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The resistive tearing mode is analyzed in the nonlinear regime; nonlinearity is important principally in the
singular layer around k - B = 0, In the case where the resistive skin time 7, is much longer than the
hydromagnetic time 7, exponential growth of the field perturbation is replaced by algebraic growth like
¢* at an amplitude of order (5 /7,)*°. Application of the theory to the unstable tearing modes of a
tokamak with a shrinking current channel yields good agreement with the observed amplitudes of the

m > 2 oscillations. The analysis excludes the very long wavelength mode, and m = 1 in the tokamak, for

which the “constant-{” approximation is invalid.

1. INTRODUCTION

The nonlinear phase of the tearing mode' is of
interest in many connections,® not the least in the
interpretation of the magnetic perturbations observed
in tokamaks.?

Here, we consider those nonlinear effects that are
important near the singular layer of the tearing mode.
In accord with an earlier suggestion,! we find that
sizeable nonlinear eddy currents arise, producing
forces which oppose the flow pattern and which quickly
assume the role played in the linear theory by the
inertia. At this point the exponential growth in time
is replaced by algebraic growth on a much slower
time scale.

The simplest configuration subject to tearing-mode
instability is the sheet pinch. For a sheared equilibrium
field By~B, x the structure of tearing mode perturba-
tions near the singularity at x=0 is shown in Fig. 1.
If the plasma were perfectly conducting and incom-
pressible, the area within a surface of constant flux
¥=B,/x%/2 would be invariant. With the addition of
merely a perturbation B,=B, sinky so that y=
B,'2%/24- (B./k) cosky, the flux outside a y surface
of fixed area changes by an amount &)= — B.?/8k%,
at least far from the separatrix. This flux change is
forbidden, and must be removed by the appearance of
y-independent eddy currents 84,, which will be sharply
peaked for small x. This picture is not entirely correct,
however, since the resistive singular layer of the tearing
mode is-narrower than the skin depth for the time
scales of interest, so that the eddy currents are, in
fact, resistively relaxed: nonetheless, they provide the
dominant nonlinear effect near the singular layer.

The perturbation B,= B;, sinky growing with growth
rate v induces a current j.= (vB.,/kn) cosky which
provides the x-direction linear forces —4.B,’x indicated
on Fig. 1. These drive the flow pattern of narrow
vortices which is shown. Moving away from the
resistive singular layer the induced electric field
produces a flow v,=—E,/B,=— (yB.1/kB,/x) cosky.
For incompressible flow, as would be implied for
instance by a strong equilibrium field B,, this requires

a strongly sheared flow ¢,(x) over the layer x~wxr
i.e., the narrow vortex pattern shown, with ov,~
v,/ kxr~vBu/k2B,/ 27, That this shear flow be drivel
against inertia by the torque produced by the linea
forces requires ypvy/xr~kjaB,/xr, which gives xy~
(vom)V4/ (kB,/)'2, thus determining the width of th
singular layer. The mode will grow if the perturbe:
currents produce magnetic perturbations By= B, cosk
which correctly match with those in the outer regions
i.e., if the outer perturbations have a positive jumy
in By. This is the standard linear tearing-mode picture

Next consider the effect of the nonlinear forces. 1
is clear from Fig. 1 that the second order forces j.B
do not contribute to the net torque driving the vorte:
flow. Assuming that the resistive decay of y-independen:
eddy currents is rapid on the time scale of interest
(the linear tearing-mode growth time is indeed long
compared with the skin time appropriate to the singular
layer), then the vortex flow will induce second-order
y-independent eddy currents §7,= —v,B,/9 of the form
shown in Fig. 2, and of magnitude 8j,~~B.%/ k2B, nxr®.
The y-direction third-order nonlinear forces 87,B.,
indicated on Fig. 1, then provide a torque opposing
the vortex flow. As the amplitude grows these forces
will replace the inertia as the dominant mechanism
opposing the growth of the mode. That the torque
produced by the linear forces balances the opposing
torque of the third order forces requires kj.B, xr~
87:Ba/27~YBo’/ k2B, nxr®, which with ja~vBa/ky
gives xp~(Ba/kB,)"?; thus, in the nonlinear phase,
the singular-layer width is comparable to the width
of the separatrix or ‘“‘magnetic island.” The detailed
analysis which follows shows, however, that growth of
the mode is not stopped, but merely drastically slowed,
in the nonlinear regime.

