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§1. Cooperative Phenomena in a Plasma

It is well known that relaxation processes in a highly nonequilibrium
collisionless plasma frequently involve cooperative plasma oscillations that
result from various plasma instabilities. These oscillations can have an im-
portant effect on plasma transport phenomena and it is this aspect of the
phenomenon which is of greatest interest from a practical point of view, an
immediate example being the "anomalous® diffusion of hot plasma in mag-
netic-confinement devices [1]. Various aspects of this complicated problem,
which is related to the theory of stability with respect to small perturbations,
have been investigated extensively and in some cases the foundations of a
nonlinear approach have already been laid.

Another interesting example of cooperative plasma phenomena is fur-
nished by shock waves. In ordinary gas dynamics the minimum thickness of a
shock front is usually at least of the order of the mean free path of the mole-
cules in the gas; on the other hand, as a result of cooperative phenomena
there are plasma shock waves in which the thickness of the shock front is ap-
preciably smaller than the mean free path. This means that even a highly
rarefied plasma is more closely related to a gas ~dynamic medium than to a
Knudsen gas.

It is the purpose of this review to Present an integrated description of
the basic concepts and results of the theory of cooperative phenomena in col-
lisionless plasmas. Our primary objective is to obtain a qualitative description
of these phenomena and we shall be mainly concerned with the physical sig-
nificance of the various approximate models that will be analyzed,

1. Because of the long range of electrical forces the interaction be -
tween particles in a plasma is not so much in the nature of a collision as it is
a reflection of the effect of the so-called self-consistent field, A plasma
that can be regarded as an ideal gas (the criterion for the application of the
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"gas" approximation is na® s 1, where n is the particle number density and
a is the Debye radiug can be analyzed by kinetic -theory methods; this means
that the distribution function for the ions (electrons) f i,e (V. 1, t) satisfies the
Boltzmann-Vlasov equation

&V IH, B =st(), &

where [H, f] is the Poisson bracket and St ( f) is the collision term.

The self-consistent field in Eq. (1) includes terms containing the elec~
tric and magnetic fields, which satisfy Maxwell's equations. The charge den-

sity and the current density are written in the form @ = Y, e, [ f,dv and
f= 2 ekf vfdv, where the summation is taken over all particle species in

the plasma and collisions are introduced by means of the collision integral
St(f), the actual form of this integral being determined by the composition of
the plasma. Evidently the effects of "close"collisions and the effects due to
the self-consistent field must be entirely different as far as the plasma dy-
namics problem is concerned. Thus, collisions must provide a mechanism
for relaxation processes (the establishment of a local Maxwellian distribution,
the exchange of energy and momentum between ions and electrons, and so on)
each of which can be characterized by some characteristic time r (the col-
lision time). On the other hand, the self-consistent field is evidently respon-
sible for the dispersion properties of the plasma,i.e., this field determines the
features of the characteristic oscillations and wave properties of the plasma.
In the simplest case (no magnetic field) the basic dispersion parameter in a
plasma is the electron Langmuir frequency wy (wi= 4rne?/m, e is the charge
of electron, m is its mass, and n the density). In most cases of interest the
plasma oscillation frequency is so high that wr > 1, that is to say, the plas-
ma exhibits two different time scales Tand T = 27 /w (the oscillation period
T << 7). Hence, if the oscillation processes are of primary interest then the
close collisions can be neglected and the collision integral in Eq. (1) can be
omitted. This approach to the problem, which is called the "collisionless”
plasma theory, makes it possible to simplify a large number of problems in
Plasma dynamics, This theory describes phenomena which occur in

times much smaller than the mean free time 7, the point of departure being
the Vlasov equation (self-consistent fields and no collision integral):

J
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Since entropy is conserved in the absence of collisions (this follows from the
H-theorem), it would appear that the collisionless plasma theory should be
capable of describing isentropic processes only, and that it should not be ap-
plicable to irreversible relaxation processes in a plasma, i.e., phenomena such
as the establishment of thermal equilibrium (randomization), and so on. How-
ever, it is found experimentally that relaxation processes do in fact occur in
times much smaller than r, that is to say, under conditions for which the col-
lisionless theory should apply. These anomalous dissipation properties of a
collisionless plasma are reminiscent of the situation in the ordinary hydro-
dynamic theory of turbulence. The characteristic time associated with ir-
reversible diffusion of velocity is of order

2

T, ~ Rv i (3)
where R is a characteristic dimension and v is the kinematic viscosity. In
point of fact, however, the actual relaxation time is found to be much small-
er: the development of instabilities leads to turbulence, i.e., reduction of the
characteristic scale sizes, with the attendant reduction in mixing time. Two
factors play important roles here. First, there is the existence of a very large
number of degrees of freedom — the so-called fluctuation scales in the theory
of turbulence; these degrees of freedom interact with each other by virtue of
nonlinear mixing effects and it is this interaction which is responsible for the
time irreversibility that arises when one goes from the dynamic description
to the statistical description of the system, that is to say, from the Navier-
Stokes equations to the equations that characterize the averaged motion of
the fluid.*

Second, as the energy associated with the motion is fed into smaller
and smaller scale sizes the role of the viscous effects becomes more im-
portant because of the higher spatial gradients; the quantity R in Eq. (3) is
then replaced by the characteristic scale sizet of the fluctuation ! and when
I << R the velocity diffusion time is reduced sharply.

In developing the analogy between hydrodynamic turbulence and
anomalous dissipative processes in a collisionless plasma one can distinguish
two important classes of related effects.

*For example, the system consisting of the infinite number of coupled equa-
tions for the velocity moments.

THowever, the fluctuation scale in hydrodynamics, 7, is never smaller than
the mean free path A.
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1. The collisionless theory describes various kinds of plasma oscilla-
tions and waves. Since a plasma is frequently unstable the amplitudes of these
oscillations increase rapidly and the nonlinear interaction between various
modes of oscillation corresponds to the interaction between the fluctuation
scales in hydrodynamics. The number of different modes in a plasma can be
very large* and it is then appropriate to use a statistical description rather.
than a dynamic description. Thus, as in hydrodynamic turbulence, irreversible
processes are possible even in a collisionless plasma.

2. Electric and magnetic fields associated with the plasma oscillations
cause pronounced local changes in the particle velocity distributions. These
changes occur because any wave of the form exp i(wt -kr) will interact
strongly with the so-called "resonance” particles,i.e., particles whose velo-
cities are approximately the same as the phase velocity of the wave v~ w/k.
This interaction results in the formation of large gradients which are invelocity
space, rather than in ordinary physical space. Collisions between charged
particles correspond to a collision term DA f, where D is the diffusion coef-
ficient in velocity space; this term is reminiscent of the viscosity term in the
Navier-Stokes equation (but in velocity space). In the present case the pre-
dominant collisions are characterized by small-angle deviations, i.e., small
changes in velocity. Thus, although analogy can be established with hydro=
dynamic turbulence, this analogy is more or less formal since the viscosity in
ordinary physical space (hydrodynamics)is the analog of a "viscosity" in
velocity space (plasma).

The theory that describes these anomalous effects in a plasma is usually
called the theory of cooperative phenomena since this designation emphasizes
the fact that the basic role in these phenomena is played by plasma oscilla-
tions and waves, which are essentially "cooperative" motions of the plasma
particles. Our analogy with hydrodynamic turbulence provides an indication
of the nature and scale of the difficulties that can be expected in a theory of
cooperative phenomena in a plasma. Indeed, the analysis of cooperative

* The quantity N, the number of degrees of freedom of the Langmuir oscilla-
tions in a plasma,can be estimated as follows: in a unit volume the number
of modes is given by

where k is the wave number.
It is well known that kyax ~ 1/a for plasma oscillations. Consequently

N~v/a 8, a number which, by definition, is much larger than unity.
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phenomena in a plasma is complicated still more by the fact that the particle
velocity distribution function does not depend on four variables (r, t) as in
hydrodynamics, but on seven variables (r, v, t).

