

∫ d r = 2πρ u r( )g r( )
0

∞

∫ r2dr

P =
ρ
β
−
1
6
ρ2

du r( )
dr

g r( )
0

∞

∫ d r = ρ
β
−
2
3
πρ2

du r( )
dr

g r( )
0

∞

∫ r3dr

 Environment around a given molecule 

g(r)=pair correlation function aka RDF 

€ 

g(r) =
average number of particle in shell between r, r +dr

number of particle in random system

dr	



€ 

g(r) =
average number of particle in shell between r, r +dr

4πr2drρ
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Correction to thermodynamic properties  

€ 

u r( ) =
uLJ r( ) r ≤ rc
0 r > rc

⎧ 
⎨ 
⎩ 

g(r)  =1, r > rc : uniform distribution beyond cut off	



€ 

µtail = ρ u r( )4πr2
rcut

∞

∫ dr = 2Utail

N
For rc =2.5σ, these are about 
5-10% of total values.	





31 Phase diagrams of Lennard Jones fluids 



32 Energy Subroutine 
Subroutine energy(mol, energ)	



	

do j=1,Nmol	


	

 	

if(j .eq. mol)  cycle	


	

 	

dxij= X(j)-xi	


	

 	

if(dxij > bs-dxij)dxij=dxij-bs	


	

 	

if(dxij < -bs-dxij)dxij=dxij+bs	


	

 	

! Similar for y and z	


	

 	

drij2 = dxij*dxij + dyij*dyij + dzij*dzij	


	

 	

if(drij2 < rcut2) then	


	

 	

 	

r2 = 1.0 / rij2	


	

 	

 	

r6 = r2 * r2 * r2	


	

 	

 	

r12 = r6 * r6	


	

 	

 	

energ = eneg+4.0 * (r12 - r6)	


	

 	

end if	



return	


End  	
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Lennard-Jones EOS 
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Monte Carlo: other ensemble 
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NPT Ensemble 

Probability density  to find a particular configuration (sN)	



Sample a particular configuration by two kind of moves	


•  Change of volume  (volume move)	


•  Change of particle coordinate (displacement move)	



Acceptance rules : apply detailed balanced	



In the classical limit, the partition function becomes	



€ 

Δ =
1

Λ3NN!
dV exp −βPV( )∫ drNe∫ xp −βU rN( )[ ]

  =
1

Λ3NN!
dV exp −βPV( )∫ V N dsNe∫ xp −βU sN ;L( )[ ]
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Volume-change Trial Move  

 Gives new configuration of different volume and same N and sN 
 Basic trial: 

•    
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Volume-change Trial Move  

 Gives new configuration of different volume and same N and sN 
 Basic trial: 

•  increase or decrease the total system volume by some amount within ±δV, 
scaling all molecule centers-of-mass in proportion to the linear scaling of 
the volume 

-δV	


+δV	



Select a random 
value for volume 
change 
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Volume-change Trial Move  

 Gives new configuration of different volume and same N and sN 
 Basic trial: 

•  increase or decrease the total system volume by some amount within ±δV, 
scaling all molecule centers-of-mass in proportion to the linear scaling of 
the volume 

Perturb the total 
system volume 
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Volume-change Trial Move  

 Gives new configuration of different volume and same N and sN 
 Basic trial: 

•  increase or decrease the total system volume by some amount within ±δV, 
scaling all molecule centers-of-mass in proportion to the linear scaling of 
the volume 

Scale all positions in 
proportion 
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Volume-change Trial Move  

 Gives new configuration of different volume and same N and sN 
 Basic trial: 

•  increase or decrease the total system volume by some amount within ±δV, 
scaling all molecule centers-of-mass in proportion to the linear scaling of 
the volume 

Consider acceptance 
of new configuration ? 
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Volume-change Trial Move  

 Gives new configuration of different volume and same N and sN 
 Basic trial: 

•  increase or decrease the total system volume by some amount within ±δV, 
scaling all molecule centers-of-mass in proportion to the linear scaling of 
the volume 

 Limiting probability distribution 
•  isothermal-isobaric ensemble 

Examine underlying 
transition 
probabilities to 
formulate 
acceptance criterion 