II. ANALYSIS

We introduce a flux function ¢ such that B,=
—8y/dy; By=0¢/dx. In terms of ¢ the field diffusion
equation dB/6t=V x (vx B—7j) may be written

A

T,,;+V'V¢=11jz (1-)
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F1e. 1. Tearing mode structure in the singular layer. A per-
turbation B, = B, sin ky of the equilibrium field B, = B,’x produces
flux surfaces which include the magnetic island shown. The vortex
flow carrying plasma into the magnetic island is, in linear theory,
driven against inertia by the linear forces 7.1 B, indicated by single-
headed arrows. In the nonlinear theory, second-order y-inde-
pendent eddy currents 8j, arise; these produce third-order forces
57.Bn, indicated by triple-headed arrows, which oppose the
vortex flow, and which replace the effect of the inertia as the
mode grows.

together with
V&) =4xj,. (2)

The strong uniform field B, implies incompressibility
of the velocity v= (E,/B,, —E./B,, 0): thus, we may
introduce a stream function ¢ such that v,=—3a¢/dy;
y=23¢/0x. There remains the equation of motion:

p(0v/3t+v-Vv)=—Vp+jxB. (3)

In the limit of strong uniform B., it is appropriate to
eliminate the unwanted components j, and j, by
operating on Eq. (3) with e,- VX and using V-j=0.
Assuming the density p to be uniform and unperturbed
(a reasonable assumption within the narrow singular
layer), we obtain

9
o (a_u; +v-v=w,) =B.vj,, (4)
where w, is the vorticity
w,=(V xv),= V4. (5)

We take a fundamental linear mode with ¢ =y cosky,
and we expand the unperturbed field B,(x)~B,x
around the singular surface taken to be at x=0. Within
thesingular layer, we may extend the familiar “constant-
¥ approximation! to all the nonlinear harmonics
except the zeroth harmonic:

v(x, y, 1) =do(x)+¥(, 1),
‘;(yr t) = an‘zn(t) cosnky.

(6)
(7N

We recall that linear tearing modes are slow growing
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with respect to the resistive skin time appropriate to
the singular layer of width xr

8/ 9t<n/4mxs. (8)

We may assume that this continues to hold in the
nonlinear regime. It follows from this assumption that
in Eq. (6) we may use for yo(x) its unperturbed value:
Yo(x) =B,'2%/2. Consider the corrections &y to the
zeroth harmonic; from the above assumption together
with Egs. (1) and (2), we have ndyo/xri~v,kfr~
dkdr/ 2~ (3Y5/81) / B, 2r? implying that &fo/By'#r*<
(/B xr%)?, shows that &y may indeed be neglected
in Eq. (6).
Substituting Eq. (6) into Eq. (1), we obtain

oy (W) Blomri
-\ y X=N]2z— 0] 20,

9
ot ay/y ©)

where we have used dyo/di=1n0j.0. For simplicity, we
first suppose that the unperturbed quantities 7o and
j are essentially uniform within the singular layer,
so that y=mn. We also restrict ourselves, first, to the
case where the inertia may be neglected. Equation (4)
then becomes B Vj,=0, implying

Je=7j(¥).

We may eliminate ¢ from Eq. (8) by dividing by x
and averaging over y at constant y; we obtain

J2(¥) =ja

(10)

%) /(D/'—\Z(y, HI (1)

where {f),= [®* fk dy/2x.

