ELECTRON
MAGNETOHYDRODYNAMICS

A. S. Kingsep, K. V. Chukbar, and V. V. Yan'kov

1. GENERAL CONCEPTS

This review deals with a range of plasma phenomena which cannot be
described and understood in terms of ordinary magnetohydrodynamics
(MHD), but do allow a physically intuitive and relatively simple represen-
tation in the approximation of electron magnetohydrodynamics (EMH).
EMH is a limiting case of multicomponent MHD in which the motion of
the jons can be neglected and the motion of the electrons maintains
quasineutrality.

As will be seen below, the EMH case is usually realized when the
characteristic scale length is small, the characteristic times are short, and
the current flow velocities are large compared to the mass velocity. This
often involves a collisionless or weakly collisional plasma. The hydrody-
namic description of these plasmas has been in use for some time [1-5]
and the general limits for this approach have been established more or less
reliably. In particular, single-component MHD is an approximation based
on the smallness of the relative velocities of the components (in the two-
component case, the current flow velocity is u = j/ne) compared to the av-
erage mass velocity, 1vq — W1 «v. Generally speaking, when this in-
equality is in the opposite direction, EMH applies.

Tt is true that no universal criteria exist for the applicability of the hy-
drodynamic approach in plasma physics, or equivalently, for the applica-
bility of MHD or EMH. Thus, the single fluid approximation may be
valid even when the above inequality is violated. In most concrete prob-
lems, however, this question causes no special difficulty. As an example,
we might note the applicability of MHD to large-scale motion with a »
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¢/wpi (this corresponds to the condition u « v4 = B/Ndwp, where VA is th
characteristic scale for the hydrodynamic velocity). This is 5 f airle
widespread situation in astrophysical problems and, indeed, Alfvén, the
founder of magnetohydrodynamics, started out with this case. For laby.
ratory devices the spatial scales are generally much smaller and the den sity
is much higher, so that the opposite inequality may be satisfied. Then v,
u = v, and the ion motion can be neglected.

The first problems in this approximation were solved in the 19605 by
Morozov, Bryzgalov, and Shubin [6, 7]. They were essentially studying
the Hall effect. In the steady state it obeys the equation

rot [j, B] = 0. (1.1

The case of short characteristic times was examined by Gordeev angq
Rudakov [8], who used the purely electron equation
4ne OB

71 4n
= rot K—n—[B' rot B] 4 Sy VPe) (1.2)

to describe nonpotential high-frequency instabilities.

Further development of the theory, however, was constrained by two
circumstances. First, there is the multidimensionality of the problems,
Unlike the case of single-fluid hydrodynamics, no meaningful example of
one-dimensional EMH exists. All EMH effects are at least two-dimen-
sional. Second, comparison with experiment is complicated. Plasmas
that evolve in accordance with EMH are, as a rule, short-lived and small-
scale objects, while the diagnostics for them leave much to be desired.
Nevertheless, in recent years interest in EMH has grown considerably in
connection with the need to describe high-energy plasmas (primarily iner-
tial confinement fusion systems). Recently it has served as a basis for
studies of the instabilities of high-current ion beams in plasma channels
[9], the generation of magnetic fields and the filamentation of particles in
laser flares [10], the dynamics of fast Z-pinches [11], field penetration in
the skin effect [12, 13], and a number of other effects.

We now demonstrate the transition to the EMH approximation begin-
ning with the system of equations for two-component MHD,

ﬂ_z_eﬁ_V_Pe_i[ve, B] <,

dt n c [

i gp_ ZVP: +_Z_e[v" B]__z‘_j, (1.3)
dt n c i1

oB

—— = -—cTrotE.
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To simplify the later calculations, we set o = const and P = Py(ng). Then
Egs. (1.3) reduce to a system of two equations,

9 rot x, =rot[v,, rot=,|—-5 rotj;
ot o ’

(1.4)

9 rot =; =rot [v;, rotm,] 4 2 rot j»
ot a

where Tq = Pa + (eq/C)A is the generalized momentum of a given compo-
nent. In the limit of single-component MHD (p.— 0, v.=v;) with a
conductivity o = e, the system of equations (1.4) reduces to the well-
known equation for a field frozen in a material. In the general case, ideal
conductivity leads to freezing of each component of the curl of the gener-
alized momentum of a given component. (This generalization for single-
component MHD is given in the review by Braginskii [1].) This statement
remains valid even in the relativistic case and when quasineutrality is vio-
lated.

The EMH equation is, strictly speaking, the electron equation (1.4),
where one can set v, = j/(ne) when a « c/wy; and solve it independently of
the ion equation. The ions merely create a motionless (v; « «) background
for the fast electron flows. If, in addition,

0/0t L @per AP Cloy, (1.5)

(i.e., the field component in 7, predominates), then this equation can be
simplified and reduced to

‘;—?—{—rot[ 1 : B]=._—2-rotj, (1.6)
which describes the freezing of B in the electron current and the diffusion
of the field. The second EMH equation (the continuity equation) can be
written as div j = 0 when 9/0¢ « wp, (or the displacement current is small
and the electron flow is quasineutral against the ion background). It is
identically satisfied because of the Maxwell equation

rotB=4_“j. (1.7)
4

When o = o, Egs. (1.4) [as well as Eq. (1.6)] can be written in a
Hamiltonian form. The canonical variables A and . found by Zakharov
[14] (rotw, = [WA, Wu]) are related to the Clebsch variables of ordinary
hydrodynamics. When the inertia of the electrons can be neglected, B =
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[WA, Wiu]. For configurations with linked field lines B (f BAd3r » 0)
unique Clebsch variables cannot be introduced, but this presents n(;
obstacle to obtaining a Hamiltonian form [14]. In the EMH approximatioy
the main term in the Hamiltonian (and often the only term) is the energy of
the magnetic field.

Sometimes the assumption of an isentropic flow, i.e., P and n relateq
by an adiabatic equation, is used to justify Eq. (1.6). This, in fact, is up-
necessary. An arbitrary form for P(n), as assumed in deriving Eqs. (1.4),
is fully satisfactory. As in the case of an isentropic flow, this requires that
the current flow velocity be fairly large compared to the drift velocity, i.e.,

U Vp,Ppla- (1.8)

If Eq. (1.8) is not satisfied, we cannot neglect the fact that electrons are
arriving at each point at a given time from substantially different points.
Using the estimate B ~ (c/4m)ja, we arrive at the condition

B — 8anT, /B & 1. (1.82)

Condition (1.8a) limits the validity of Eq. (1.6), but the opposite in-
equality does not in general exclude the applicability of EMH. Frequently
it is enough to "cut" the connection between P and n. Then terms of the
form [Vn, VI'], which are responsible for generating the magnetic field,
appear on the right-hand side of Eq. (1.6). The natural limit for applica-
bility of the hydrodynamic approach when T # 0, however, is the condi-
tion pg, « a [1-5].

The foundation of EMH is thus Egs. (1.6) and (1.7) and the follow-
ing discussion will be based on them. Depending on the nature of the
problem, Eq. (1.6) can be supplemented by terms corresponding to the
inertia of the electrons, to effects associated with the electron pressure (in
particular, the mechanism for generating a magnetic field owing to non-
parallel Vn and VI), and so on.

The choice of specific examples and models is mainly related to the
scientific interests of the authors who have, however, tried to discuss the
most important aspects of EMH. Thus, Chapter 2 is devoted to a study of
the main mechanism for the evolution of the magnetic field in EMH,
namely current transport. Since Eq. (1.6) is written in curl form, EMH
flows have a rotational character. [As can be seen from Egs. (1.3) and
(1.4), Maxwell's equations play a not insignificant role in this.] The gen-
eral properties of such flows in the two-dimensional case and the differ-
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ence from three-dimensional situations are examined in Chapter 3. Three-
dimcﬂsional rurbulence is discussed in Chapter 4. Also studied there is a
spe cific EMH ef fc.:ct, namely EMH resistance. Chapter 4 is the most im-
portant in ideological terms. Problems which arise during practical appli-
cations of EMH to real situations are discussed in Chapter 5, using as an
example the Z-pinch, one of the most widespread devices in plasma

hysics. One important application of EMH may be the modelling of ki-
netic effects by, for example, representing the electrons as two or more
fluids with different temperatures and hydrodynamic velocities [15].
Chapter 6 is devoted to this approach. It is close to the multibeam model
in the theory of collective phenomena, only in our case the main topic is
the generation and transport of magnetic fields. Chapter 7 gives a review
of experimental situations which fall in the framework of EMH, and the
proSpects for comparing theory and experiment are discussed.

2. CONVECTIVE SKIN PHENOMENA IN PLASMAS
2.1. Nonlinear Skin Effect

One of the most characteristic properties of EMH is the transport of &
magnetic field by a current. This property shows up especially clearly in
the skin effect.

Up to now the penetration of an external magnetic field into a plasma
has often been examined on the basis of conventional concepts of diffu-
sion. In reality, diffusion may be strongly supplemented or even €x-
ceeded by convective transport.

In terms of EMH the magnetic field dynamics obey the formulas [cf.
Eq. (1.6)]

9B g d -
L —,Lrot[ L, B}—|— crotL- =0 2.1)

and

e

j=—:—rotB, o=, (2.2)
T m

In general, when the inequality wp.te » 1 is satisfied, the second term of
Eq. (2.1), which is responsible for transport of the field frozen in the
electrons at the current flow velocity j/(ne), will dominate the third, diffu-
sion term. (Note that because of the fundamental multidimensionality of
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the problem, in specific situations a more careful estimate may be re.
quired. In this inequality unity must be replaced by a geometric
equal to the ratio of the characteristic scale lengths in two mutually per.
pendicular directions, along j and perpendicular to j.) These qualitatiye
discussions are fully confirmed by the exact solution of the problem, 1o
which we now proceed.

In accordance with the features of the phenomenon under considera-
tion, the most typical initial condition for Egs. (2.1) and (2.2) is a jump in
the field at the boundary between the plasma and the vacuum. Since the
current flow velocity is much greater than the hydrodynamic flow veloe-
ity, the motion of this boundary can be neglected. Thus, let the plasma
occupy the half space z >0 and at time 7= 0 let B = 0 inside it, while at all
times ¢ the field is a constant By at the boundary. We first consider the
plane case with Bolley and 8/ay = 0. In this simplest of geometries, Eq,
(2.1) can degenerate into a conventional diffusion equation. Indeed,

factor

i, Bl = —c Y8 o ¢
li» Bl=—c¢ s 1 (Bv)B.