The fundamental problem in the theory of cooperative phenomena is
that of formulating the kinetics of nonequilibrium processes, i.e., the processes
by which thermodynamic equilibrium is established in the plasma. If the
initial state of the plasma is far from equilibrium the transition to equilibrium
is not monotonic, but is characterized by the strong excitation of plasma os-
cillations as a consequence of instabilities.*

A theory of cooperative plasma phenomena should be able to provide
the characteristic times for these transition phenomena. The strong random
oscillations characteristic of these transition processes have an effect on
transport phenomena such as diffusion, thermal conductivity, etc., and it is
this aspect of the problem which is of greatest interest as far as practical ap-
plication is concemed. For example, investigations of controlled thermo-
nuclear fusion reactions are, for the most part, based on the notion of thermal
isolation of the plasma by magnetic fields. However, equilibrium plasma
configurations in a magnetic field are frequently found to be unstable. The
instabilities can cause a marked deterioration in the magnetic thermal isola-
tion and a significant increase in the flow of heat and particles to the walls,
as a result of cooperative phenomena. A large quantity of experimental data
concemning these effects has been accumulated in the last few years. How-
ever, it should be noted that the "anomalous” loss of plasma to the walls is
frequently not due to cooperative plasma phenomena such as those described
here, but rather to ordinary magnetohydrodynamic instabilities. It is, in fact,
difficult to draw a sharp line of demarcation between the cooperative
plasma effects and turbulent effects of magnetohydrodynamic origin; the
situation is even more complicated because sometimes a collisionless plasma
(in which the mean free path is very long) can be described with good ac-

curacy by equations that are reminiscent of the usual magnetohydrodynamic
equations.

2. An examination of the literature concemed with the dynamics of
collisionless plasmas indicates that a number of completely different mathe-
matical models have been used to analyze this problem. The most general
approach has been to use the kinetic equation with self-consistent electric
and magnetic fields. However, this approach is rather complicated and the

*Even a small deviation from thermodynamic equilibrium is frequently suf-
ficient to produce an instability.
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"hydrodynamic" equations are frequently used to describe a plasma (separate
equations for the electrons and ions, especially in the analysis of problems
arising in connection with oscillations and stability). Although the concept of
hydrodynamics in the absence of collisions is not easily justified, this approach
has been found to yield results that are quite reasonable in many respects.

As an example, let us consider the propagation of a wave in a plasma in
the absence of a fixed magnetic field. If the phase velocity satisfies the con-
dition w/k » (T/M)"/ % the thermal motion of the particles is unimportant
and it can be assumed that all of the ions and electrons at a given point in
space move with the same velocity. In this case one simply uses the equa-
tions of motion for each particle species. In the Eulerian coordinate system
this formulation of the problem is the zero-temperature hydrodynamic ap-
proximation. However, if one is interested in corrections due to the small
thermal velocity spread the correct results (i.e., results that coincide with the
kinetic results) are obtained by adding terms in the hydrodynamic equations
to take account of the pressure gradients Vp (for the ions and electrons); p is
assumed to be governed by an adiabatic relation with specific-heat ratio y = 3.
This choice is not unreasonable: If there are no collisions each degree of free-
dom is independent of the others so that y = 3 as in the case of one-dimen-
sional motion. The simplified hydrodynamic approach can also be improved
in another particular case. Let us assume that the phase velocity w/k is ap-
preciably greater than the ion thermal velocity (Ti/M)]/ 2, but much smaller
than the electron thermal velocity (Te/m)‘/ 2, As before, the ions are described
by an equation of motion in which the thermal velocity spread is neglected.
However, the picture is different as far as the electrons are concerned.

Since the electrons move much more rapidly than the wave they see an elec-
tric field that is essentially static. If the electron velocity distribution is
Maxwellian, f~ exp(—mvz/ZI'),a[ the point where the electric potential ¢ is
a maximum, the electron density at any other point will be described by the
Boltzmann relationn = noee"’/ T, For wavelengths appreciably greater than the
Debye radius a , the electric field can be eliminated from the equations by
invoking the neutrality condition: nj = Ne = nge® ¢ T The term containing
the electric field in the ion equation of motion —eV ¢ isreplaced by (—T/n)Vn.
Thus, the ion motion is described by the hydrodynamic equations with y = 1
(the isothermal feature is provided by the electrons, which can easily equalize
the temperature since they move much faster than the wave). However, the
hydrodynamic approximation is not capable of describing certain particu-

lar features associated with the existence of the thermal motion. For instance,
effects due to resonance particles are lost in a hydrodynamic analysis since
these resonance particles have velocities close to the propagation velocity of
the wave. These particles are responsible for the collisionless damping of 0s-
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cillations. If w/k> (T/m)w, the number of resonance particles is exponen-
tially small and the resonance damping is small [of orderexp {—(m/T) X

(/K% 1.

If the plasma is located in a magnetic field the situation is entirely dif-
ferent. Within certain limitations the kinetic description can justifiably be
reduced to a hydrodynamic description even in the absence of collisions. The
physical justification is the fact that the particles are "tied" to the lines of
force of the magnetic field so that the mean macroscopic velocity of the
particles is determined by the "motion" of the lines of force themselves.
These approximate equations are obtained formally by expanding the kinetic
equation in powers of the ratio of the mean Larmor radius to the characteristic
scale length R. The expansion in ryy/R is reminiscent of the usual hydrody-
namic approximation from kinetic theory in which the expansion parameter
is A/R (X is the mean free path). The expansion in the magnetic field case
actually implies a description of the plasma in terms of an ensemble of
quasi-particles or "Larmor circlets” (guiding centers). The hydrodynamic
equations obtained in this way then contain two pressures: a longitudinal pres-
sure, and a transverse pressure (with respect to the direction of the magnetic
field). Under these conditions y =2 since the transverse motion is two-dimen-
sional.

In the present review, in addition to using the kinetic equations we
shall make use of the simplified hydrodynamic equations whenever these
equations can be justified. The hydrodynamic equations facilitate the analy-
sis of certain nonlinear problems, if only by providing a basis for forming
analogies with the nonlinear motion of ordinary hydrodynamics.

3. It is clear that stability plays an important part in the theory of
cooperative phenomena. The stability of a given state of a system can gen-
erally be investigated by perturbation theory. If an initial perturbation of the
stationary state of the system grows with time the state is unstable with respect
to this particular perturbation. In practice one always speaks of stability only
with respect to small perturbations, that is to say, departures from the initial
state such that the describing equations can be linearized; in this case the
describing equations can be expanded in terms of the perturbation amplitude
and all terms higher than first order can be neglected, as in the theory of
small oscillations. The theory of stability of a collisionless plasma is, in
many respects, similar to the theory of magnetohydrodynamic stability. This
similarity follows from the fact that a collisionless plasma can frequently be
described with good accuracy by the magnetohydrodynamic equations, as we
have noted above. On the other hand, a collisionless plasma is also subject
to certain kinds of instabilities that cannot be described within the framework
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of the magnetohydrodynamic equations. These instabilities and their growth
rates can only be analyzed within the framework of a kinetic theory. The
collision integral is generally neglected since it is assumed that the growth
rates characteristic of the instability are much faster than the collision fre-
quencies. In analyzing an instability associated with a local deviation from
thermodynamic equilibrium in a plasma it is often convenient to assume a
"background"” (stationary state of the plasma) which is uniform and of infinite
extent. The investigation of stability in cases of this kind reduces to the
solution of the appropriate dispersion equation which relates the characteristic
frequency w and the wave vector k. Frequently the determination of stability
with respect to various simple kinds of perturbations does not require complica-
ted calculations; simple physical pictures are sufficient [2], It is also possible
to examine the stability of a "weakly" inhomogeneous plasma in which the
ratio N/R is small (X is the wavelength of the perturbation and R is the charac-
teristic scale length of the inhomogeneity).