42 

Volume-change Trial Move  
Analysis of Transition Probabilities 

 Detailed specification of trial move and transition probabilities 
•  First select Vnew and second accept the move 
•  Forward-step transition probability = 

•  Reverse step transition probability  =   

χ is formulated to satisfy 
detailed balance 
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Volume-change Trial Move 
Analysis of Detailed Balance 

Detailed balance 

Forward-step 
transition 
probability 

Reverse-step 
transition 
probability 

πi πij πj πji = 

Limiting 
distribution 
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Volume-change Trial Move 
Analysis of Detailed Balance 

Detailed balance 
πi πij πj πji 

= 
Detailed balance 

πi πij πj πji 

Acceptance probability 
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Volume-change Trial Move 

 Step in ln(V) instead of V 
•  larger steps at larger volumes, smaller steps at smaller volumes 

Acceptance 
probability min(1,χ) 

€ 

Δ N,P,T( ) =
1

Λ3NN!
dV exp −βPV( )V N dsN exp −βU sN ;L( )[ ]∫∫

                = 1
Λ3NN!

d lnV( )exp −βPV( )V N +1 dsN exp −βU sN ;L( )[ ]∫∫

€ 

π V ;sN( )∝V N +1 exp −βPV( )exp −βU sN ;L( )[ ]Probability density  to find a 
particular configuration (sN)	



€ 

lnV( )new = lnV( )old +δ lnV( )
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Algorithm: NPT 

 Randomly change the position of a particle 
 Randomly change the volume 



47 Basic NPT code 
Subroutine npt	


call readinfo	


call lattice   	


   do k=1, 2	


                ncycle=Nequil	


                if(k .eq. 2) ncycle =Nprod	



do I =1, ncycle	


	

do j=1, ndisp+nvol	


	

       j=int(ndisp+nvol)+1	



	

if(j .le. ndisp) then	


	

 	

call displace()	


	

else 	

call volChange()	


	

end if	



	

end do	


	

if (mod(i,nsample) .eq. 0) call sample(i)	



End do	


End do	


End 	
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Volume change move 
Subroutine VolChange	



	

call energy(enOld)	


	

vold=bs**3	


	

lnvn=log(vold)+(2.0*ran2()-1.0)*vmax	


	

vnew=exp(lnvn)	


	

bsnew=vnew**(1.0/3.0)	


	

do i=1, Nmol	


	

 	

X(i)=X(i)*bsnew/bs ! scaling	


	

end do	


	

call energy(enNew)	


	

chi=exp(-beta*((enNew-enOld)+p*(vNew-vOld))+(Nmol+1)*log(vnew/vold))	


	

if(ran2() .gt. chi) then ! Reject	


	

 	

! Scale it back	


	

 	

do i=1, Nmol	


	

 	

 	

X(i)=X(i)*bs/bsnew	


	

 	

end do	


	

end if	


	

return	



End subroutine	
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MuVT Ensemble 

In the classical limit partition function is:	



Probability to find a particular configuration:	



Sample a particular configuration:	


•  Change of the number of particles	


•  Displacement of particle	



€ 

Ξ =
exp βµN( )
Λ3NN!N =0

N =∞

∑ exp −βU r
N( )⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ ∫ dr

N
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Basic GCMC subroutine 

Subroutine GCMC	



do I =1, ncycle	


	

do j=1, ndisp+nexch	


	

       j=int(ndisp+nexch)+1	



	

if(j .le. Ndisp) then	


	

 	

call displace()	


	

else 	

call addRemove()	


	

end if	



	

end do	


	

if (mod(I,nsample) .eq. 0) call sample	



End do	



End 	
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µVT-ensemble 

Insertion and removal of particles	



€ 

acc N →N +1( ) =min 1,
V exp βµ( )exp −βΔU( )

Λ3 N +1( )

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

acc(N →N −1) =min 1,
Λ3N exp −βµ( )exp −βΔU( )

V

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
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Summary 
  PBC: test different system size	


  Extension to molecular system	



 Rotation move	


 Configuration bias move	


  Reptation move	


 Bias move: associating fluids, dense system	



  Detailed balance for acceptance criteria	


  Efficient algorithms	



 Neighbor list, cell list	


 Long range interaction	



 Ewald sum	


 Reaction field	



 Phase Equilibria	


 Gibbs Ensemble MC, Gibbs Duhem Integration	