The second term on the right, which only could give a nonzero contribu-
tion to rot[j, B], is identically equal to zero because there is no curvature
in the magnetic field lines. The convective term, however, does not goto
zero if we include a possible gradient in the plasma density. Then (c=
const)

dB c
ot Bme

[VBZ. V—]—] =2 AB. (2.3)
n 4ng

Let the density gradient be parallel to the plasma boundary and perpendic-

ular to B (Fig. 1). Then the nonlinear convective term causes transport of

the field in the z direction. When the depth of penetration is sufficiently

small, as determined by the inequality 92/322 » 92/0x2, Eq. (2.3) trans-

forms to the Burgers equation

0B ;] 0°B
~ t#-=D = (2.4)
where k = (c/4me)(9/ox)n-! and D = c2/4ne.

It is clear that at early times (more precisely, for t < D/(k2B(2), while
the gradient in B is large, the penetration of the field into the plasma is de-
termined by diffusion, as usual (here the geometric factor mentioned
above also appears). After the B profile becomes fairly flat, however,
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Be TVn

0 z

Fig. 1. The geometrical configuration for the
problem of field penetration into a plasma owing to
a density gradient.

transport of the field by the current-carrying electrons becomes predomi-
nant and the character of the solution becomes very different.

If the vectors B and Vr and the propagation direction e, form a left-
handed triplet, as in Fig. 1, then k < 0 in Eq. (2.4) and nonlinear field
transport begins to compete with diffusive transport. As t = oo this leads
to a steady state with

B B0 (2.5)
1 — (kBy/2D) z

It is not difficult to trace the evolution of this solution. The substitution B =
—(2D/k)(3/0z) In | @ | is known to convert the Burgers equation into a linear
diffusion equation [16]. Its solution corresponding to the boundary
conditions at z =0 has the form [13]

fP=—erf( TV )—}-exp[ 4B (z—l— By l‘) erfC<zvﬂ ) (2.6)

It is easy to see that as t = oo, we have

1 (2 _,
ARV ( £B, )
which corresponds to Eq. (2.5).
When the vectors Bg and Vn are oriented oppositely and k > 0, the
convective terms also cause transport of the magnetic-field into the plasma,

even with ideal conductivity o = eo (D > 0). Field penetration takes place
in the form of a travelling wave moving at a constant velocity kBo/2,
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whose leading edge is controlled by the competition between the nonlip.
earity and diffusion:

_ B (| _th KB ([, B,

b ll th D (z 5 t)] Q2.7

The formation of this wave can also be studied analytically.

If 1/n(x) has a minimum at some x, which can be set equal to zerg
then in the upper half plane the field will penetrate into the plasma in thé
form of the wave (2.7) and in the lower half plane it will approach the
steady-state profile (2.5) in accordance with Eq. (2.6).

A gradient mechanism for field penetration into a forbidden re gionz >
85k is known in solid state physics [17, 18]. Whereas it is related to Vain
the present case, in a solid the temperature gradient plays an analogoys
role (Nernst—Ettingshausen effect). References 17 and 18 dealt with linear
thermomagnetic waves produced by this effect.

In a more general geometry, where the magnetic field lines are not
straight, the equation for the field evolution is still nonlinear,

_‘35_;_0

CZ
o T rot(By)B — AB, (2.8)

4no

even in a plasma with a uniform density. For a cylindrical geometry Blle, x
9/3¢ = 0, in the approximation of a small penetration depth 8/0z » 1/r, it
again reduces to a Burgers equation (2.4) with k = —¢/(2mner), so that the
convective effects mentioned above (trapping of the field at the boundary
and its rapid penetration) also occur.

Note that although the Burgers equation is highly nonlinear, linear
analogs of these phenomena are well known, both in solids and in plas-
mas: drift waves and helicons propagating against a large constant back-
ground magnetic field [4, 19]. It might be pointed out that in the nonlinear
skin effect the finite value of B simultaneously serves as the amplitude of
the wave and of the external field in which it propagates.

We should emphasize one important fact. The Burgers equation (2.4)
is not only nonlinear, but is also exactly integrable. Its solutions are
uniquely related to the solutions of the linear heat conduction problem.
For this reason, the problem of magnetic field penetration into a plasma in
terms of EMH allows an exact analytic solution in a rather standard state-
ment of the problem, despite the strong nonlinearity of the equations.
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2.2. The Skin Effect in the Presence
of Charged-Particle Beams

The injection of energetic beams of charged particles into a plasma
can, in principle, strongly change the situation examined above. The
medium becomes a multicomponent system. Beams of this sort, how-
ever, can often be introduced into the system of EMH equations as an
wexternal" current, which contributes to the Maxwell equation, but not to
Ohm's law [20-22] [cf. Egs. (2.1) and (2.2)]:

rotB = 2% (j, 4+ iy E———1j, B + L. 2.9)
c nec g

In this approximation the beams do not introduce qualitatively new effects
in the convective field transport, but they make the problem much more
diverse. We begin by considering the limits of applicability of this ap-
proxi‘mation.

First, representing a beam as an external current j, which is indepen-
dent of the magnetic field means that the distortion in the trajectories of the
beam particles is small, i.e., the inequality pj, » a is satisfied, where a is
the characteristic scale length of the problem, or, equivalently, the me-
chanical component is dominant in the generalized momentum, pp »
(ep/c)A. This condition can be written in a third form, namely that all
currents in the problem be small (including the beam current) compared to
the Alfvén current of the beam (for a geometric factor on the order of unity):

m

IIw=

3
:: Bove-

Second, this representation means that the Coulomb drag of the parti-
cles in the medium is neglected because of their rather high energy. This
is possible when ji/(npe) » vre. Otherwise, it is generally necessary to in-
clude the increase in the plasma electrons owing to the beam particles in
the second of Egs. (2.9).

The failure of these conditions is discussed in Chapter 6. If, how-
ever, they are satisfied, then instead of Eq. (2.8) we obtain

9B c 1 . ot -
T+ po— rot(BV)B——’;—rot[j,,. B] = po AB + . rotj,. (2.10)
. In deriving Eq. (2.10) we have set n = const in order to focus atten-
tion on the effects related to j, . According to Eq. (2.10) these effects in-
clude volume field production by the external current (this is also exam-
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Fig. 2. The geometrical configuration for the
problem of field transport into a plasma by a parti-
cle beam.

- BD

0 a z

Fig. 3. Transport of a field by a beam (plane ge-
ometry).

ined in Chapter 6) and linear convection of the magnetic field by the re-
verse current of the beam, which obeys the last term on the left of Eq.
(2.10) and is discussed below.

In order to illustrate this, we turn again to a plane model problem. Let
a beam of "ribbon" or "knife" geometry penetrate a plane layer of plasma
0 <z <a with jylle,and Blley (Fig. 2). At the initial time ¢ =0 the reverse
current in the conducting medium is completely compensated by the beam
current and B = 0. OQutside the conducting layer at any time, B = By,
where By is the magnetic induction of the intrinsic field of the beam.
Equation (2.10) degenerates to a linear equation in this case [cf. Eq. (2.3)]
and when 3/0z » 9/dx transforms to

3B

aB B i
—+ua—=D , u=—t
at 0z 0z% ne

Qualitatively, its solution is analogous to the solution (2.4) examined
above. On the left (z = 0) the field is carried into the conductor with a
current flow velocity u, so that the depth of the skin layer increases with ¢
as
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B
By Bp
BCI’ NS 7 Bcr
\\ >N
0 a

Fig. 4. Transport of a field by a beam (cylin-
drical geometry).

B= %— [exp (%—) erfc (—;—;_l%) + erfc( 22175 )]
On the right (z = a) the steady-state profile

z

B = Byexp [% (z— a)]

develops because of the competition between diffusive penetration and
linear transport of the field, i.e., the effective penetration depth is / ~ D/u.
The general form of B(z) is illustrated in Fig. 3.

We note an interesting effect: if the external current jb=—npevp is
produced by an electron beam, then the field penetrates in the direction
counter to the beam. The possible transport of an external field that is
considerably higher than By is also of interest. It is only necessary that it
also be parallel to the y-axis.

We now consider the more realistic problem of a cylindrically sym-
metric beam. The system is similar to that shown in Fig. 2, but the z-axis
is the symmetry axis and 9/dp = 0. Then B = B, and when 9/9z » 1/r, Eq.
{2.10) becomes

B aB aB 3B c
—at_+u_az__kB_E=D_§’ where k—m. 2.11)
Now the effective velocity of transport of the magnetic field, as in Eq.
(2.1), depends on B as Vef = U — kB. If j, is independent of r in some
neighborhood of the symmetry axis, the linear transport predominates and
only when B = Bgv, does it go to zero. If, on the other hand, as is more
probable, j, decreases with radius, then there is a critical field B¢, = u/k =
2mjpr/c at which veg changes sign.

The dynamics of field penetration in a plasma after diffusion has
smeared out the jump is fairly complicated in this case. On the left
boundary (z = 0), linear transport of the field predominates when B < B
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and further smooths out the B(z) profile, so that the diffusion term is smal]
and Eq. (2.11) reduces to the equation for a simple wave,

e

9 —
Y (B_Bcr)_k(B—Bcr)E’(B_Bcr)_O' (212)

The solution of this equation is well known to be
z2=—k(B—By)t+4[(B—By), (2.13)

where the function f is determined from the initial conditions. Smoothing
of the profile (2.13) makes it possible to set dB/9z = 0 asymptotically
when B = B.;. For B > B, the competition between nonlinear transport
and diffusion of the field leads to the establishment of a steady-state
profile for B [cf. Eq. (2.5)] of the form

(B—Bg)~! = kz/(2D) + (B, — B,)~". (2.14)

The behavior of the field on the right-hand boundary of the plasma is of
special interest in the cylindrical problem. If j, depends weakly enough
on r, so that By > Bo/2, then, as in the plane case, 3/0t > 0 asymptoti-
cally, but the field profile now has an inflection point

B _— Bcr - chr
T—tanh[ 2D (Z+20):|’ (2'15)
where zq is chosen from the condition B(a) = By. If, on the other hand,
By < By/2, then the steady-state solution (2.15) is impossible and the
magnetic field penetrates into the plasma as the travelling wave with a
constant velocity v = (kBo/2 — u = k(Bg — 2B)/2 of the form

B=%[l+th o e+ )] (2.16)

[cf. Eq. (2.7)]. As an example, Fig. 4 shows the form of the solution
(2.13)—(2.15) for B, > Bo/2.