Let us consider an instability with respect to a wave-like distortion of
the lines of force of the magnetic field. It is well known that in an equilibri-
um plasma these initial distortions of the force lines are propagated in the form
of magnetohydrodynamic (Alfvén) waves which can be regarded as oscilla-
tions of elastic bands (the lines of force of the magnetic field). To investi-
gate stability we consider the forces that arise when the lines of force are
distorted (Fig. 1). Since they are "tied" to the force lines, particles that move
along the curved portion are subject to a centrifugal force

2
Fc —— \Svf M};’ I dU, )

which tends to increase the curvature.

Fig. 1
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Furthermore, since each "quasi-particle™ has a magnetic moment p
oriented against the magnetic field H, in the inhomogeneous magnetic field
these quasi-particles are subject to a force associated with the magnetization
current

juo=cV x| pfdo,

[ X H]
Fu=—— = [rot | pfdo x H]. (5)

This force and the tension in the magnetic force lines

F, = —LrotHxH) (6

tend to restore the lines of force to the equilibrium position.

If Fe > Fy + Fy the system moves away from the equilibrium configura-
tion, that is to say,an instability arises. The instability criterion can be ob-
tained easily from Egs. (4)-(6):

I?
PN —PL> = (N

where

m u"L

v g 0
py = mvifdv, p, =JpHfdo, p=—5t.
The velocity with which the plasma moves away from the equilibrium con-

figuration can be found by equating the sum of the forces Fc—F, —F, to
the product of the mass of a unit volume of the plasma and the acceleration

dv d 5 VEY ;
T =TT It follows from Maxwell's equations that E_ = H. w/ck,
if the perturbation is written exp(wt—ikx). Thus, we find Z—:’ =in? -i’# :

Substituting the values of the forces F, we have

kﬂ H2

st (2 15—}

(8)

This instability is associated with the centrifugal force that arises in the mo-
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tion of the particles along the curved line of force and is sometimes called the
"firehose" instability by analogy with a rubber firehose which becomes con-
torted when water flows through it.

Similarly, in the other limiting case (py > py) we obtain an instability
criterion of the form

| H? 9)
p > p (l H . (
L2 P 8np )

The conditions in (7) and (9) show that a plasma becomes unstable
when the particle velocity distribution exhibits a sufficiently strong deviation
from isotropy; as H becomes smaller the instability can appear at a smaller
anisotropy. However, at very small H the Larmor radii of the particles become
very large and the notion of guiding centers no longer holds. Nevertheless, an
instability due to anisotropy appears in the limit H—>0, The instabilities
being considered here are aperiodic, that is to say, the time dependence of
these instabilities is of the form exp yT. Departure of the plasma from the state
of thermodynamic equilibrium can also lead to the excitation of waves, i.e.,
the appearance of instability in the form of oscillations. The criterion for
the excitation of this kind ofinstability, i.e., the criterion for the change of
sign of wj,the imaginary part of the frequency w = wr + iwj, can be deter-
mined by considering the energy balance between any plasma wave (that
arises as a result of a fluctuation) and the plasma particles. If wj is very
small (wj < wy) » the wave characterized by the given w and corresponding
wave vector is almost periodic and ions (electrons) oscillating in the periodic
wave field experience no change in energy on the average. The only excep-
tion arises for those particles in the velocity distribution which are in reso-
nance with the wave. In the absence of a magnetic field the unperturbed
plasma can exhibit a resonance only for particles whose velocity is close to
the velocity of the wave w/k (the resonance condition is w — kv = 0). In the
presence of a constant magnetic field, however, an effective interaction with
the wave is possible for particles which see a wave frequency w' = w — kv (in
their own characteristic coordinate system) which is close to the cyclotron
frequency wyy = eH/mc (or one of its harmonics nW where n=+1, £2, ...);
this frequency shiftis a result of the Doppler effect. Particles whose velocity
component along the magnetic field satisfies this condition will be ac-
celerated continuously (or retarded) by the wave field much in the same way
as ions are accelerated in a cyclotron. In the simplest case, in which there
is no fixed magnetic field, a uniform plasma can only support the propaga-
tion of pure transverse waves or pure longitudinal waves. The transverse waves
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need not be considered since their characteristic phase velocity is greater
than the velocity of light (¢ = 1 — w#/w?), However, the lower limit on the
phase velocity of the longitudinal electron Langmuir waves is of the order of
the electron thermal velocity (with corresponding minimum wavelength of the
order of the Debye radius) and increases with increasing wavelength. Con-
sider a Langmuir wave with frequency w (and phase velocity w/k) in a co-
ordinate systemmoving with respect to the laboratory with velocity w/k; in
this coordinate system we have an electrostatic potential described by a fixed
sinusoid of amplitude ¢,: The electrons see alternate potential wells and
hills. Electrons with velocities appreciably different from w/k will move
freely in this periodic field, without experiencing any change in average
energy. On the other hand, electrons whose velocity v differs from w/k by an
amount smaller than V2&g /m will be reflected from the potential hills.
These electrons can be.divided into two classes: the velocities characteristic
of the first class are greater than w/k; the velocities in the other class are
smaller than w/k. Electrons in the first class are reflected on reaching po-
tential hills and give energy to the wave; electrons in the second class are
carried along by the wave and acquire energy from it. A simple analysis of
the energy balance for reflection of electrons from potential hills then pro-
vides an instability criterion, the instability mechanism being a kind of "in-
verse” Landau damping. The wave amplitude increases if energy is fed from
the electrons into the wave; this is the case when the number of electrons in
the first class is greater than the number in the second, i.e., when

4 (b= 20, 10

In order for this condition to be satisfied the electron velocity distribu-
tion function must have at least one "extra" peak in the velocity region be-
yond the thermal velocity. On the other hand, ifd f/dv < 0 everywhere then
wj < 0 and the wave is damped (this is the well-known Landau damping
phenomenon) [3].

By estimating the work done by the electric field in the wave we can
also derive an instability criterion for the cyclotron resonance w= wyy ~ kv;
this criterion is important for transverse waves propagating along a fixed mag-
netic field.

4. The most difficult problem inthe theory of cooperative plasma phenom-
ena is that of determining the ultimate fate of the plasma when instabilities
arise: the exponentially growing perturbation must evidently sooner or later
reach a magnitude at which the linear analysis no longer holds. In principle
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this problem can be solved in the case of oscillatory instabilities. In the oscil-
latory case the plasma with fully developed instabilities can be represented as
a mixture of two ensembles: particles and waves. In particular, it is the inter-
action between the particles and the waves that is responsible for the insta-
bility. The wave—wave interaction, on the other hand, is strictly a nonlinear
effect. If a wave exists for a time interval appreciably greater than its own
characteristic period (t > 27 /w) it is legitimate to endow it with the proper-
ties of a "quasi-particle,” in which case the ensemble of quasi-particles can
be described by an appropriate distribution function in "quasi-momentum”
space (the space characterized by values of the wave vector k); this distribu-
tion function will satisfy an appropriate kinetic equation. Formally the situa-
tion is very much like that encountered in the quantum theory of solids, where
a mixture of two gases is also frequently considered: these gases are the elec-
tron gas and the phonon gas. However, the theory of plasma stability is much
more complicated since the equations are fundamentally nonlinear because it
is only meaningful to consider states which are far from thermodynamic
equilibrium. In order to write an appropriate kinetic equation for a turbulent
plasma one must know the form of the appropriate collision terms, i.e., the
wave —particle and wave—wave interaction terms. The first of these is found
from the so-called "quasilinear™ theory, which takes account of small non-
linear effects in only one sense, i.e., the distortion of the distribution func-
tion due to the feedback effect of the waves [4-6].

In the quasilinear approximation the particle velocity distribution func-
tion is written as a sum of two parts: a slowly varying part fv,t) (which is
called the "background™) and a rapidly oscillating part f.(v,t). The slow
change of the background due to the feedback effect of the oscillations onthe
particles is due to the averaged quadratic effects of the low-amplitude rapid
oscillations; the situation is very similar to the familiar van der Pol analysis
in nonlinear mechanics. On the other hand, the designation quasilinear means
that the direct nonlinear coupling between dif’erent modes is not taken into
account. Thus, the energy balance for the k-th mode is given in the same
way as in the linear stability analysis:

d
WE% — OvES, (11

where v is the imaginary part of the frequency.