As in the standard tearing-mode treatment, the
perturbed fields in the regions outside the singular
layer would, in the plane case, be solutions of the
linearized versions of Egs. (2) and (10), i.e., for the
nth harmonic ¥,

62\073 41I'¢n 6j 20
—n*k n = 4 ‘zn = .
PO L

+97!

(12)

Fi16. 2. Form of the second-order y-independent eddy currents.
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The outer solutions are, of course, strongly affected
by the geometry, and the plane case is not rep-
resentative of, say, cylindrical geometry.®® For our
stability analysis, however, all that we require of the
outer solutions ¢, are the discontinuities in their
logarithmic derivatives across the singularity, i.e., the
quantities

An' =[98 Inyn/3xJo"F

We must match these logarithmic-derivative discon-
tinuities in the outer solution to those arising asympto-
tically from the solutions within the singular layer. We
substitute Eq. (11) into Eq. (2), and perform the
matching for each harmonic (approximating Vi~
0%,/ dx* within the singular layer) :

A =8 <cosnky f J2 dx>

- sl G,

(13)

cosnky

(‘0._—,;)1/z>y/((¢—¢)‘”2),,. (14)

A similarity solution of Eq. (14) exists in which
§=£¥; writing ¢, =2¥, and y=£¥, we have

v 327 © ¥
A= ——— f ¥ (———
71(231/)”2 ¥min (‘I’_‘I’)ll2 v

x <%’§f}yuz>, / ((F=%)-7), (15)

and multiplying by ¥, and summing over #, we obtain
the quadratic form

327 ® i
B,

¥min

><<W> / (@=m,. (1

In the case where the fundamental is linearly un-
stable (A/>0), but all harmonics are relatively
strongly stable (A,'/A/<<—1, n>2), Eq. (16) shows
that a solution exists in which the fundamental dom-
inates (| ¥y [>>| ¥ |, #>2). Returning to Eq. (14),
settmgl; ¥1 cosky, and scaling the integration variable
¥ to 1, we obtain

A=

Z Anl“i"n2 =

16r4  ad,

17(231/)1/2—5;, (17)
where

ky
A= dW< cos > / _ —1/2
- (W~ cosky)1i2 (W —cosky)™%)y.
~0.7.
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Integrating Eq. (17), we obtain
J2=0.25]* (nA( B, M2/4x) dt
~0.25(nA{ B,/ V?%/4x), (18)

which shows that, in the nonlinear phase, the ex-
ponential growth of ¢, is replaced by growth like £,
approaching finite amplitude only on the skin time.
The singular-layer width xy, which is now the “mag-
netic-island” width xp=2(Jy/B,/)"?, grows like ¢
It is easy to verify that the assumption (8) remains
valid until the mode reaches finite amplitude.

We may generalize these results to include the case
of a nonuniform resistivity no(x), and a nonuniform
current density j.o(x) within the singular layer. We
will assume, however, an equilibrium on the resistive
time scale: no(#)7o.(x) =const. We also assume the
classical dependence of the resistivity on electron tem-
perature: noc 7732, Within the singular layer, the
temperature will be determined by parallel and per-
pendicular thermal conduction:

0=V, -5, V, T+B-V[x(B-VT)/B]. (19)

In the long mean-free-path regime, the parallel thermal
conductivity is very large, implying B- VT =0, i.e.,

T=T®).
Equation (19) imposes a constraint on the function
T(¢), which may be obtained by noting that B-v=
B/x(3/9y)y, dividing Eq. (19) by », and averaging
over y at constant y:

@IV Lk VT )=

Within the singular layer «, is essentially constant,
and the 9/8x term dominates in V; using 9/0x=
B,/x3/3Y, and expressing x in terms of ¢ and y from
Eq. (6), we have

9 7 1/2 g —
ﬁ{@—w(y,t)my a1,/} 0.