We note that even here it is possible to obtain an exact solution to the
problem using Eq. (2.11), which again reduces to Burgers equation when
the substitution b = u — kB = k(B; — B) is made. In particular, instead of
Egs. (2.13) and (2.14) it is possible to find an expression analogous to
Eq. (2.6), but which is considerably more complicated [12]. Various ef-
fects can occur in an ion diode [22] or when a beam is injected into a
plasma [12, 13, 21].
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In conclusion, we note that although Egs. (2.4) and (2.11) have a one-
dimensional form, the problem is really significantly multidimensional.
Thus, convection of a field in the z direction is caused not so much by the
current Jz [which may be entirely absent in terms of Eq. (2.4)] as by
transport owing to the currents ji or j perpendicular to €,. It is easy to see
that in a real geometry or in a plasma that is bounded in the direction
orthogonal to e, current transport of magnetic energy along the
poundaries of the medium takes place from the region where the magnetic
field is trapped into the region where rapid penetration is taking place.
This is in complete agreement with the solutions obtained here.

3. STABLE TWO-DIMENSIONAL ELECTRON VORTICES

3.1. Vortices as Fundamental Objects

Particular solutions in the form of stable vortices are interesting in that
they appear during the evolution of quite arbitrary initial perturbations.
The traditional construction of the theory of strong turbulence along the
lines of the Kolmogorov-Obukhov theory is based on forced averaging
and does not include any particular or especially important solutions. At
the present time it is clear that during the evolution of different systems,
particular but comparatively universal solutions appear which are known
as structures. A complete picture of turbulence which includes these
structures is lacking. So far only the types of solutions which serve as
structures and, in rare cases, the conditions under which they appear have
been established.

It is fairly evident that during the decay of a spatially bounded pertur-
bation, stable solutions appear (if they exist at all, and we shall show this
for the case of two-dimensional vortices) in asymptotic form. It is not at
all obvious that stable solutions can appear as the result of the evolution on
the average of a uniform perturbation that occupies all space. For the case
of solitons in nonintegrable systems that is true [23], but for two-dimen-
sional vortical turbulence in the most important medium of all (an ideal
fluid) the answer is not known at any level of rigor. There is no answer
even for the case of electron hydrodynamics.

Later in this chapter we shall examine all types of stable vortices in
relative detail, since they are described by equations which are the same
for various media (Section 3.3). Attempts based on thermodynamics to
narrow the class of asymptotically important vortices are unlikely to be
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correct. The review by Petviashvili and Yan'kov [23] contains a Critique
on this topic.

We note also that all the subsequent discussion in this chapter is in
terms of integrals of motion, which are most suitable for describing stabe
vortices.

3.2. Vortices in Uniform Plasmas

The main types of stable vortices are monopole and dipole vortices,
all of which realize a maximum energy for fixed values of the other inte-
grals of motion [23-27]. Since there are an infinite number of integrals
corresponding to freezing, there is an infinite number of forms for the sta-
ble vortices.

In a uniform plasma the two-dimensional equation for freezing of the
curl of the generalized momentum takes the form

0 me e crotB me e
9 £ A) = rot[— , rot =t
rot ( py— rot B -+ ; A) rot[ 2 ro ( — rot B 4 - A)]
3.1
or, in dimensionless form,
G _ 0.0 _ 0 ko 2 o (3.2)
where w = b — Ab.

It can be seen immediately from Eq. (3.2) that all configurations for
which the level contours of b and Ab coincide (such as circular vortices)
are stationary.

The stability of vortices is conveniently explained in terms of the con-

stants of motion. Equation (3.2) has the following constants of motion:
(a) energy

&= [ 16+ (vb) dor, (3.3)
(b) momentum
p= j(nmv +%A>d2r:const5'm[r. f1der, {1 B, (3.4)

(c) angular momentum

M = [oridr, (3.5)
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(d) freezing

Jr=[F)ar, (3.6)

where F is an arbitrary function.

In the form (3.3) it is clear that the energy is the sum of the magnetic
and kinetic energies, althou gh for stability studies it is most convenient to
express the energy in terms of the quantity w, which is conserved along
the trajectories, using the relation b = 1/2m Jo(rDKo( T # rq Dd?r; which
follows from the formulaw = b —Ab:

g = [ [0+ voridr = [eoer == [ fomom Kl | rimr ) drdr.
3.7

where Ko(r) is the MacDonald function.

An electrostatic analog is useful for the subsequent discussion: in
electrostatics the energy can be written both as the energy of the field
(single-volume integral) and as the energy of interaction of charges (a
double-volume integral). In our case of conserved "charge," it is w(r),
while the "interaction potential” Ko(r) falls off at small distances as Inr
and at large distances exponentially. “Screening” of the interaction over
distances greater than c/wp, occurs when the energy and momentum of the
magnetic field are taken into account. If we assume that the interaction
potential Ko(r) falls off monotonically, while the "charge" w(r) is frozen in
an incompressible fluid, then it is evident that the maximum energy will be
attained in the solutions where the "charges" of one sign are as close as
possible. These include the circular solutions where w(r) is an arbitrary
function that decreases monotonically from the center [it may also be re-
quired that w(r) decrease rapidly, in order for the integrals (3.3)—(3.6) to
be finite]. It is interesting to note that no solutions for which the energy is
a minimum have been found.

The stability of the above vortices becomes fully obvious if we ex-
amine the integral (3.5). They correspond to the minimum absolute value
of this integral. It might seem that for large-sized vortices, the "binding
energy" would be exponentially small and the vortex would be "fragile";
however, this is not so. Only neighboring parts actually interact, as in a
liquid droplet. In this case the expression for the energy is simpler and
can be written in the form

&’ = const [ (vo) dir. (3.8)
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This formula can be obtained as follows: we begin by partially expressing
b in Eq. (3.3) in terms of w to give

& = [10*+ (vb)] & = [ bod’r = [ (o 4 Ab) ed?r. (3.9)

J w2d?r is a constant of motion, so it can be dropped, and for the remain-
ing part we use Ab « b, i.e., b= q, to give

8 = [ Abod’r = [ Avod’r = — [ (Ao)*dir &« — [ (yb)2d?r. (3.10)

The stable solutions, therefore, minimize the kinetic energy of the
electrons, while the total energy (including the magnetic field energy)
reaches a maximum, since the variation in the magnetic field energy is
greater than the variation in the kinetic energy and has the opposite sign.

Recalling that the equation of motion conserves the momentum (3.4),
it is possible to prove the existence of stable noncircular "dipole" vortices.
Consider two circular vortices with a monotonically decreasing function |
w | of size a, which differ only in the sign of the "charge." In isolation,
such vortices are stable. Including the integral (3.4) means that the
distance / between the centers of the vortices, i.e., the "dipole moment," is
conserved. If we assume that @ « /, then the interaction energy of the
vortices is small compared to the energy of each vortex, and the maximum
energy is realized for a pair of two almost circular vortices [24]. This sort
of pair moves along a straight line perpendicular to the dipole moment,
carrying electrons along with it and producing an enhanced thermal
conductivity,

3.3. A New "Universal" Two-Dimensional Equation
in a Weakly Inhomogeneous Medium

The equation obtained in this section describes two-dimensional hy-
drodynamical flows of the electron or ion component in a plasma, as well
as of the oceans and atmospheres of planets. The ability to describe
the motion of different media originates in the similar structure of the
constants of motion for these media. This equation generalizes the
Korteweg-de Vries and Kadomtsev—Petviashvili equations.

The similarity of drift waves in plasmas to Rossby waves in the
atmosphere has long been known. First of all, with appropriate rendering
of the equations in dimensionless form, the dispersion relations for linear
waves,
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0 = k(1 4 k¥, (3.11)

are the same (here the y-axis is in the direction of the inhomogeneity). It
has been found [23] that under certain simplifying assumptions the non-
linear parts of the equations, which are fairly complicated, also are the
same. The similarity of these equations has been attributed to freezing of
the curl of the momentum in a continuous medium [24-26] (in the case of
a plasma, the curl of the generalized momentum of each component). For
two-dimensional motions, the curl has only one component. We denote it
by the letter z, and the freezing equation takes the form

dz/0t -+ divvz = 0. (3.12)

The motion of plasmas, liquids, and gases can often be regarded as in-
compressible, so that the two-dimensional velocity v can be expressed in
terms of the scalar b as

v =[e;, vbl. (3.13)

In order to close the system of Egs. (3.12) and (3.13), we must introduce
a coupling between b and z. One of the simplest relationships, which
takes the nonlinearity, nonuniformity, and nonlocalization into account in
the first approximation, is

2= b b2+ y—riAb. (3.14)

Substituting Egs. (3.13) and (3.14) in Eq. (3.12), we find the "universal"
equation which we have been seeking:

i

; (b b2+ y—rih) o (315)

a(x, y)

Written in this form, which is an extended version of Eq. (3.2), Eq.
(3.15) emphasizes the freezing of the curl in the material. This equation is
often written in another form [27] which takes the smallness of several of
the terms in Eq. (3.14) into account. For example, let the terms b +
dominate in Eq. (3.14); then Eq. (3.15) takes the form

(b+—”2'-+y_r%Ab)+

db/dt + db/ox = 0,

or, in this approximation, /0t = —9/ox.
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Now adding the terms —rg2Ab + b2/2 and replacing 9/0¢ by ~9/dx in
them, we obtain
ab b

0 —b—l—%—rﬁAb}——

(b, rAb)
ot ax )

d(x, ) (3.16)

This notation, in which the time derivative appears in the simplest form,
was first used by Korteweg and de Vries. It is convenient for evaluating
the constants of motion. For example, by direct differentiation with re-
spect to time and eliminating ob/ar with the aid of Eq. (3.16) it is possible
to confirm that the momentum and energy are conserved [27]:

p= j’;_—”dzr (3.17)
and
&= ﬂ-;— b+ 1 (Vb)z}dzr. (3.18)

It is not as simple to confirm the existence of analogous integrals for the
more exact Eq. (3.15), and the analogs to Egs. (3.17) and (3.18) are con-
siderably more complicated.

In place of Eq. (3.14) it is possible to take

2= b—roAb 4 y— by —y*/2 (3.19)

and again obtain Eq. (3.16) as a result of some simplifications. We note
that the Korteweg—de Vries equation can also be obtained by taking the
nonlinearity into account in either the continuity equation or the velocity
equation. It is also possible to assume low compressibility in Eq. (3.13)
and again arrive at Egs. (3.15) or (3.16). Up to now Eq. (3.15) has been
derived using general considerations. For specific cases, such as the EMH
equations (1.4), it can be obtained by simplifying the equation for the
frozen quantity rot w,:

2 rot B. (3.20)

—-< rotm, =B -+ rot
e ©
pe

For a nonuniform Z-pinch configuration, in which we shall assume
that the perturbations are small in scale and independent of angle, B =
By(1 + b) with b « 1. We rewrite Eq. (3.20) in plane orthogonal coordi-
nates (x, y), where the x-axis coincides with the current streamlines of the
initial state, nr2 = const, as
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2
(o= w2 ) (62380 —Bp) — g‘,"g”(;—'*‘;‘:”) _o (321
where Vo = (c/4wne)(1/r)(3/ay)(rBo) is the current flow velocity, Ao =
clopes B0 = (1/nr2)(@/ay)(nr?) — (vo/go), and go = cBo/4mne.