Let us consider the derivation of the equations for the quasilinear ap-
proximation for longitudinal electron Langmuir oscillations in the one-dimen-
sional case:
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5[__;.05;_;___”1 g =0, TS —=4nn_e, n_ :jf~dv. (12)

The distribution function is separated into slowly and rapidly varying parts:

fo= 2 (fs ") s e, ),
. (13)
E = X (E, el tkx—0) | c.c. ),

The quantities fk and Ej, are connected by the usual relations of the linear
theory

fe=—ir = o Ee (14)

The equation for the slowly varying part of the distribution function f;
is obtained by averaging over the fast oscillations

<f> — fo- (19)

In order to take this average we require that the plasma must simul-
taneously support many modes with different wave vectors and a random dis-
tribution of phases. The wave packets made up of these waves must be
broad enough so that it is valid to neglect particle trapping in the potential
wells associated with the individual modes in the packet. For example, in
the case at hand (longitudinal Langmuir oscillations) the spread in phase
velocities in the packet must be appreciably greater than the velocity with
which a trapped particle would move in the potential well e ¢ o: Alw/K)>>
(eqy )2, T aking <Efy> = < E> fy, we obtain the following equation for
f from Egs. (12) - (14):

g | 8 1 Of
DI, (16)

where D, the diffusion coefficient in velocity space, is proportional to the square
of the electric field of the waves

— a3 D B e (Bt ety

Ty i(wp — kv)

* c.c.>>= —%2n2 | Ex |2 Im (@ — ko)™,
k
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Equation (16) describes the feedback effect of the Langmuir oscillations on the
particle distribution function. The applicability of the quasilinear equations
is limited to cases in which the growth (damping) rates of the oscillations are
much smaller than the frequency; if this condition is not satisfied the distri-
bution function cannot be separated into rapidly varying and slowly varying
parts.

It is clear from Eq. (16) for the averaged distribution function fo that
the excitation of cooperative degrees of freedom (waves) gives rise to an ad-
ditional diffusion in velocity space in addition to the usual collisional dif-
fusion. In contrast with the original equation (12) we find that the present
equation does not conserve entropy. This is not surprising since the averaging
procedure used in going from Eq. (12) to Eq. (1) corresponds to going from a
dynamical description to a statistical description. This same kind of ap-
proach, applied to the description of waves, leads to a kinetic equation for the
quasi -particles [7-10]. Our statistical approach to the problem is essentially
equivalent to the correlation method used in the theory of hydrodynamic tur-
bulence. For wave-like instabilities, which are characterized by v/w< 1l
(growth rate much smaller than the frequency), the coupled chain of equations
for the correlation functions can be expanded in the small parameter v/w [11].
However, instabilities of a non-wave-like nature, which are characterized by
v ¥ w,cannot be considered this way since the problem does not contain a
small parameter. In such cases cooperative phenomena can only be described
by resorting to semiquantitative methods.

The present review is devoted primarily to the application of the theory
of cooperative phenomena in the analysis of shock-wave thickness in a col-
lisionless plasma.

By virtue of its collective properties one finds that a collisionless plasma
can exhibit shock waves in which the thickness of the shock front is much
smaller than the mean free path. At first glance this result might appear
paradoxical. Let us consider a shock front (Fig. 2) whose thickness A is much
smaller than the mean free path Z. It would seem that the faster particles
(v >u) from the region at the left (heated by the plasma shock wave) could
move freely into the unperturbed plasma, thereby causing the transition re-
gion to expand to a thickness I (the mean free path). We now ask for mech-
anismsthat can prevent this expansion of the transition region.

1. The simplest case is that in which there is a magnetic field parallel
to the plane of the front. The magnetic field turns the ions and electrons
around in distances of the order of their respective Larmor radii ryy. Conse-
quently one might reasonably expect A ~ ry. A sufficiently strong magnetic
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field (H?/8m > nT) will hinder expansion even if it does not lie in the plane
of the front. This is due to the fact that when H%/87 s> nT the shock-wave
velocity is appreciably greater than the thermal velocity of the particles so
that the fraction of ions (electrons) that overtake the wave is exponentially
small. However, problems of this kind give rise to the following apparent
paradox; The plasma states on the two sides of the shock front are presum-
ably related by the appropriate conservation laws (Hugoniot adiabat), accord-
ing to which the translational energy of the unperturbed plasma is transformed
into internal plasma energy after passage of the shock wave. The question
now arises as to what mechanism can provide dissipation if A<« /. The
answer to this question is evidently that most of the internal energy in the
perturbed plasma state behind the front resides in intense plasma oscil-
lations. However, these nonlinear oscillations do not necessarily imply
plasma instability. This question is closely related to the specific dispersion
properties of the plasma. The second section of the present review is devoted
specifically to the theory of nonlinear ordered plasma oscillations (the results
are of interest independently of their relation to shock waves). The transient
nonlinear motion of a plasma is extremely complicated and can only be
analyzed in certain specific cases through the use of various simplifying as-
sumptions. On the other hand, steady-state nonlinearoscillations can be ana-
lyzed fairly completely. Here it is interesting to note the useful analogy
between nonlinear plasma waves and surface waves of finite amplitude in a
heavy fluid in a channel of finite depth, In the theory of nonlinear plasma
waves one also encounters "solitary” waves whose velocity depends on ampli-
tude. Nonlinear waves in a plasma can be broken up as a consequence of va-
rious plasma instabilities and certain unstable nonlinear waves are considered
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at the end of §2. One possible instability is the two-stream instability which
appears in nonlinear waves in a magnetic field, being related to the electric
current in the wave. If the ordered velocity of the electrons with respect to
the ions is greater than the mean electron thermal velocity the wave energy
is converted into energy associated with longitudinal electrostatic oscillations
of the plasma as a consequence of the two-stream instability. There are
also other kinds of instabilities which are inherent in nonlinear periodic waves:
these are the so-called "decay” instabilities in which ordered waves decay,
giving rise to a spectrum of irregular waves, This instability is reminiscent
of the decay of collective excitations inthe quantum theory of many-body
systems. The combined effects of all of these mechanisms can be involved in
the formation of the shock structure ( §3).

2. When the magnetic field is small, or when there is no magnetic field,
the mechanism which inhibits the expansion of a shock front is of a different
nature. Let us assume that as a consequence of expansion some fast particles
penetrate the unperturbed plasma in front of the shock (cf. Fig. 2). In this
case the state of the plasma in this region is characterized by the unperturbed
equilibrium distribution of the original particles plus that of the fast particles,
that is to say, it becomes a nonequilibrium state since the particle velocity
distribution is no longer Maxwellian. This nonequilibrium plasma is now un-
stable against the excitation of various instabilities and the fluctuating elec-
tric and magnetic fields arising as a consequence of these instabilities cause
scattgring of the jons and electrons. The essential point is that in the presence
of fluctuating fields of this kind it is necessary to reexamine the notion of a
mean free path. In a rarefied plasma the scattering on nonequilibrium ran-
dom fluctuations can be much more important than the usual two-body
Coulomb scattering,

§ 2. Nonlinear Plasma Oscillations

1. The most important role of nonlinear effects is to cause steepening
of the leading edge of a wave. However, in plasma dynamics it is frequently
found that the dispersion effects become significant as the steepness of the
front increases. These two effects are responsible for some of the interesting
features of the asymptotic motions that finally develop—the spontaneous
production of intense oscillations as a consequence of the competition be-
tween nonlinearity and dispersion. The present section of this review is de-
voted to a systematic presentation of the theory of nonlinear undamped
oscillations. We open our discussion with a general qualitative description of
any initial perturbation.

r—
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In the linear theory the oscillatory motion of a plasma is described
by a superposition of individual noninteracting modes [exp i (wt—kr), where
w is the frequency and k is the wave vector] and, in general, a definite relation
obtains between w and k: this is the dispersion relation w = w(k). Any non-
linearity can evidently modify the pattern of motion described by the linear
theory. It is instructive to consider the analogy with sound waves in ordinary
gas dynamics. For example, sound waves, which are harmonic in the linear
approximation, become distorted in the course of time because the wave
amplitude becomes finite. This nonlinear deformation means, essentially,
that portions of the wave profile characterized by high velocities tend to
overtake portions characterized by low velocities so that a discontinuity is
ultimately formed (provided the sound wave is not first damped).