This has the solution 87/dy = const/ (¥ —¥&(y, ) J/2),;
the constant may be determined by assuming that
the appropriate boundary condition far from the
singular layer is that the heat flow be held fixed [i.e.,
T'(x) fixed]. We then obtain

Ty'(0) ¥ ay
(0 > ;
T(¥)= OF @Byl =io, 07,
V= (¥>)
(0), ¥<vs),

where {, is the separatrix. The resistivity follows:

o' (0) f" dy
(2B/)2y, (v —¥(y, ) 12),
(¥>v)

(p<uv?

7(0)+
n(¢) =

77(0>:
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Including these corrections on the right-hand side of
Eq. (19), and using n'/m0=—j.'/f0, we find that Eq.
(11) must be modified in that the first term on the
right becomes

J='(0) / v dy

IO+ By, TG, DT

(¥>¥s)
(21)
7=0(0), (¥<ths).

The extra terms in j,(y) that are sinusoidal in vy are
odd on opposite sides of the separatrix and, thus, make
no contribution to Eq. (14); it follows that our results
are unaltered by these new terms.

It is important to note that our nonlinear treatment
is a little different from standard perturbation theory.
Even if the fundamental J; dominates in ¢, so that
the rather simple result expressed in Eq. (17) holds,
inspection of Eq. (11) reveals that the perturbed
current density in the singular layer contains all
harmonics. Standard pertrubation theory does, nonethe-
less, give a qualitatively correct solution, in which the
plasma inertia may be carried along. With a perturba-
tion expansion 7,=j.o+ Ju cosky+87., the second-order
zeroth-harmonic term 85,0 will be given by the second-
order zeroth-harmonic component of Eq. (1), in which
d%o/0t may be neglected because of (8). We obtain
8j0= — (kY1/2n) 3¢/ dx, where ¢=g; sinkx is the first-
order stream function. Through third order, the terms
like sinky in B-Vj, are —kB, xJu+k¥198j.0/9%. Sub-
stituting into Eq. (4), keeping only the linear terms
from the inertia, and approximating Vi¢,~d%hdx2, we
obtain

] k71;12)62¢1 .
— NI kB,
(”at+ I / 0a v &
kB, x (87
=——’—’3(—‘-”—‘ —kBy'x@), (22)

n

the latter after using the first-order equation (1).
Equation (22) explicitly reveals, on the left, that the
nonlinearity replaces the inertia as the mode grows:
without the nonlinear term, Eq. (22) reduces to the
standard linear-theory treatment of the singular layer.!
The critical amplitude at which the (exponentiating)
linear solution ceases to be valid can be obtained by
comparing the two terms on the left in Eq. (22):

B.1/B,/ a~(2npy) %/ B/ a~ (&' a) 5 (ka) V(15 /75) 45

(23)
where rg=4ma?/n, ta= (4mp)2/B,, v=0.5(A'a)¥5X
(ka)2/5rg35ry2/5 (the linear growth rate), and e is

some scale length. Since 7g/7s<&1, this critical
amplitude is very small.
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III. APPLICATION TO THE MAGNETIC
PERTURBATIONS IN TOKAMAKS

In the constant-current phase of tokamak discharges,
small amplitude magnetic perturbations are observed
on pickup loops placed outside the plasma column.?
The observed modes are helical: they have azimuthal
mode numbers m of 2-4 (although m=4 is only rarely
seen); the toroidal mode number # is always unity.
During a discharge, the sequence of onset is m=4, 3,
and then 2, with higher amplitudes at lower m. The
modes are slow-growing and long-lived; typically, the
m=3 oscillations persist until the m=2 oscillations
begin. An interpretation of these perturbations as
resistive tearing modes has been supported by cal-
culations of the linear stability criteria® (i.e., calcula-
tions of A’") for the current profiles typical of present
tokamaks. In this section we show that the perturba-
tion amplitudes, and their slow growth, may be ex-
plained by the nonlinear tearing-mode theory presented
above.