In deriving the coefficients vo and Bo, we have taken into account the
plasma nonuniformity, the curvature of the field lines, and the terms
which arise upon "straightening" the coordinate axis in the Laplacian.

We conclude with a discussion of why the term with a vortical non-
linearity was retained in Eq. (3.16) along with the usual nonlinear term
that leads to reversal of the wave. The reason is that we are considering
drift motions in which the material is displaced primarily in a direction

erpendicular to the wave vector, and this displacement may be consider-
ably larger than the wavelength. Naturally, the transport of the "frozen"
perturbation must be included with such displacements. Originally the
Korteweg—de Vries and Kadomtsev—Petviashvili equations were derived
for waves with longitudinal material motion, so that it was correct to drop
the term with the vortical nonlinearity.

3.4. Stable Vortices and Solitons in Nonuniform Plasmas

Monopole vortices, which are stable in a uniform plasma, are also
stable in a nonuniform plasma if the corrections for the nonuniformity are
small. A similar situation holds for dipole vortices. The soliton solution
found by Petviashvili also appears along with the vortices.

We shall base the discussion on Eq. (3.16) derived in the preceding
section,

ﬂ—=—‘?—(—b+—b;——r§Ab)+

a(b. raab)
at dx ’

a(x, 4)

We first note that a(b, Ab)/a(x, y) = 0 for those solutions which depend
only on the radius and that the remainder of the equation includes disper-
sion and nonlinear terms which are typical for equations with soliton

solutions. Seeking a solution in the form b =b(x— (1 + V), y), we arrive
at the equation

(3.22)

vb -+ b¥2 —ryAb = 0. (3.23)

In the centrally symmetric case, when it is permissible to drop the Jaco-
bian, Eq. (3.23) has the form
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Fig. 5. Current paths in a moving vortex.

vb+ %——r%%%r%:& (3.24)
This equation has been solved numerically [25] and has a soliton solution
which decays monotonically to zero at infinity. This solution is stable and
it maximizes the energy (3.18) for a fixed momentum (3.17). Its stability
has been demonstrated by the Zakharov—Kuznetzov method [27]. The
scale length R of a soliton is related to the amplitude by b = ry2R2. The
resulting solution appears to be a typical soliton, but this is not certain,
Indeed, the velocity of the soliton in the chosen dimensionless system of
units is unity when the corrections are neglected, while the drift velocity of
the plasma is LAb, where L is the characteristic scale length of the
nonuniformity. If the drift velocity is much greater than the displacement
velocity, i.e.,

Lry/R®>> 1, (3.25)

then the current streamlines are closed inside some region (Fig. 5).

Since Eq. (3.22) is valid only when R « 3Jro2L (otherwise the posi-
tion dependence of the velocity of the linear waves must be taken into ac-
count [27]), our solution always contains a trapped plasma. This is a
property of vortices. We note that in experiments with rotating fluids, all
formations which have any pretense of being solitons will have trapped
some of the fluid [29, 30]. It seems natural that if we slightly vary the
curl of the generalized momentum on the closed flow lines passing inside
the separatrix (Fig. 5), then, by analogy with vortices in a uniform
plasma, the solution will not lose stability. Thus, it has been stated [23]
that Petviashvili's solution is only the center of an "island of stability" and
that the family of stable solutions is infinitely parametric. Subsequently, a
more rigorous meaning [26] has been given to these arguments. It turns
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out that vortices that are stable in a uniform plasma (Section 3.1) will re-
main stable in a nonuniform plasma as well, provided that the corrections
owing to the nonuniformity are small.

A large number of papers deal with comparatively special solutions
that do, however, have the undoubted advantage of being written down in
analytic form. They all contain matched solutions, but the resulting dis-
continuities in the higher derivatives are not a major shortcoming. The
most widely known is the dipole solution of Larichev and Reznik [31],
which is a generalization of the vortex solution for a uniform liquid [32].

The solutions mentioned above all contain closed contours of constant
vorticity and they transport material, since they are essentially vortices of a
nonuniversal form. The soliton solutions of Petviashvili are the only ones
which do not necessarily contain a region with trapped material (when R «
3Jro2L there is no trapping) and the validity of using Eq. (3.22) when
this inequality holds can be ensured by choosing parameters such that
the phase velocity of the drift waves depends only weakly on position,
ie., prhl « vph/L°

In conclusion, we note that vortex equilibrium equations which con-
tain an arbitrary function were obtained long ago for electron hydrody-
namics [32]. For ion hydrodynamics this type of equation has been ob-
tained by Stupakov [33]. The possibility of functional arbitrariness in
such problems was first pointed out previously by Gordeev [34].

3.5. Pseudo-Two-Dimensional Vortices

EMH effects depend strongly on the geometry of the problem. For
this reason it is appropriate to seek models which, on the one hand,
describe (even if qualitatively) the three-dimensional effects and, on the
other, can be solved analytically as well as the two-dimensional
(degenerate) situations examined above. One such model involves a flow
of electrons in a thin layer (sheet) of plasma located in a vacuum.

Thus, let us assume that a plasma sheet of thickness 8 = 0, but with a
finite "surface" density N = n8, conductivity Z =08, and current density
J = j8, lies in the z = 0 plane. The EMH equation inside the layer is, as
before, written in the form (1.6). In the two-dimensional equation for the
z-component of the magnetic field b (B,(x, y, 0) = b(x, y)) frozen in J (for
Z = o0), which follows from this equation, however, one can replace the
volume characteristics by surface characteristics everywhere, i.e.,

e, ab — —rot [J, &b —rOt—EJ— . (326)
ot Ne 2
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(Because of the small thickness of the sheet, 8 « 85k O 8 « ¢/wpe, the tay.
gential components of B are not frozen in the flux.) The only conditigy
for this is that n, o, and j not have gradients with respect to z inside the
layer (otherwise mutual conversion of the potential and normal compge.
nents of B would begin).

All the information on the implicit three-dimensionality of the problery
is contained in the relationship between b and J (Biot—Savart law),

5‘ I-' (r), r—-r] (3.27)

Jr—r P
(Here the integral at the point r = r' is taken to denote the principal value.)

We actually need the inverse of Eq. (3.27), which is easily obtained with
the aid of the Fourier transform,

___ ¢ b(r')[e,, T—r’] r__¢ b(r'ye: 1
J= 4an I zrotjl oA (3.28)
Thus, the three-dimensionality of the problem manifests itself through the
nonlocal relationship between b and J.

We first examine the case of a streaming flow of electrons with J =
J(x)e, and b = b(x). It obeys the equation

P _ 9 1 o (3.29)
ot dy N e 2 oOx
and b and 2mJ/c are related through the Hilbert transform
bx) = - 5 I ) gy, 2I0) 1 ( “") dv'. (3.30)
n c(x' —x) c Tt ) x'—

(here the integrals are taken in the sense of the principal value). Some ex-
amples of such relationships include the functions (1 + x%/a%)-1 and x/a(1 +
x2/a?)-! used below or cos (x/a) and sin (x/a).

Equations (3.29) and (3.30) correspond to Eq. (2.4) for the conven-
tional plane situation, but the nonlocalization of the nonlinearity and dissi-
pation introduce new effects which change the hierarchy of the corre-
sponding terms in the equation. Thus, on the one hand, this sort of non-
linearity has self-stabilizing dispersive properties, as is already evident
from the following solitonlike particular solution of Eq. (3.29) (for Z = o).

gy sl o E
- 1-|—(x——paGt)2/a2' P 2me

9 1
dy N
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[here and in the following we neglect the variation of p(y), which is valid
when 3/dy « 9/dy and clearly correct when N « (y — yg)-1]. On the other
hand, if the nonlinearity causes steepening of the profile, then this process
;s not stopped by dissipation either. An example is explosive current con-
rraction (soliton collisions),

J= S G .|+f(U+PG) . UZC_‘
2n  xa? - (1 4+ £ (v pG))? 2n3

when G <—v/p [compare with contraction in the framework of Eq. (2.7)
and Section 4.2]. One remarkable property of Eq. (3.29) is that, despite
its integrodifferential form, it does allow an exact solution, as does the
Burgers equation (2.4), although this solution is obtained by a completely
different approach involving entering the complex plane and treating x as a
complex variable. In fact, according to Eq. (3.30), b and 2mJ/c are related
in a way analogous to the real and imaginary parts of the generalized sus-
ceptibility (the Kramers—Kronig relations). This makes it possible to in-
woduce the function = b + i-2mJ/c that is analytic in the upper half x
plane. Equation (3.29) and its conjugate equation for J, which follows
from Eq. (3.29) through the Hilbert transform, combine into a single
equation for w,

1% _ pup g 22, (3.31)
ot 0x
which is integrated trivially over its characteristics.

Now let N = const and Z = oo, but with an arbitrary flow of electrons
over the plane, i.e., in general a vortical flow. In the problem of a fully
uniform flow along the z axis, for this case the equation analogous to Eq.
(3.26) degenerates into the identity aB,/at = 0 [see Eq. (3.2)], and only if
the inertia of the electrons is included will a nontrivial evolution of the
flow result. In this geometry, because of the other coupling between
the incompressible flux J and the quantity b frozen into it, this is not so:
(JV)b = 0, and only flows which satisfy the condition [cf. Eq. (3.2)]

6(S—ﬂq——d’r’, b)/a(x. y)=20
lr—r"|

will be stationary. This corresponds, in particular, to circular vortices.

Yet another characteristic difference (besides the nontrivial evolution in the

massless approximation) of the pseudo-two-dimensional vortices is their

nonlocalization. The magnetic field from a current J,, bounded in r will

decrease toward infinity on penetrating through the vacuum only accord-
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ing to a power law, even when m — 0. Including the electron inertia leads
to freezing in J of the quantity w = b + (mc/Ne2)e, rot J. The constants of
motion for such vortices are completely analogous to Egs. B.H-3.7,
only the interaction potential of the "charges" in Eq. (3.7) transforms o
H(r) — No(r), where Hy is the Struve function and Ny is the Neumanp
function. That is, it behaves as —In r for r « 1 and as 1/r for r » 1 (here the
unit of measurement of r is not c/wpe, but c2/Q,.%, where Q,.2 <

4twNe?/m). Thus, our conclusions about the stability of certain classes of
vortices remain valid. If the characteristic size of the flow is @ « 1, thep
the relationship between the flux J and the quantity rot J frozen into it de-
generates into a local coupling, the system ceases to "feel" its bound-
edness in z, and this case reduces to the two-dimensional flow of an idea]
fluid examined in Section 3.2.