Now let us trace the possible nonlinear distortion of the profile of a
harmonic wave in a collisionless plasma. The tendency toward increasing
steepness of the leading edge as a result of nonlinearity also operates in a
collisionless plasma. [Transverse waves, for example, the magnetohydrody-
namic Alfvén waves, are an exception. The equations describing these waves
do not contain a nonlinear term of the form (v v)v]. Now, in gas dynamics
dissipative effects ultimately set a limit on the steepness of the front; in a
collisionless plasma, however, the chief mechanism responsible for this func-
tion is dispersion. The competition between nonlinearity, which tends to
"overturn” the wave, and dispersion can be illustrated as follows: The in-
creasing steepness of the leading edge implies the generation of higher har-
monics in the wave as a result of nonlinearity. In the first (linear) approxi-
mation any wave can be regarded as being pure harmonic [exp i( wt— kr)]; in
the second approximation, however, the second harmonic must be included
(as in the case of sound waves). In an expansion in terms of the wave ampli-
tude the correction equation that arises in the second approximation is

Lofs = Lfiexpi (20t — 2kr).

Here, f is the deviation of any field or plasma quantity from its equilibrium
value (the subscripts 1 and 2 denote the first andsecond approximations, re-
spectively); Lgis a linear operator which characterizes the linear oscillations
ofthe plasma according to some characteristic dispersion relation w = w(k).
The form of Eq. (17) is really that of an oscillator driven by a forcing func-
tion ~ fi. It is clear that the second harmonic will be excited if this forcing
function resonates with the characteristic frequency of the oscillator, i.e., if
the original frequency multiplied by two corresponds (according to the dis-
persion relation) to a wave vector 2k. This resonance can be realized only if
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the dispersion relation w = ck is linear, as is the case for ordinary sound waves.
1f the dispersion relation is an arbitrary one there will be no transfer of energy
from the fundamental to the second harmonic if the driving force is far off
resonance. This qualitative picture indicates that it is possible for periodic
plasma waves to propagate without nonlinear distortion in a frequency region
in which the dispersion exhibits an appreciable deviation from linearity. A
knowledge of the dispersion relation w(k) obtained from the linear theory can
then provide certain general properties of the nonlinearbehavior. For example,
let us consider magnetoacoustic waves propagating across a magnetic field.

At frequencies below wHj, the ion Larmor frequency, the characteristic phase
velocity of these waves is

1 2 1
i:ﬁ’l)/'z (HO +2£0__)/' (18)
k (60 4m1Qo Q/ '

where Hy is the unperturbed magnetic field, @, is the density,and p, is the
pressure. As the frequency increases the phase velocity changes because of
dispersion effects. In the general case the dispersion relation becomes very
complicated even for these waves. Let us consider two limiting cases.

Low-Pressure Plasma (p, << Hf/8m). Asthe frequency w
increases the phase velocity diminishes from 71e value Hy/¥&mg, at low fre-
quencies to zero at the frequency (wﬂine)l % the so-called hybrid reso-
nance frequency ( esz/mMcz)l/ 2; mM is the product of the electron and ion
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Fig. 3
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masses. The dispersion curve for this wave is shown in Fig. 3. The corres-
ponding dispersion relation is

2 2/.2
o Hy mo/c o 4mne?

—_— . . ¥ [01]
k? 400 24 mg 2 ° m

The deviation from linearity in this dispersion relation becomes evident
as k - wy/c. The quantity ¢/w, then determines the characteristic spatial
scale forsteady-state nonlinear magnetoacoustic waves. All of these considera-
tions hold for the "weak"-field case in which H?*/8r « nmc?. Under these
conditions the plasma remains quasi-neutral as the magnetoacoustic wave
propagates, On the other hand, in a very strong magnetic field

2

0
T >> n, mcz,

the departure from neutrality becomes important at frequencies close to wpj;.
The dispersion relation for this case is(again neglecting thermal motion)

4“90 2
2 2 Q
m_’= H(l 1’0 0 ($22_ 4“"32 (19)
k*  4mg, ngp =r )
4+ —2 0l

The phase velocity now approaches zero at the ion Langmuir frequency w—Qq
and the characteristic length at which the departure from linearity becomes
important is now HoM /4w gee.

High-Pressure Plasma (pgy > H?/ 8m). In this case dispersion
effects become important when w — wyy,. At frequencies above wyy; the ion
trajectory is only weakly distorted by the magnetic field in one oscillation period.
In other words, the ion motion becomes one-dimensional rather than two-
dimensional. Hence y, the ion adiabaticity index (which characterizes the
velocity of the magnetoacoustic wave) must be set equal to 3 when w> wH;
(rather than 2 as is the case when w < wHj). Consequently, the phase velocity
of the wave increases when w> wyj;.  This means that the phase velocity in-
creases with frequency (rather than decreasing) in a high-pressure plasma in
this frequency range. The characteristic scale of the nonlinear waves is also
different in this case, being of the order of the ion Larmor radius.
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Up to this point we have been speaking of waves that propagate at pre-
cisely 90° with respect to the magnetic field. However, the linear small-
oscillation theory shows that the dispersion relations change markedly even at
small deviations of the direction of propagation from the perpendicular direc-
tion. The physical reason for the change is the fact that oblique waves possess
an electric-field component along Hy. Under the influence of this electric
field the electrons can move along Hy much more rapidly than across Hy, thus
producing strong modifications of the charge and current distributions in the
wave. Let us again consider a cold plasma. At angles satisfying the condition
(m/M)?« g « 1, the dispersion relation w = w (k) acquires the particu-
larly simple asymptotic form [neglecting extremely short waves so that
A>» (c/wy) 1/0]

wt _ Hj (l _kﬂe%z) (20)

" dng, Q?

The departure from linearity in w = w(k) becomes important at wavelengths of
order (¢/Q) 6. The phase velocity increases with increasing frequency at these
wavelengths and one expects a change in the nature of the nonlinear motion.

Let us now consider the case in which there is no magnetic field. It is
well known from the linear theory that ion-acoustic oscillations can propa-
gate in a collisionless plasma only if the electron pressure is appreciably
greater than the ion pressure pe > pj. This is the case, for example, in a
two-temperature plasma in which the electron temperature is much higher
than the ion temperature. If we simplify the analysis by assuming that the
ions are cold (Tj = 0) the dispersion relation is similar to (19):

0 T, X2
B TOM wrrER’
ol u (21)
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The characteristic scale length here is the Debye radius 14¢.*

*Electron oscillations in a zero-temperature plasma with no magnetic field
are characterized by the simple dispersion relation o = wﬁ. There is no
characteristic scale length in this case and steady-state nonlinear waves with
any spatial period are possible.
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All of the cases that have been considered above indicate that disper-
sion effects become important at short wavelengths or small scale lengths. In
ordinary hydrodynamics dissipative effects also become important at small
scale lengths and tend to limit the increasing steepness of the leading edge.
In contrast with ordinary gas dynamics, however, in a collisionless plasma the
limiting factor is dispersion and the difference between these two mechanisms
is reflected in the mathematical structure of the original equations. Dissipa-
tive effects (viscosity, thermal conductivity, etc.) introduce irreversibility
and increase the order of the derivatives by an odd number (for example,
viscosity implies the addition of a term containing a second derivative in the
Euler equation in gas dynamics). Dispersion effects, on the other hand, do not
affect reversibility and increase the order of the derivatives in the equations
by an even number. For example, let us consider the equations that describe
the propagation of jon-acoustic waves when Tg >> Tj. Under the assumptions
made above one-dimensional motion is described by the equations:

dv , dv\ ap
M(—(;?_‘AUW) = %%

0nz *_O(ntv) 0 (22)
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Here M, v, and nj are, respectively, the ion mass, velocity, and density. The
last equation in (22) contains the highest (second) derivative. For motion
with a characteristic scale size appreciably greater than the Debye radius
(T/41rnez)”z it can be a\,sumed that the plasma is quasineutral, n; =

ng exp(e¢ /T), so that the 3% /dx® term in the last equation in(22)can be neg-
lected, Eliminating the electric field from the remaining equations, we then
then have

dv du T on
M(._-,,.v._)z__..
a b
t dx n  ox (23)
om0
ar T v =

This system is of the same form as the equations for isothermal motion
(y = 1) in ordinary gas dynamics. In general, the front associated with any
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initial perturbation will become steeper and steeper in the course of time.
This nonlinear distortion of the profile of the perturbation can be illustrated
clearly in the particular case in which the initial velocity and density distri-
butions are related functionally. In ordinary gas dynamics this case is amen-
able to the Riemann solution, which describes a so-called "simple™ wave of
arbitrary amplitude. The dependence of the velocity on time and coordinate
in this solution is described by the implicit function