To define the amplitude of the mode we use the
half-width of the magnetic island: £=2(Jy/B,/)"2
Allowing the “equilibrium” to vary slowly in time,
Eq. (18) then gives

£=(0.5/B,") [*(nA'B, 2 /4m) dt. - (24)

We can change to a cylindrical geometry for the
equilibrium simply by substituting

, 6(&)
B/—r —{—]}.
or\r

Values of A’ have been calculated for a variety of
equilibrium current profiles j,(r) typical of tokamak
experiments.® We employ the profile which was de-
signated “rounded model” in Ref. 6:

Jo(r) =Tred/m(rs*+r4)32 Bo(r) =2Ir/(re+r") 12 (25)

Here, [ is the total current, and r, is a measure of
the radius of the current channel. For this profile, the
“safety factor” q(r) =rB,/RBy is given by

q(r) =q(0) (1+r*/rs*)1%;

For a perturbation with azimuthal and toroidal mode
numbers m and », respectively, the singular surface 7,
is where

g(0) =2IB¢/R. (26)

m/n=q(r,) =q(0) (1+7.4/rs*) 2. (27)

Assuming that the equilibrium has 5(7)7.(r) = const, we
have

1(r) =n(0) (14-74/r")*".

We suppose, as is typical of tokamak discharges in
their constant-current phase, that the current channel
is shrinking due, perhaps, to a thermal instability,” or
to neutral gas and impurity effects.® The time scale
of the shrinking is the resistive skin time; specifically,

(28)
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we assume that the quantity r, in Eq. (25) decreases
according to

d(rd) - Cn(ro)
dt 4z '’

where C is some numerical constant of order unity,
which can be chosen to fit Eq. (29) to the known rate
of shrinking of the current profile. We may apply our
results, expressed by Eq. (18), to determine the mode
amplitudes in this case, in which onset of a given
(m, n) mode occurs when the singular surface for the
mode emerges from the axis, i.e., when ¢(0) falls below
m/n. As the current channel shrinks further, the
singular surface moves outward in 7, and the actual
plasma elements involved in the tearing-mode vortex-
flow change. The required flow can arise, however,
since plasma inertia is negligible on the time scales
of interest. Strictly, if the flux is still to be measured
so that ¢=0 is the singular surface, Eq. (1) should
be corrected for the relative velocity between the
singular surface and the plasma by the addition to v
of a term v,~ (n/4wr,) ; such a correction has a negligible
effect on Eq. (9), however, in view of the constant-y
approximation within the singular layer (estimating
8/0t~n/4xroxr).

For a given (m, n) mode, it is convenient to trans-
form the integration variable ¢ in Eq. (24) to the
position of the singular surface r,: from Eqgs. (26),
(27), and (29) we have

(29)

Cn(re) dln(r) dlng(0) 2x3 dx,
47y e? dt dt 1+at dt’
Xe=73/10. (30)
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F16. 3. Values of 7oA’ as a function of the position of the singular
surface x,, for three locations x, of the conducting shell (repro-
duced from Ref. 6).
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F1c. 4. Mode amplitudes as functions of time for a constant-
current tokamak with shrinking current channel, and three loca-
tions x, of the conducting shell. Amplitudes are expressed by
the half-widths & of the magnetic islands in terms of their radii
r,. Time is expressed by the “safety factor” on axis ¢(0). Ampli-
tudes are computed taking C=4 in Eq. (29); otherwise scale ¢
like C1.

Substituting Eqgs. (28) and (30) into Eq. (24):

£ 0.35(14-x4% = (Alrg)asd
S . (i aiyn dx,.  (31)

Values of A'ry as a function of x, may be found in
Ref. 6, and are reproduced in Fig. 3. We insert these
into Eq. (31), evaulate the integral numerically, and
thus obtain values of /7, as functions of the position
x, of the singular surface for the mode being considered.
The results are made more transparent by transforming
the independent variable x, to ¢(0), using m=
g(0) (14,412, since ¢(0) is a rough (reverse) measure
of time. When this has been done, the results® are as
shown in Fig. 4, which has been calculated for C=4;
for other values of C the amplitudes £/7, simply scale
like C-1.