4. TURBULENCE AND EMH RESISTANCE

4.1. Stable Three-Dimensional Vortices
and Three-Dimensional Turbulence

We shall examine a model of turbulence in which the breakup of scale
lengths takes place only in a few relatively small regions, as does recon-
nection in MHD. At the same time, stable configurations with toroidal
magnetic surfaces exist.

In the case of an extremely idealized model, the ion density can be re-
garded as constant, while the ion motion and the electron inertia can be
neglected. Then the equation for the evolution of the magnetic field, when
rendered dimensionless such that v = rot B, takes the form

0B/0¢f = 1ot [rot B, BJ. 4.1)

This equation conserves the energy

& = (1/2) § Btdr 4.2)

and can be written in Hamiltonian form [14]. It is extremely close to the
equation for the motion of a nonviscous, incompressible fluid, but its
properties are still different. The first distinctive feature is the existence of
stable localized solutions of Eq. (4.1), which minimize the energy when
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the freezing condition is met [23, 35]. The latter statement means that the
yariation has the form

8B = rot[rotq, B, 4.3)

where ¢ is an arbitrary small vector. We shall show that a minimum of
the energy (4.2) is attained in the stationary solutions. The condition
fBoSBaGl' = 0, together with Eq. (4.3), implies that

0 = | B, ot [rot g, Byl d°r = [ qrot [rot By, B,] &Pr,
which, since q is arbitrary, means that
rot [rot B, By] = 0, (4.4)

i.e., our assertion is proved. If the field lines are linked, then a variation
of the form (4.3) cannot drive Eq. (4.2) to zero, but would seem to mean
that a nontrivial minimum field energy exists for given frozen fluxes. We
shall consider the example of an initial field where every field line forms a
ring and any two field lines are linked N times. When the energy is mini-
mized, the result is a stable configuration in terms of Eq. (4.1) with field
lines which are wrapped around the toroidal surfaces an integral number
of times.

This sort of analysis is, unfortunately, not universal. Arnol'd [36]
was apparently the first to note that, in general, the field lines fill three-di-
mensional regions densely and when the energy is minimized they cannot
be stacked on the surfaces, as Eq. (4.4) would require. In actual physical
problems, however, the field topology is usually simple enough to avoid
such difficulties.

Let us consider the possible dynamics of the turbulence in terms of
Eq. (4.1). We shall assume, as usual, that dissipation is activated at small
scale lengths and does not affect the course of the large-scale processes.
We specify an initial configuration B(r) of a general form and allow it to
evolve according to Eq. (4.1). The excess energy will immediately begin
to be lost in bending oscillations of the field lines [in the case of quasi-
classical linearization of Eq. (4.1), these are conventional helicons].
Generally speaking, however, it is possible to approach a minimum en-
ergy state only through a modification of the topology, i.e., by activating
reconnection (as in conventional MHD [37]). As a result, stable configu-
rations should be obtained with toroidal (in general, irrational) windings.
The excess energy is partially dissipated during reconnection and partially




. .

268 A. S.Kingsep, K, V. Chukbar, and V. V. Yan'kg,

transformed into helicons and subsequently into small-scale oscillation,
through three-wave interactions on the helicon branch.

A completely different model has been constructed by Vainshtein (38
on the pattern of an ideal fluid. In this model the frequency of breakup of
the scale Iength is v, < Ba/A2, while the constancy of the energy flux over
the scale lengths implies that B, o \2/3, Thus, for sufficiently small Spa-
tial scales, the frequency v, « \=4/3 is much lower than the helicon fre-
quency Q= By/A2, which contradicts our assumptions: the turbulence jg
weak rather than strong. Noting also that in terms of Eq. (4.1) steady-
state stable configurations exist on scale lengths much greater than the
dissipative scale length, we see that the feasibility of this model [38] ap-
pears very questionable.

4.2. EMH Resistance

The concept of EMH resistance is extremely important in a whole
range of practical problems. As yet there are no unified ways of calculat-
ing it.

First we examine the need for and usefulness of introducing a new
terminology. It is well known that on a microscopic level the development
of resistance to a flow of particles corresponds to scatterin g of individual
particles on some objects (other particles or waves) in which the former
lose their momentum and energy of directed motion. In general, as men-
tioned repeatedly above, in EMH the energy and momentum of an electron
flow contain both mechanical and field components:

& = M E_.-' s :nmu_i A. (4.5)
2 8n c

The standard mechanisms for electron scattering (such as Coulomb colli-
sions with ions [1] or the quasilinear interaction with ion acoustic noise
[4, 39, 40]) only cause changes in the first terms of Egs. (4.5) without
affecting the second. The reason for this limitation is fairly simple: be-
cause of the smallness of the scattering objects, only individual particles
interact with them, while the field components of the momentum and en-
ergy of a single electron depend on the motion of all the electrons as a
whole. The magnetic field is an integral characteristic of the current.
Consegquently, in order to change B and A in Eq. (4.5), substantially
macroscopic obstacles to the electron flux must be present on which many
particles scatter simultaneously. It is easy to see that the characteristic size
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of the obstacle, a, must satisfy the inequality a > ¢/wpe. In this case, be-
cause the field components dominate the mechanical components in Eq.
(4.5), the electron current will experience a very large resistance, namely
EMH resistance.

Let us consider a simple example. The stationary flow of a current in
an ideally conducting plasma is described in terms of massless EMH by
the equation

rot [j/n, B] = 0. (4.6)

In two-dimensional degenerate situations, when j L B and (B, V)n, B = 0,
it generally corresponds to an electron flow along the contours of some
function F({, n), where ({, n) are the coordinates on surfaces perpendicu-
lar to B. For example, F = nr2in the case Blle, and F = 7 in the case
Blle,. [We have already met this property of EMH, even in the more
general case of m # 0, in the previous chapter. See the Jacobians in Egs.
(3.2) and (3.15).] Thus, sharp changes in F (owing, for example, to
inhomogeneity of the plasma) can serve as macroscopic obstacles of this
sort. When the current flow lines (4.6) encounter such barriers in their
path, they cannot overcome them.

Finite o changes this situation, which begins to depend on the shapes
of the obstacles. If an obstacle is absolutely impenetrable (a boundary
with the vacuum), then the lines of j are curved near the obstacle and the
current begins to flow along it [7]. A "boundary layer" of thickness 8 ~
a/(wpete) « a is formed on the surface of the obstacle. A power Q =
(2/0)Viayer = (cB/4ma)2(8a2/c) ~ (B2/8m)ua? (in a cylindrical geometry
with B lle,) dissipates within this layer, where u ~ cB/(nea) is the current
flow velocity far from the boundary layer; i.e., the entire magnetic energy
carried along by the current incident on the obstacle is dissipated (for sim-
plicity in these estimates, all the geometric factors have been assumed to
be on the order of unity). The value of Q is completely independent of o
and is determined purely by the hydrodynamic characteristics of the flow.
For this reason alone, the effect merits the name EMH resistance. In ad-
dition, O remains unchanged as o = o, when the inertia of the electrons
becomes of major importance [11]. Then 5 ~ c/wpe and the energy of the
flow is converted, not into heat, but into vortices produced by the obsta-
cle. The subsequent independent existence of these vortices is described
in Chapter 3. This fact makes it possible to define the EMH resistance as
R =Q/2. For this example (I ~ cBa? ~ neua?), R ~ u/c? or 30 u/c ohms.
An analogous effect can occur in other cases. For example, during injec-
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tion of an electron beam into a plasma, because of trapping of its magnetic
field near the boundary [see Eq. (2.15)], the plasma current flowing along
this boundary experiences the same sort of resistance: R ~ ulc? =
(up/c?)np/n. 1f, however, this obstacle is just some fluctuations in the
plasma density, then the current may flow through it, but with significan,
changes in its properties. Let us examine this effect for the example of 4
plane geometry [Eq. (2.3)], i.e., with Blle,. Let j = j(x)ey and (3/dy)n =
0. Then in a plasma with a monotonic n(y) profile (3/dy « 9/0x), the elec.
tron current caused by the motion of the electrons toward higher densitieg
will undergo a contraction [cf. Eq. (2.7)],

B=—Byth-2% , p_1 0 1 4
2 ec Jdy

and experience a resistance. This behavior differs only in the geometrica]
factors from the previous example. For an opposed current direction at
x ==L [cf. Eq. (2.5)],

B Gtg %P Gy,
B, 2

where the constant G is determined from the condition B@#L) = £By; that
is, in the steady state the current flows mainly along the boundaries and
experiences the same (in terms of order of magnitude) resistance.

Thus, it is as if each individual obstacle to the electron current formed
an EMH "shock" wave (dissipative or collisionless), within which energy
is removed from the magnetic field, independently of the specific mecha-
nism. When there is a multiplicity of such obstacles [nonmonotonic n(y)],
it is possible to use spatial averaging and to examine the complete evolu-
tion of even the time-independent problem using the same equation (2.3).
Indeed, let n = ng/(1 + a cos (ky)) and, as before, let the spatially averaged
current be (b lle,. Then, writing B, as B(x, 1) + B(x, ?) sin (ky) (B « B,
d/ox « k), we obtain the following relationship between B and B,

—_ %0 0 p,
2n4eck  Ox ’
4.7)
o8B ¢ 0 (1 [adB 2+l]£
ot ino  Ox [ 2 (nnec ox '

which is valid for ¢%k?/(4mo) » 1/t. Clearly, "headlong" passage of a cur-
rent through an obstacle leads to an enhancement of the resistance (and the
rate of diffusion of the magnetic field) by a factor of (wpete)2.
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Fig. 6. The continental slope of country F,
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Fig. 7. The shoreline on the continental slope.

Let us now examine the more realistic problem of the resistance expe-
rienced by electrons flowing perpendicular to B through a nonuniform
plasma in which flute (or strongly extended along the field) perturbations
in n create macroscopic fluctuations in . Half of this problem has essen-
tially already been solved: if there are no contours of F connecting the
electrodes (viewed here only as a source and sink of electrons, rather than
as equipotentials), then the situation can be described by a slight
modification of the system of equations (4.7). The presence of such
contours, however, can change the situation fundamentally, since the re-
sistance along such a path is lower than on any others.

This problem of the EMH resistance is close to the "flow" or "flood"
problem of Shklovskii and Efros [41]. In particular, the analogy of a
mountainous country F flooded with water may be useful in studying it:
the behavior of the contours can be traced by studying the coalescence of
isolated "lakes" and the appearance of "shore" lines that connect the elec-
trodes. For concreteness, as before we shall examine the plane case with
F = n(x, y) and electrodes located at x = 0 and L.
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X

Fig. 8. F = const contours joining two elec-
trodes.