X =1t[v=xc] -y (), (24)

where c is the velocity of sound and x(v) is a function that depends on the
initial conditions. Equation (24) shows that the flow profile evolves in such

a way that the solution must become triple-valued at some time. In ordinary
gas dynamics (small mean free path) there is established under these condi-
tions a steady-state flow characterized by a discontinuity (shock wave). On
the basis of the described mathematical analogy one might then expect to
find a collisionless shock wave in a collisionless plasma. In the plasma case,
however, as soon as the leading edge of the perturbation becomes sufficiently
steep the influence of dispersion effects becomesimportant [in Eq. (23), for
example, these dispersion effects arise as a consequence of the departure from
neutrality], It is interesting to note that an analogous nonlinear wave is

well known in the ordinary hydrodynamics of incompressible fluids; this is the
nonlinear surface wave that propagates in a heavy fluid in a channel. If the
channel is shallow the equation of two-dimensional motion reduces to an
equation for one-dimensional motion (for the mean velocity of the fluid v at
a given cross section and depth h):

‘ox

(2+0%)=—a

oh d

where g is the gravitational constant. These are the so-called shallow-wave
equations, which represent the zeroth approximation for the asymptotic ex-
pansion of the exact equations of hydrodynamics of an incompressible fluid in
a channel of finite depth in terms of the expansion parameter hy/L, where h,
is the channel depth and L is the characteristic scale size (for example,the
wavelength). The shallow-wave equations are of the same form as the equa-
tions which describe the plane isentropic flow of a compressible gas(with
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adiabaticity index y = 2). For this reason, shallow water waves can be des-
cribed by the Riemann simple -wave solutions. It follows from these solutions
that an arbitrary initial profile of the fluid surface will eventually form a
crest. We now note that the shallow-wave equations are exactly the same as
the equations of motion for a collisionless plasma (nT <« H%/81) moving
across a magnetic field, if the wavelength is appreciably greater than c/wj
(for example, if H® « nmc?. The role of the channel depth h is played by
the field H in the plasma equations. As the leading edge of the wave be-
comes steeper in the gas-dynamic case the dissipative effects becomes im-
portant; in contrast, in the collisionless plasma case, when the characteristic
scale sizes approach c/wy the dispersion effects become important. Disper-
sion effects also play a role in the theory of shallow waves when L approaches
he: Eq. (25) no longer holds. However, if hy/L issmall,Eq.(25) can be im-
proved by adding the higher-order terms in the expansion in hy/L. These terms
have the form of higher derivatives, corresponding to dispersion effects; the
dispersion relation for low-amplitude waves then becomes

w2
k2

and at small values of khy this relation can be written

= £ th (khy)

(3~ [i—f s oo

The nonlinear oscillations of the surface of a heavy fluid have been in-
vestigated quite thoroughly; this is especially true for the so-called stationary
waves, i.e., waves whose shape does not change in the course of time. In ad-
dition to finding periodic waves, characterized by wavelengths of order hy,
one also finds so-called "solitary” waves: these are essentially propagating
isolated humps in the fluid level in the channel.

The analogy pointed out above indicates the possibility that a collision~
less plasma might support similar periodic and solitary waves. However, be-
cause of the variety of dispersion relations that describe the various kinds of
Plasma oscillations one expects a greater variety of stationary waves. For
instance, under certain conditions a plasma can support the propagation of
solitary rarefaction waves (in the theory of surface waves in a fluid these would
correspond to solitary depressions in the fluid level),

It will be shown in §3 that nonlinear waves of this kind in a collision-
less plasma are intimately related with shock waves. Up to this point our dis-
cussion has been concerned with finite waves of low amplitude. However, the
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situation becomes completely different at high amplitudes. At high ampli-
tudes the dispersion effects may not be sufficient to limit the increasing steep-
ness of the wave and the front can "break™ at some critical amplitude, pro-
ducing a region of multivelocity flow (this obviously applies for a plasma that
is initially cold).

2. In gas dynamics the asymptotic form (as t — o0 of any initial mo-
tion will, in general, be a shock wave. Let us now ascertain the nature of
asymptotic motion in a collisionless plasma. It might be expected that a
stationary wave pattern would be established as t - «. Assuming that such
a stationary motion exists, in the one-dimensional case, at least, we can
analyze the problem without difficulty by solving the plasma dynamics equa-
tions directly. The standard procedure for obtaining the solutions is to choose
a coordinate system that moves with the wave in the original equations. The
time dependence disappears in this coordinate system and the problem re-
duces to the search for stationary flow, with the wave velocity u first being
introduced into the problem as a free parameter. The solubility conditions
then determine the limits within which u can change and also establish the
relation between u and the wave amplitude. As far as the analysis of shock -
wave thickness is concerned, primary interest attaches to the stationary non-
linear waves whose low-amplitude dispersion relation is linear at long wave-
lengths (sound) and in which dispersion effects appear at the short wavelengths.

We begin by considering waves propagating across a magnetic field. If
the Larmor radius is small (drift approximation) the hydrodynamic equations
can be used to describe the situation. The only stationary motion allowed
by these equations is the trivial case of plane-parallel flow and in order to
find the nontrivial stationary motion we must take account of the dispersion
effects that appear at small scale lengths. These dispersion effects derive
from the departure from neutrality and from electron inertia, the introduction
of either one of these factors being sufficient to obtain stationary motion
which is not a plane-parallel flow. These mechanisms are to be associated
with two characteristic scale lengths.

Let us now examine the way in which dispersion effects lead to the
formation of stationary waves in a cold plasma (nmc2 > H2/81r » nT). We
neglect thermal motion so that the set of equations that describes the ion
motion, the electron motion, and the field profile in the stationary wave is as
follows (mj = M, me = m; the wave propagates along the x-axis and the mag-
netic field is along the z-axis; Fig. 4):

4 { e
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The last equation, which expresses the neutrality condition, implies
that the velocity components in the x-direction are the same for the electrons
and ions. Eliminating all variables except H from these equations we find (to
accuracy of order m/M)
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This equation determines the profile of H in the stationary wave. Integrating
once we have

H? = H} )2 (H* — H3)? — 16;ny Mu? (H — H,)?
u) =

S N = O (e .
a'H <8mzoMu 16779 M +C

a® = me* P
= Anen at - L2 |®
4dntnge w (32)

Different values of C, which is the constant of integration, are to be associated
with various kinds of solutions. It is instructive to trace the variation of the
solution as C changes by plotting integral curves in the phase plane (H, H').
Curves of this kind are shown in Fig. 5.

The solutions of Eq. (32) must describe periodic waves of finite ampli=-
tude, with one exception; this is the solution for a special choice of the con-
stant C:

C=0.