The relative amplitudes of the m=4, 3, and 2
modes shown in Fig. 4 are in good agreement with the
observations. The absolute amplitudes of the modes
are a little larger than the observations would suggest,
but the absolute levels in our theory depend upon our
choice of C=4; this choice was made by comparing
Eq. (29) with the typical 60-kA ST-tokamak dis-
charge, in which the current channel shrinks from
ro~10 cm to 7¢~06 cm in about 10 msec with T,(ry)~
750 eV and 7n/9spy~4 where 5s, denotes the Spitzer
resistivity. Figure 4 reveals one further interesting
consequence of our theory: there is a small interval of
time during which both the m=3 and m=2 modes
are present; this occurs despite the fact that, according

7. Cxg?
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to the linear stability criteria,® the =3 mode becomes
stable before the onset of the m=2 mode. The reason
is clear from Eq. (24): nonlinearly, the m=3 mode
takes a certain time to relax after A’ has become
negative. Figure 4 reveals that this relaxation of the
m=2 and 3 modes after linear stability is achieved is,
typically, aided by a close conducting shell. (Our
results with a close conducting shell at r, are offered
only as a rough indication of the effect since, in our
model, xp=ry/r, remains fixed and the position of the
shell moves with 7o; thus, the case 2= 1.33 contemplates
a shell unreasonably close to the shrunken current
channel.)

IV. DISCUSSION

It is obvious that our nonlinear analysis is restricted
to that class of tearing modes for which, in the linear
theory, the “constant-$” approximation is valid for
the singular layer. At least in the limit of large mag-
netic Reynolds number 7g/7g, this class includes all
modes with ka~1, where a is some typical scale length
in our x direction, and, in particular, it includes m>2
modes in tokamaks. However, as was pointed out in
Appendix D of Ref. 1, if arbitrarily long wavelengths
in our y direction are permitted, the fastest growing
linear mode has ka~(7u/75)"*<1. The large growth
rate arises due to the fact that such a mode would

'H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids
6, 459 (1963).

3G. Van Hoven and M. A. Cross, Phys. Rev. A 7, 1347 (1973).

3S. V. Mirnov and L. V. Semenov, in Plasma Physics and
Controlled Nuclear Fusion Research (International Atomic
Energy Agency, Vienna, 1971), Vol. II, p. 401; J. C. Hosea,
C. Bobeldijk, and D. J. Grove, in Plasma Physics and
Controlled Nuclear Fusion Research (International Atomic
Energy Agency, Vienna, 1971), Vol. II, p. 425.

‘B. B. Kadomtsev and O. P. Pogutse, in Reviews of Plasma
Physics, edited by M. A. Leontovich (Consultants Bureau,

s New York, 1970), Vol. 5, p. 346.

B. Coppi, J. M. Greene, and J. L. Joh i

b 6, 101 (1966), nson, Nucl. Fusion

H. P. Furth, P. H. Rutherford, and H. Selberg, Phys. Fluids

P. H. RUTHERFORD

be only weakly stable (indeed marginal in the limit
ka—0) in perfect-conductivity theory. The “constant-
¢ approximation fails for this long wavelength
mode,! as does our assumption (8). That this mode
might be able to exponentiate to large amplitudes,
before nonlinear effects restrain it, is demonstrated
by a recent computational treatment? in which, by
appropriate choice of boundary conditions, this is
the principal mode excited; (note, however, that the
choice? rs/rg~10? does not permit a very clear distinc-
tion between the modes with ke~1 and the fastest
growing mode). This long-wavelength mode in the
slab geometry is analogous to the m=1 mode in the
tokamak. Because of the cylindrical geometry, the
theoretical distinction between m=1 and m>2 is
more pronounced, however, since m=1 is not merely
marginal, but actually unstable, in perfect-conductivity
theory. Although the nonlinear theory of this m=1
instability, assuming perfect conductivity, has been
worked out,! the theory with resistivity remains to be
done.
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