Let n = no(y) + 8n(x, y), where ng is a monotonic function and s is
random, with characteristic spatial scale lengths of / and X, respectively,
where / » . These scale lengths are not completely standard. Here we
mean that when the argument of ng changes by / and that of 8n changes by
A, both functions change by the same amount. If / # oo, i.e., Vg # 0 [in a
cylindrical geometry with F' = nr? this also corresponds to ng = const],
then there are many paths connecting the electrodes. In this case the
country F is located on a continental shelf (Fig. 6) and for any level of
flooding there will be a shore line connecting x = 0 and x = L. Their con-
tribution to the conductivity is determined by the average length (I/\)aL.
The linearity in L is a consequence of the fact that when L » / the shore
line on the slope "wanders" in the y direction by no more than / (Fig. 7).
The width of these paths is S(\/)?, where S is the size of the electrodes in
the y direction (Fig. 8). Since the area of these paths in the XY plane is
naturally less than the total area of the plasma, we have a <B, where the
inequality holds for the case of Fig. 8. Unfortunately, only one of the two
characteristic indices, a and B, can be found. Let us consider a diver-
gence-free flow with a flux q = —[e,, Vn] moving along the contours. It
flows from the cathode and the amount arriving at the cathode is given by

J= —T e, le,, vnldy = ny(y;) —ny (ys) ~ (g2 — g1,
14
according to the definition of / (yo —y; » I). On the other hand, in the
volume between the electrodes typically g ~ 1/\, so that J is transported
through an area (y2 —y1)V/[, ie.,p =1 [42]. If, however, | = o (ie.,
np = const), then the contours are basically closed. Nevertheless, some
link between the cathode and anode exists, even for arbitrarily large L.
That corresponds to the shore line at the moment half the country F is
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flooded, when the paths joining the electrodes along the continent
disappear and lie in the water [41].

The length of the connecting paths in this case is of order L(//\)Y,
while their width approaches 0 as L - oo. This means that the resistance
;s much greater than in the previous case.

To summarize, the concept of EMH resistance makes it possible to
explain many nontrivial effects, even with the simplest equation (4.6) and
its ime-dependent analog (2.3). Unfortunately, the limits of applicability
of this description have not been clarified. For example, including the
slow motion of the ions may make it necessary, first, to determine the A
spectrum of 8n self-consistently (although the effect of the density
fluctuation spectrum on the resistance may be quite large, as can be seen
from the simple example with (3/dy)sn = 0 and a = B) and, second, to in-
troduce additional dissipation into the problem owing to "reversal” of the
field in accordance with Eq. (2.3) when n "moves" slowly. The possible
existence of EMH resistance in a nondegenerate three-dimensional geom-
etry is also of great interest. Indeed, in this case the two required condi-
tions (quasineutrality and frozen B) do not place such strong limits on the
electron motion, so that the number of degrees of freedom is greater by
unity. For example, in this case if we allow density fluctuations that are
limited along B ((BV)n # 0), then the electrons acquire the ability to move
between them while simultaneously expanding along B. Then, however,
the longitudinal current cannot turn sideways and each small obstacle will
develop long current "whiskers." This kind of flow may begin to emit
helicons, at which point another mechanism for EMH resistance begins to
appear. In any case, this situation must be investigated further.

The question of EMH resistance, therefore, requires deep and detailed
study. Such studies might not yield solutions of the model problems but
lead to the creation of a unique "ordering" which will allow us to make
very simple estimates by analogy with the system developed for the
anomalous resistance produced by ion acoustic instabilities [4, 39, 40].

S. THE Z-PINCH
5.1. EMH Effects in the Z-Pinch
The EMH description can be applied successfully to such popular

Plasma devices as the Z-pinch. As a result a number of nontrivial effects
will be revealed.
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The condition a < c/wy; for applicability of EMH to the Z-pinch (@~ "
is written in terms of the linear ion density [4] as

I, = ZNe(AMc) < 1, N = [ n-2ardr. (5.1)
0

The inequality (5.1) is rather typical of a whole range of experimentg
with short-pulse, high-current discharges (high-current diodes [43],
plasma focus [44], vacuum spark [45], etc.). This means that varioug
EMH effects described above can come into play for them (in particular,
convective transport of the field by an electron current). These effects cap
change the dynamics of the Z-pinch considerably from the behavior im.-
plied by a single fluid model.

The situation is by no means trivial, and the condition (5.1) alone
does not guarantee the significance (or even the existence) of these effects.
Indeed, in the case of the Bennet equilibrium [4], which is extremely
characteristic of the Z-pinch, [j, B] is compensated fully by the plasma
pressure. If the ion pressure is low (P; « P,), then this compensation also
appears in the electron equation, i.e., convective EMH effects are absent.
For small deviations from the Bennet equilibrium, these effects do occur
but because they are strongly suppressed, the ion motion cannot be ne-
glected and cooperative electron effects are predominant. Some dramatic
examples of these effects (such as the appearance of sausage-type
instabilities owing to overlapping of helicon and Alfvén modes) can be
found elsewhere [4, 46].

Strong compensation of the convective term in the equation for the
magnetic field does not occur if P; > P, or if a true equilibrium is absent
and the magnetic force is balanced by the inertia of the ions. Precisely the
latter situation is considered in Section 6. However, even then, the elec-
tron pressure makes some contribution to the dynamics of the field.

Joule heating of the plasma can also be important in the dynamics of a
Z-pinch, especially if we note that in an equilibrium pinch ¢, = v,4, while
the condition (5.1) means that the current flow velocity exceeds c;, i.e.,
the threshold for the ion acoustic instability of the current has been sur-
passed. The resulting anomalous resistivity of the plasma [4, 39, 40]
substantially increases the role of resistive effects [47, 48]. A criterion for
the existence of these effects is that the temperature increment owing to
dissipative plasma heating, AT, exceed its initial temperature T, i.e.,

mj2 L . cB
z Vet T

R

T < AT ==
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where L is the length of the pinch, R is its radius, and u is the current flow
velocity. This criterion can be rewritten in the form [11]

vef>mpe%|/ %I/ ‘&:TT. (52)

When Eq. (5.2) is satisfied, the impedance of a high-current Z-pinch
(for example, a plasma diode) can be determined by ohmic, rather than
hydrodynamic effects. Section 5.3 is devoted to a description of this situ-
ation. Unfortunately, up to now both effects (convective field transport
and Joule heating of the plasma) have only been examined separately and
in terms of idealized models.

5.2. Electron Flows in Low-Density Pinches

Convective transport of the field by the current leads to stabilization of
the sausage instability in Z-pinches.

Effects associated with convective field transport in a geometry simu-
lating the constriction of a Z-pinch were first examined by Morozov et al.
[6, 7]. Subsequently, however, these effects were not usually taken into
account until much later [11] (except in the kinetic model of Imshennik et
al. [49, 50] where they are automatically included in the analysis although
not isolated in a pure form).

It is easiest to include the transport effect in the approximation of ideal
freezing-in of the field in the electrons (P, = 0, vet = 0, a@ » c/wpe). For
axially symmetric systems in this case, the equation for the magnetic field
[see Egs. (2.1) and (2.8)] is conveniently rewritten in terms of a function
of the current I = (cB/2)r (Blley),

.
ot

[compare with Egs. (2.3) and (2.8)]. In the steady state (3/dz = 0) this
leads to an effect, mentioned several times above, in which a current flows
along the nr? = const curves: I = I(nr?). This equation, in turn, yields a
nontrivial focussing of the electron current in a high-current diode as it
flows into the dense plasma at the anode foil. A complete picture must in-
clude the processes that inhibit focussing. The most natural of these pro-
cesses in this problem is finite electron pressure. The combined dynamics

T AR (5.3)
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of the electrons and magnetic field are described in this case by the equy.
tion (9/0t = 0)

E—[- .B]+V—P=o. (5.4

nec
where E = —Wp and j = (c/4m) 1ot B.
For simplicity we shall assume that I(r) is monotonic, while the Pres.-
sure (or temperature) varies adiabatically along the current flow lines:
J vVP—vPd yinn=o
ne ne V '
Le., T =To() (n/no)r-1. We shall also assume that the plasma density ig
a given function n = n(z) (neglecting the ion dynamics). Taking the cyy]

of the generalized Ohm's law and makin g the substitution z > n(z), we
obtain

instead of Eq. (5.3). The characteristics of this equation are the curveg
[11]

o= () eo—a0 (7T 6o
Here A() = —{2n/(y - 1)]c?ro?no(dT/dI?), and C(I) is determined from the
boundary conditions. It is clear that as n(z) increases the current flow
lines are initially pressed toward the axis as r « n~1/2 and then, if A > 0,
rapidly move away from the axis, going to infinity when n/ng =
(C/A)V-1). In the region of maximum compression, the electron
pressure is on the order of the magnetic pressure.

We shall try to examine the constriction of a Z-pinch starting with
these effects. As it rises, the magnetic pressure exceeds the plasma pres-
sure, so that for preliminary estimates we can use the model of ideal
freezing of the field in the electrons with a current flowing along the nr2 =
const curves. It seems quite natural that in the neighborhood of a neck,
nr? passes through a minimum as a function of z. Let the radial boundary
of the neck be diffusive. Then, in the steady-state solution the current
flow lines move away from the axis in the region (3/dr) (nr?) > 0 and, if
this solution falls off more rapidly than 72 when r - n(r), part of the
current flow lines will turn back on passing through the curve (3/9r) x
(nr2) =0, so that the total current through the pinch will be lower than
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Fig. 9. Current paths in the constriction of a Z-
pinch with a diffuse boundary.

Fig. 10. Current paths in the constriction of a Z-
pinch with a sharp boundary.

without a constriction (Fig. 9). If n(r) falls more slowly, then the total
current is not reduced, while the expansion of the current flow lines leads
to a drop in the magnetic pressure. Including the electron pressure in the
framework of Eq. (5.5) leads to still more rapid loss of current flow lines
from the neck. That is, in the framework of EMH the constriction does not
capture the current.

Finally, a formal analysis of a sharp neck boundary, on which the
density drops suddenly to zero, shows that the current flow lines resting
against this boundary will (in accordance with Chapter 4) form a boundary
layer with EMH resistance and rapid dissipation of the magnetic energy
(Fig. 10). Ultimately, this allows us to assume that effects related to
EMH will lead to stabilization of the sausage instability when II; ~ 1.

The degeneracy of the axially symmetric geometry in a.Z-pinch
should foster the formation of discontinuities. In fact, Eq. (5.3) is noth-
ing other than the equation for a simple wave. After reversal of the I pro-
file, two possibilities arise. Either dissipation sets in and a stationary
travelling wave with a steep front develops (Chapter 2) or the inertia of the
electrons begins to show up and the wave begins to break up into separate
vortices (Chapter 3). In the latter case, the energy of the magnetic field is
transformed into kinetic energy of the electrons.
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5.3. The Resistive Pinch

Including the motion of the ions has a significant effect on the EMy
characteristics and impedance of a resistive pinch.