This special choice gives dH/dx = 0 for H = Hy, in which case

+a%— T (16qn, My~ )/ Tomn,Mu® — (H + Ho.
dy H*— H} (33)
8xny, Mu ™

It is impossible to form a physically meaningful solution for H over the
entire x-axis if a fixed sign is chosen in front of the radical in Eq. (33). How-

Fig. 5
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ever, there are solutions which are everywhere continuous (up to the second
derivative inclusively) for which the derivative H' changes sign at a certain

X = X;. H reaches its maximum value Hpax at this point. The equation
(dH/dx) (xy) = 0 relates the peak magnetic field Hpax to the velocity of pro-
pagation of the wave and plays a role analogous to that of a dispersion rela-
tion

]63‘!}10 Muz_(Hmax+Ho)2= 0. (34)
Solving Eq. (34) for u, we find [12-15]

g Hy Hy)?

o Mgl
In the limiting case of low amplitudes (Hmax —> Hy) Eq. (35) gives the so-
called magnetic sound velocity and the propagation velocity increases with
amplitude. Integration of Eq. (33) gives the profile of H in this wave, which
is found to be symmetric with respect to x = x,, and represents a single pulse
of magnetic field with width of order

,
Wy

4mne® \ /s
0y = (4

b

where

Thus, the solution of Eq. (33) is evidently the collisionless-plasma
analog to a solitary wave. The magnetic-field profile in the solitary wave

o =1 2>0# >1 o =9

/\

Fig. 6
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at low amplitudes (Hmax — Hg < Hy) is given by a simple expression:

u? X 2
( l/4.vmoM ) Wy ( V4nnaM )

The function H = H(x) is shown in Fig. 6 for various values of the Mach

u
number o/} = Ho/ 4nnoM'

Equation (17) does not have real solutions for arbitrarily large u and H.
For example, solitary-wave solutions exist when Hpax = 3Hg [i.e., u<
A Hy//ETngM)]. As the wave amplitude approaches the critical value the ion
(electron) density at the crest of the wave becomes infinite. This phenomenon
can be described physically as follows: The solitary wave is essentially a hill
in the electric potential ¢ and in the coordinate system that moves with the
wave the ion flux from x = <« impinges on this potential barrier with a velo-
city u. If the amplitude is not too large, the initial kinetic energy of the ion
Mu?/2 is greater than the height of the potential barrier e ¢ 44 and the ions
pass through the barrier, being retarded in the process. However, the solution
shows that as the wave amplitude increases the potential barrier becomes so
high that e oyax > Mu?/2. The situatione ¢, ~ Mu?/2 corresponds to an
amplitude Hyax = 3Hy (in other words, the critical Mach number is 2). Hav-
ing lost velocity, the ions are trapped at the crest of the wave and the ion
density increases without limit. At still higher amplitudes the ions are re-
flected from the barrier, but the motion corresponding to this case is not de-
scribed within the framework of our original system of equations (27)~(30)
since the reflection implies a multistreaming flow (interacting flows of inci-
dent and reflected ions).

Thus it is evident that dispersion effects may not be sufficient to pre-
vent breaking of the wave in a cold plasma if the amplitude is sufficiently
large.

On the other hand, if the thermal spread in the ion velocity is taken in-
to account, some ions are reflected from the barrier even at low amplitudes
(these are the ions with small relative velocities u —vy). The ions with low
relative velocities are those that were originally moving in the direction of
propagation of the wave with a velocity approximately equal to u; these ions
are essentially trapped and extract energy, causing the wave to be damped.
For the time being, however, we shall neglect damping, in which case it is an
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easy matter to find a solution for the solitary wave in a more general form;
the thermal spread is taken into account by introducing the ion velocity
distribution function.

A closely related class of nonlinear oscillations can also be realized in
a plasma in the absence of an external magnetic field; these are the nonlinear
ion-acoustic oscillations. Linear theory indicates that ion-acoustic oscilla-
tions can only be excited when Ty > Tj so that our analysis will be limited to
this case.

If it is assumed that all quantities depend on x and t only in the form
x —ut, Eq. (22) can be reduced to a single second-order differential equation
for the potential:

¢’ = dnn,e- {——“—« —exp (5}2)} (37)

Integrating Eq. (37) once we have

1 2 M 2 i
—T((p)”=4nnoe(—"7 l/ uz——;,li)——Texp%) + C. (38

Various periodic waves can now be found depending on the choice of the inte-
gration constant C (see the integral curves on the phase plane in Fig. 7). A
special case is represented by the value of C given by the condition ¢'— 0
when ¢ — 0, i.e., C = 4mnd{Mu® + T). This case is treated specially in the
phase plane and corresponds to a solitary wave (Fig. 8) which is a symmetric
potential hill.

The velocity of propagation of this wave u, as a function of ¢max the
peak potential, is found from Eq. (38) by writing ¢' = 0 when ¢ = ¢max [4],
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In the limiting case of low amplitudes (e Pmax < T), u approaches the
velocity of isothermal sound ’/T/ M, At low amplitudes the profile potential in
the solitary wave is given by

3 T i | 4
w%'?T(‘—Muz)S*ﬁ{ v ‘—W"‘}- (40}

Ton waves also exhibit an upper bound on amplitude, beyond which pro-
Ppagation is impossible. This is the point at which the motion becomes multi-
valued, because the ions can no longer get across the potential barrier. The
critical amplitude of the solitary wave is given by e¢max = Mu2/2. If the
wave velocity u is found from Eq. (39), the quantity e¢gmax =~ 1.3 T. This
value then represents the critical amplitude for the solitary wave and cor-

responds to a Mach number off — . ~1.6.
2

VEax’3
(3r)

In both of the cases considered above (magnetoacoustic waves and ion
waves) we have observed a similar pattern for the steady-state nonlinear mo-
tion. The only essential difference is in the magnitude of the characteristic
scale lengths. This result is not surprising inasmuch as the corresponding
linear dispersion relations are very much the same for these cases [cf. Egs. (19)
and (21)]. Solitary waves are of great interest since they represent a special
kind of steady-state nonlinear motion. Whereas periodic waves are com-
patible with an arbitrary dispersion relation (so long as it is nonlinear), soli-
tary waves require a very special kind of dispersion relation. This requirement
follows from the fact that the spectral expansion of the profile of a solitary
wave is a continuous spectrum whereas the spectral expansion of a periodic
wave contains discrete values of w and k only. For the former the discussion
given at the beginning of this section does not hold, It is clear that the
existence of a stationary solitary wave requires that the high-amplitude parts
of the profile must propagate with velocities smaller than the velocity given
by the linear theory. When this situation obtains the strong effect of nonlin-
earity in the high-amplitude part can, roughly speaking, be compensated by
the reduction in 9w/dk. This kind of plasma dispersion relation (decreasing
dw/ak with increasing k) is characteristic of the magnetoacoustic wave and

COOPERATIVE PHENOMENA IN COLLISIONLESS PLASMAS 53

#

Fig, 9

the ion-acoustic wave when Te s> Ti. It is also characteristic of the disper-
sion relation for surface waves of a heavy fluid in a channel of finite depth.

Waves characterized by the inverse kind of dispersion relation, i.e.,
waves for which 9w/dk increases with increasing k, must form solitary rare-
faction waves in the nonlinear case (Fig. 9), in contrast with the compression
wave described above. This kind of dispersion relation is characteristic of the
propagation of waves across a magnetic field in a high-temperature plasma.
It is not difficult to find the profile for such waves and the relation between
the phase velecity and the peak magnetic field. However, we have already
examined the physical features of undamped nonlinear waves and now wish to
investigate possible damping mechanism.