Electron flows in a resistive pinch with electrodes or, equivalently, i,
a high-current resistive diode have been examined in the approximation of
a plane (x, y) geometry [S1]. The anomalous resistance owing to the iop.
acoustic instability of the current was modeled by o = (@pe/4T)nevy,/j.
The electrons were assumed to have no inertia. The diode was assumed tq
operate in a quasistationary regime since the duration of the current pulse
usually exceeds both the electron and the ion times of flight. The latter
fact made it necessary to include the ion motion; that is, a transition from
EMH to two-component hydrodynamics was required. The electron flow
was assumed to be magnetized (wpet,. » 1), which justified the neglect of
the thermal force and electron thermal conductivity. Thus, the following
system of equations was solved:

nAM Bt _ _
Z (VV)VZ—V(E +P>. v=v, P=P,

div (nv) = 0,

E=l——v(g&+P).

g

6.7
uyP —yPuylnn = (y— 1) s,
j = —neu = (¢/4n)rot B,
E=—vyeq.

In principle, even when wp,t, » 1 the thermal force and electron heat
fluxes can make a significant contribution to the system of Eqs. (5.7) (see
[1]), although their role is not evident when the conductivity is anomalous
[52]. A solution was also obtained for this case, as well as for a rather
general form of the conductivity, o = (B, P)n%j8.

Here the electrode geometry is generally arbitrary. Only their poten-
tials are specified. In such a general statement of the problem it is possible
to proceed quite far in solving the problem because of the plane geometry,
specifically by transforming to orthogonal curvilinear coordinates (¢, B).
The general solution is, nevertheless, extremely complicated and is ex-
pressed only in quadrature form; hence, we shall not derive it here, but
refer the reader to the details elsewhere [51] and only point out some of its
most interesting properties:
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a) from the natural assumption that v and u are parallel near the elec-
trodes, it necessarily follows in the general case that v = 0 throughout the
entire volume; i.e., the plasma in a diode is in Bennet equilibrium, while
the system of Eqs. (5.7) degenerates to a system of EMH equations with a
compensated convective term;

b) the ratio of the longitudinal and transverse scale lengths of a pinch
is Li/L1 ~ wpete » 1; i.e., when the electron flow is magnetized the inter-
electrode gap is considerably larger than the thickness of the plasma cloud
[cf. Eq. 5.2)];

¢) the impedance of plasma diodes has been calculated for several
simple geometries and a method pointed out for calculating it in the general
case [at least in an implicit form F(U, I) = 0], but most importantly, it has
been proven that a stationary solution exists for the problem of a resistive
pinch with electrodes in the approximation of multispecies hydrodynam-
ics.

6. GENERATION OF MAGNETIC FIELDS

The freezing of the magnetic field into the electrons, a property which
makes the analysis of the dynamics of a field in a plasma so much easier,
fails as the field pressure is raised. This situation modifies the separation
of a cold component (which "maintains" freezing) from a hot electron
fluid. This approach also makes it possible to take qualitative account of
kinetic effects.

Magnetic field generation can be defined briefly as the enhancement of
the magnetic energy of a plasma through an internal source within the
medium itself. In the classical problem it is assumed that the energy ca-
pacity of the source is considerably greater than the energy of the magnetic
field; that is, there are no "coarse" prohibitions on increases in B%/(8).
In the framework of EMH these sources can be either the thermal energy
of the electrons or their kinetic energy.

The first, most often encountered case, occurs when the inequalities
B » 1 (thermal energy predominant) and a » c/w,. (negligible kinetic
energy, where a is the characteristic dimension) are satisfied and corre-
sponds to field generation by a thermal emf. It can be described quali-
tatively by the equation

B vt v+ Zam, 6.1)

¢ 4ng
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in which convective terms which are small in the parameter -1 are cop,.
pletely absent, by comparison with Eq. (5.4) and all the preceding discyg.
sion. In fact, however, the intensity of field generation and the leve]
which can be attained are extremely sensitive to different kinetic effects
which have not been included in the purely hydrodynamic approach of Eq,
(6.1): heat conduction, thermal force, and others which determine the de-
gree of noncollinearity of Va and VP [53, 54]. In this situation it is useful,
while keeping within the framework of the simpler hydrodynamic de.
scription, to modify it by separating the electrons into two components
(hot and cold) [15]. This two-component approach, as will be shown
below, makes it possible to include effects which follow from "infinite-
component hydrodynamics" or, in other words, from the kinetics.

The nontriviality of the two-component description was first pointed
out by Aliev et al. [55]. Isolating a cold component also restores the
freezing effect for the magnetic field which was lost during the transition
from Eq. (5.4) to Eq. (6.1) and aids in the qualitative analysis of this sity-
ation.

Let us consider in detail the case where the density of the hot compo-
nent is low. It is interesting because it occurs in a pure form in two im-
portant practical cases: in laser flares [56] and during the interaction of an
electron beam with a plasma when py, « a [see Eq. (2.2)].

In both cases, knowledge of the restrictions imposed on magnetic
field generation is very important. As we also intend to apply the results
to collisionless plasmas, we shall neglect the effect of electron scattering
on their dynamics, assuming that the inequality wg.t, » 1 is satisfied.
Thus, the initial system of equations has the form

0= —nueE — Laf [Vor Bl —ynyTy,
"

a=c b Ty>T, m&n, n,+n,=2Zn,
Oyt +- div (myv,) = 0, (6.2)

rotB = — 4% (nyv, + nyvy),
4

0B/t = — crotE.

With the aid of the small parameters written out above, this system of
equations can be reduced to two equations for nj, and B (ne = Zny(r)),

0n, /ot + div (nyv)) = 0 (6.3)
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and

B 1

2= | Vo VR 6.4)

(here it is assumed that [Vng, VP,] = 0 for each component in isolation).
The first equation is just the continuity equation, while the second de-
scribes the generation of magnetic fields [cf. Eq. (6.1)].

It is clear that since vy ~ cVP/(npeB), according to Eq. (6.2), ny
changes nc/ny times faster than B. This is a consequence of the freezing
of the magnetic field in the cold component and the equation V. = —(ns/
ne)ve @ » 11). Naturally, such rapid evolution in a practically static
magnetic field should lead to the establishment of some sort of equilibrium
state that will drive the right-hand side of Eq. (6.3) to zero. In other
words, a functional relationship exists between n, and B and this means
that the slow (compared to the relaxation of nj; ) magnetic field generation
described by Eq. (6.4) is greatly modified and might better be referred to
as nonlinear dynamics.

Let us demonstrate this for a simple example in which B lle;, 9/0z = 0,
the electron flow takes place in the r, ¢ plane, Ty = const, and Eq. (6.3) is
rewritten in the form [vy, is found from Egs. (6.2)]

6nh CT’, 7] (nh. I/B)

ot er a(r. @)

Let ny, = nu(p), while b = B(r), when t = 0; i.e., ny and B are not related
in any way. Then ny = ny(p —f(r)t), where f(r) = (cTi/er)(d(1/B)/dr),
and, as noted before in solving Eq. (6.3), B can be assumed to be time
independent. In general, f(r) # const and the profile evolves with
"twisting" of the contours (Fig. 11). Already after a few rotations, a
strong nu(r) dependence appears; i.e., ny(B) (the specific form of this
function is determined by the initial conditions). It is easy to see that in
this simplest of cases, this result can also be obtained through the pure ki-
netics: the drift of hot electrons in a nonuniform field along the B = const
curves at different velocities on different curves leads to establishment of a
Pu(B) dependence. Substituting this expression in Eq. (6.4), we obtain

_O_B; cTyp dnp d(l/n., B) |

"

ot er dB ar, ¢

that is, the nonlinear dynamics of B in a plane geometry is purely a matter
of transport and the amplitude of B does not increase. This dynamics,
however, generally leads to "reversal" of the B profile (i.e., to an unusual
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Fig, 11. The evolution of the function ny(B).

filamentation of the current which has been observed in numerical calcula-
tions [57]), after which either collisions of the cold electrons with ions or
the inertia of the hot electrons (finite gyroradius pgy) set in.

Thus, Egs. (6.3) and (6.4) also allow the following interpretation:
they describe the rapid establishment of an equilibrium distribution of the
hot particles in a quasistatic magnetic mirror and its slow evolution
through transport of the field by cold particles (in a highly collisional
plasma the mirror can evolve even when n. = const because of magnetic
field diffusion). This process has been examined for the one-dimensional
case by Gordeev et al. [58]. This analogy allows us to conclude immedi-
ately that in general rapid relaxation results in the establishment of the
well-known equilibrium relation for particles in a mirror, Py = Px(U),
where U = Jds/B and ds is the element of length along a field line [4] (it
should, however, be recalled that unlike in ordinary mirrors, here the par-
ticles are ultimately confined as a result of the jons' inertia, rather than by
the magnetic field). In principle, the way this relationship is established
can be followed analytically by analogy with the plane case, by writing
Eq. (6.3) in a curvilinear coordinate system with one of the axes directed
along B. Nevertheless, in reality this coordinate system is by no means as
simple as the cylindrical system used above. For instance, it cannot be
orthogonal when rot B-B # 0. When the dependence of P, on B is so in-
direct, the nonlinear magnetic field dynamics is no longer purely due to
drift and B may increase (or decrease) somewhat as a result of it, although
even here the reversal effect sets in rapidly.

If the electron motion perpendicular and parallel to B does not un-
dergo a redistribution in the system (it might be aided by, for example, a
low rate of collisions with the ions [5]), then this picture can be general-
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ized by introducing two pressures, P and P,. The dependence of ny on
B is then naturally more complicated [15], but the picture does not change
qualitatively.

It is easy to see that the above discussion referred to a regular flow of
hot electrons along a system of several surfaces (In the isotropic case the
surfaces are [ ds/B = const) with Py, balanced. (Here we are speaking of
an averaged hydrodynamic velocity. The drift trajectories of individual
particles may differ strongly.) When this condition is violated, the ran-
dom motion of the electrons in a certain region makes Py, = const inside
that region because of mixing and, therefore, brings the evolution of B to
an end, i.e., makes 0B/at = 0. Therefore, in a two-component electron
plasma with ny, « n;, magnetic field generation is already strongly sup-
pressed in the stage when g » 1.

When ny, ~ n. the equations for the magnetic field and the electron
density do not separate in time and must be solved jointly. Nevertheless,
separation of a cold component (the "maintainer" of field freezing) is al-
ways formally possible if the curl part of the electric field is orthogonal to
B (for example, if VP LB or va LB), i.e., E; = (1/c)[v, B], and may be
useful even if it appears that nj, « n.. For example, with this approach it is
easy to show that the topology of the magnetic field is conserved (the
Hopf invariant f BAd3r [4]) as the latter evolves (although, it is true, only
when there are no problems with convergence of the integrals at infinity).

The second case, where a field is generated because of the kinetic en-
ergy of the electrons, can, in the simplest variant of a one-component
electron fluid, be referred to as an electron dynamo by analogy with con-
ventional MHD. Here the condition that the energy of the source should
predominate reduces to a simple limit on the characteristic scale length of
the electrons’ motion, a « c/w,, (8 = 0), and the condition that a field be
generated reduces to the presence of an energy flux at large scale lengths.
This flux exists [23] in the simplest two-dimensional problem (B lle,, B-j =
0) but is apparently absent in the more general three-dimensional cases.
This is exactly the opposite of the situation in single-fluid MHD [59].

The more interesting generation of a large-scale magnetic field (a »
Clwpe ) in a cold plasma is possible only when the medium includes some
other components which have a kinetic energy, such as an electron or ion
beam. This corresponds precisely to the term (c/o) rot jp in Eq. (2.10),
which leads in the first stage to a linear growth in B with time [20]. For
the problem with uniformity along ji, this equation simplifies to

B

= rotj, + -
=T, rotj, 1 T AB. 6.5)
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Here energy is collected from the beam as it is slowed down in the
induced electric field. [For u; < v7, and a Spitzer conductivity, friction of
the beam on the plasma electrons and removal of the latter set in, while g
factor (1 — z,%/z2) appears in the term responsible for field generation.]
From a physical standpoint, when a field is generated by this mechanism,
the currents produced by the plasma and beam electrons are separated in
space. This separation can also occur over distances shorter than the beam
radius (a « rp). This happens not only because of the finite conductivity of
the plasma, as in the example considered above, but also because of the
helicon instability in a multicomponent medium (transport of B by an
electron fluid) [9, 60]. Then field generation is accompanied by filamen-
tation of the beam and in order to describe it we must supplement Eq,
(6.5) [when uniformity along j, fails, Eq. (2.10)] with the equation of
continuity and an equation for the dynamics of the beam particles [9, 10,
20, 60]. The resulting system of equations is rather complicated and all
that can be obtained from it is the growth rate for the filamentation insta-
bility. It can be found for the dissipative case using Eq. (6.5) to be y ~
(1/B)cjp/aa, while the characteristic scale length and B are determined
from the condition that the field should have a significant effect on the
motion of the beam particles: a ~ rpvIp/lap, B = jpalc, and I, =
mpc?vp/ep. Thus, y ~ c2/(ca?) ~ ¢2/(ovp2)p/I4p. For development of the
helicon instability it is enough that the generated field should be suffi-
ciently greater than the already existing field and a ~ ryJ/I,/T (where I is the
total current). Here the growth rate is simply y ~ u,/a, where u, is the
displacement velocity of the plasma electrons perpendicular to j, which is
np/n times smaller than the transverse displacement velocity of the beam,
which in turn is on the order of the transverse velocity of the particle
beams, v, ~ vpNITT,; i.e., ¥ ~ (ny/n)(vp/ry) [60].

In many cases, therefore, a description of magnetic field generation in
terms of EMH requires that the multicomponent character of the plasma be
taken into account. This leads to some interesting and nontrivial effects.

7. EMH EFFECTS IN EXPERIMENTS

The simplest example of transport of a magnetic field by a current can
be observed with the aid of a conventional radio receiver: the static known
as atmospheric whistlers or helicons. These waves are created in the
ionosphere and obey the equation
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0B/ot = rot [u, B], (7.1

which must be linearized against a background of By = const and ng =
const (where ng is the electron density) to yield

0B,/0t = rot frot B,, By] = (Byy)rotB,. (7.2)
For a harmonic wave (B; = Bei*r and Bg Il e;)
0B/ot — k,B, [k, B]. 7.3)

The helicity of the waves is clear in this formulation. The role of helicons
in EMH is analogous to the role of Alfvén waves in single-fluid hydrody-
namics. When k; = 0 the frequency of the helicons goes to zero. A
nonzero frequency can be obtained by including the position dependence
of Bg or ng. These waves are referred to as gradient waves and they can
be detected experimentally. For example, transport of a magnetic field by
a current owing to a temperature gradient (the Nernst—Ettingshausen ef-
fect) has been observed in semiconductor plasmas [17]. One concrete
manifestation of this phenomenon was the penetration of a field into a re-
gion where it was excluded by the classical skin effect.

Generally speaking, solid state plasmas represent, on the one hand,
an important and large area for the development of EMH and, on the
other, a good prospect for experimental studies owing to more extensive
diagnostic development. This is primarily related to the absence of
restrictions from above on the characteristic scale lengths and times for
processes. Thus, if the charge of the current carriers (electrons or holes)
is compensated by the lattice, then the motion of a second component can
always be neglected (i.e., c/wp; = =0). Unfortunately, although solid state
EMH effects have already been observed experimentally (see the
references cited above), the theoretical analysis is proceeding rather
slowly. This is all the more unfortunate since the first papers on EMH
[6,7] were concerned with semiconductor plasmas.

The theory of all linear waves is the same, so that the helicons men-
tioned above are hardly a specific feature of EMH. A more specific ex-
perimental manifestation of EMH is the disruption of the symmetries of
single-fluid hydrodynamics. Single-fluid hydrodynamics is symmetric
with respect to the substitution B -+ —B and is insensitive to the direction
of the current. For example, in studies of the reconnection of magnetic
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field lines, devices have been used where initially the current flows only
along a single axis, j,(x, ¥), and the magnetic field lies in the B,(x, y),
By(x, y) plane [62, 63]. (In the UN—Feniks machine the Z axis was bent
into a ring [63].) In single-fluid hydrodynamics this symmetry is pre-
served during the evolution of the field, but including transport of the field
by the current leads to the appearance of a third component of the magnetic
field, By(x, y). Indeed, electrons moving in the Z direction carry a field
line at a velocity which is generally different at different points, so that the
line moves out of the (x, y) plane. In some experiments the bending of
magnetic field lines has actually been observed.

Another example of the disruption of symmetry has been observed in
the constrictions of Z-pinches. In single-fluid hydrodynamics the direc-
tions toward the cathode and anode are indistinguishable, but in the two-
fluid case the direction of motion of the electrons is distinct, so that con-
strictions in which the current flow velocity is on the order of the Alfvén
velocity must be asymmetric. Such an asymmetry has been observed in
many experiments with microscopic pinches and exploding wires.

The evolution of the magnetic field in the constrictions is described by
an equation like the Burgers equation for the discontinuities in the mag-
netic field (current layers). In a study of exploding wires by currents,
Aivazov et al. [61] provide a direct link between observations of annular
formations which emit in the x-ray region and this phenomenon. The ratio
of the current flow velocity to the Alfvén velocity in these experiments
was ufv4 = 3. A similar situation apparently held in the corona of a radia-
tively cooled wire [64].

It might appear that in devices with a small current flow velocity (4 «
va), the magnetic field configuration should be strongly distorted over the
time t© = L/u required for the electrons to move a distance equal to the size
of the device. This, however, is not so. The equation for this evolution
has the form

0B/0t = rot [j/(ne), B].

There is no evolution if the vector [j/(ne), B] has a potential. In equilib-
rium configurations, [j, B] = VP is a vector with a potential and, if we
assume additionally that the density n(r) is constant on the magnetic sur-
faces, as is usually the case, then the vector [j/(ne), B] also has a potential
(see Chapter 5 on this topic). For this reason, transport of the magnetic
field is impdrtant primarily for inertial CTR, where equilibrium does not
necessarily hold. Without affecting the equilibrium conditions, the trans-
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port effect does influence stability. The simplest examples are provided
by the cylindrical Z-pinch [11, 46].

We mention the phenomenon of anomalous electron heat conduction
in tokamaks because of its great importance. Ordinary electron hydrody-
namics offers a poor description of it, although we believe the prospects
for EMH have not been exhausted in this area. Since there are no reviews
on this topic, we can only recommend original papers [65-67].

The theory of plasma circuit breakers, used to steepen megampere
current pulses with switching times of 10-5-10-8 sec, promises to become
an important area of application for EMH [68, 69]. The increased resis-
tance of a circuit breaker is associated with a drop in the plasma density so
that the range of densities at which EMH works is always reached:

M¥Ze* > na® > mc¥/et. (7.4)

Here a is the characteristic size and n is the density. Nevertheless, this has
not been noted by most authors and they "match" the region na? »
Mic%/Ze? with the region na? « mc?/e2. In the meantime, including trans-
port of the magnetic field by the current leads to the appearance of such
specific phenomena as EMH resistance (Chapter 4). The experimentally
observed [69] evolution of the magnetic field in such systems is extremely
similar to transport of B along the contours with nr2 = const (Chapter 5).

The observed focussing of the current in high-current diodes [70] can
be explained in terms of EMH [11]. At least the range of parameters re-
quired for applicability of the theory clearly shows up along the path from
the cathode to the anode.

There are also a whole range of plasmas for which the EMH ap-
proximation may be satisfied, but diagnostic difficulties and the as yet in-
sufficient popularity of EMH make it impossible to test the agreement of
theory with experiment. These might include collisionless shock waves,
laser flares, and the plasmas in many relatively small devices. Thus, fila-
mentation, which is well known in laser flares [56], has also been ob-
served in high-current diodes [71]. One possible explanation is based on
the existence of fast electrons (of which there is never a lack during pulsed
plasma heating [72]) and makes considerable use of EMH effects [10,
73]. We also note a method proposed by Petviashvili [25] for modelling
plasma vortices in bowls of water. The experimental results obtained in this
way [29, 30, 74] are basically in agreement with the theory (Chapter 3).

The Hall effect has been used to explain the sliding of the discharge
along the anode observed in the plasma focus [75].
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CONCLUSION

It can hardly have slipped by the attentive reader that the substantia]
nonlinearity in the phenomena discussed here is related to the anomalously
low frequency of the linear oscillations, rather than to the large amplitude
of the perturbations. These frequencies were low since we were examin-
ing perturbations that are constant along the magnetic field. In many
plasma devices the magnetic field has shear, and the perturbations can
only be approximately constant along the field. The nonlinear theory of
such perturbations has not yet been constructed but will obviously be de-
veloped over the next few years.

Another important area of research is the application of EMH theory
to the interpretation of experiments. Up to now this interpretation has
been based either on ordinary single-fluid hydrodynamics or on electron
hydrodynamics with the inertia of the electrons included but the intrinsic
magnetic field of the current left out. Between these two cases lies the re-
gion of applicability of EMH, which occupies a large range in the electron
density [on the order of M/(Zm)].
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