3. "Ordinary” damping mechanisms are to be associated with the con-
version of energy of ordered motion into heat as a resultof particle collisions;
in a rarefied plasma, however, there is another possibility — "collisionless
damping.” This phenomenon is related to the presence of trapped particles,
i.e., particles whose velocities are approximately the same as the phase
velocity. We shall illustrate this effect using the simple example of electron
Langmuir oscillations, but the essential qualitative features of the phenome -
non are the same for any kind of wave. It was shown by Landau [3] that
waves of extremely low amplitude are damped if the distribution function
describing the resonance particles has a negative slope, i.e., if df/dv< 0 at
v = w/k. This damping is due to the fact that the faster particles are retarded
by the wave while the slower particles are accelerated. If there are fewer
fast particles than slow particles at resonance the wave is damped. In actual
fact the linear theory becomes inapplicable very rapidly because the form of
flv) is changed by the damping process itself. For instance, in the "quasi-
linear" theory thedistortion of the distribution function is described by the
equation
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where D ~ E* and is especially large for the resonance particless

According to Eq. (41) the resonance particles are redistributed and a
plateau d f /dv — 0 is formed on the distribution function (Fig. 10) [Eq. (41) is
analogous to the heat-conduction equation in an inhomogeneous medium].
When this happens a saturation point is reached and the damping process is
terminated. However collisions, although rare, will still gradually "round off"
the edge of the plateau and establish a quasistationary state in which d f/dv
is slightly different from zero (df /dv < 0). In order to find the magnitude of
this slope and the associated damping it is necessary to introduce a collision
term in Eq. (41). Clearly, the larger the amplitude of the oscillations the
stronger will be the feedback effect on the distribution function in the region
v & w/k. Thus, it is reasonable to assume that the damping coefficient [(1/€)
dé&/dt] (€ is the wave energy), which is proportional to d f/dv (v = w/k), will
diminish as & increases. The stationary slope d f/dv is found from the equa-
tion

d il
1 D*d;f = St (f), @2)

where the expression for the quasilinear diffusion coefficient D can be simpli-
fied for the resonance particles (v = w/k)

m2m

D) = Dir By Im (0 + ko)t ~ S @3)
k
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In the expression for St (f) we retain the term containing the second derivative

=, T & (fo—1
St~ %artm —dov
where fj is the Maxwellian distribution function, This simplified form of the
"collision integral™ allows the reestablishment of the local equilibrium dis-
tribution. Integrating Eq. (42) once, we have

af __db 1 ___ (44)
du dv e*E?

L) mcoTvcou

It is clear from this expression that for a low-amplitude wave e2E2/mwTv o)1
< 1 the damping factor

_ me, (o \? df @ mno.g_zﬂ( ;-,_“l_)=
vadGt3) & (o= g ) =Pl E (aag) =

approaches the Landau damping factor vy, However, the linear theory does not
apply at amplitudes such that ezEz/mwTucolp 1. As indicated by Eq. (44),
the damping in this case must diminish as the amplitude increases, varying

as E-2,

The damping analysis given above applies only for broad wave packets,
since we have made use of the quasilinear theory. The relation in Eq. (44)
would not hold for a monochromatic wave (with one w and k), whichrequires
special consideration. We shall limit ourselves here to a semiquantitative
estimate in order to establish the dependence of the damping on amplitude.
Equation (44) can be interpreted by writing it in the form v = yy/(1+ 7y/75).
Here, vy is the damping found in the linear approximation (Landau damping);
71 is the characteristic time required to establish a local Maxwellian distri-
bution; 7, is the characteristic time required for distortion of the distribution
function by the wave packet. If 7y<« 1, (in which case the Maxwellian distri -
bution function is established by collisions) then the usual Landau damping is
obtained. As the wave amplitude increases the distortion due to the interac-
tion with the wave becomes so large that collisions can no longer establish a
Maxwellian distribution function and the damping rate is diminished. By ex-
tending this analysis it is possible to estimate the absorption for a monochro-
matic wave if the values of vy and 7, are chosen properly. Let ¢ be the
potential in the wave; in this case particles with velocities (with respect to




56 R. Z. SAGDEEV

the wave) of order /e @/m will cause absorption. This means that the distri-
bution function will be affected primarily in a region Av with width of order
+/e@/m. Small-angle Coulomb collisions establish local equilibrium in this
same region in a time 1, ~ e@/vcolT. The time required for the nonlinear
distortion due to the interaction with the wave is of ordert 2~ X /VEp/m,
where A is the wavelength. Finally, we find [4]

— _—Vo
I 45)

collV-m_

v

TAv

This result means that the damping goes as E-*/2 for a monochromatic wave.
A rigorous analysis verifies this conclusion [16].

4. The results given above lead to the conclusion that nonlinear waves in
a collisionless plasma will be damped very slowly if the distribution of par-
ticles responsible for the damping is subject to a "relaxation" effect. This,
however, does not guarantee that nonlinear steady-state waves can continue to
exist once they are produced. It is still necessary to determine whether or not
the waves are stable against various kinds of random disturbances; if they are
unstable the energy of the nonlinear wave motion goes into some other kind of
plasma motion, possibly random turbulent motion, and this process is equiva-
lent to a damping process. It is clear that the propagation of a strong pertur-
bation in a collisionless plasma implies a significant departure of the plasma
from thermodynamic equilibrium; in turn this departure implies the possibility
of instability.

For example, let us consider a steady-state solitary wave propagating
across the magnetic field in a cold plasma (nT « H/8m). We shall again be
interested in the motion of the plasma ions and electrons in this wave. If
H?/8m « nmc?, the plasma is quasineutral. The ions and electrons move with
the same velocity in the difection of propagation of the wave. However, the
electric current in the direction perpendicular to the wave velocity and the
magnetic field is due to the electrons alone. It is well known that the exis-
tence of an appreciable relative motion between the ions and electrons in a
uniform plasma can result in the so-called two-stream instability. It is clear
that an analogous effect might be expected here. The problem is simplified
if we neglect terms that take account of the unperturbed motion of the plasma
in the x-direction in analyzing small deviations from the stationary pattern of
the solitary wave. This procedure is valid if the instability growth time is
significantly smaller than the time required for the solitary wave to move
through a given region, This time is of order §Y4wnM/H, where § is the
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"width" of the wave. The problem can be solved easily if the perturbed mo-
tion of the ions and electrons is analyzed in terms of the two-fluid theory with
adiabatic pressure variations. The effect of the magnetic field on the per-
turbed motion is neglected since we limit ourselves to oscillation frequencies
much greater than the electron Larmor frequency wp,. In this approximation
the equations for the perturbed quantities ve (electron velocity), vj (ion veloc=
ity), ne and nj(electron and iondensities), and ¢ (electric potential) are

i(w+ kyy)v= V—;—(P—V mio n,
(46)
oV = — 7 41 ¢;
i (0 + kuy) n, 4 iknyo, + -;—x (n,00) =0,
ion; + 2= (n,V,) -+ iknyV, =0, (a7

— k%@ + ¢" = 4me (n, — n;).

The equations in (46) are the electron and ion equations of motion; the equa-
tions in (47) are the electron and ion equations of continuity and Poisson's
equation. We have taken the perturbed quantities to be of the form

@(x) ellt+ky). The quantities vy, T, and n, appearing in the equations are
the x-dependent unperturbed mean velocity of the electrons (y-direction),
the electron temperature (we assume that the ions are cold), and the plasma
density. Under the assumption that the x-derivatives of the perturbed quan-
tities are much greater than the x-derivatives of the unperturbed quantities
(semiclassical approximation) this system of equations reduces to a second -
order differential equation for ng:

2
T d*n, T g
e T|(©F ko) =k —o = 0. g
a5

The stability investigation reduces to the problem of finding the characteris-
tic values for Eq. (48). To satisfy the boundary conditions we choose solu-
tions that fall off in both directions going away from the solitary wave.
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Let us investigate the behavior of the function

F(x, ®, k) = (o + kvo)"‘—%k“-~

In a uniform plasma this function would be independent of x and the disper-
sion relation relating w and k would be of the form

F (0, k) =0. (49)

This equation yields unstable solutions when vi> T/m, thatistosay, when the
mean relative velocity of the ions and electrons is greater than the electron
thermal velocity. If k is not too large [k? « (w§/T)m]this equation can be
written approximately as

F(o, k)~ k(03— ) —

Thus

and w becomes imaginary (instability) when ve> T/m. Now, returning to the
inhomogeneous problem, let us consider the spatial behavior of the function

2
T ()
F (x, ®, k) ~ k*? ( 18 = 7)— TS(E)(%/T (in this approximation it is

sufficient to consider real «%. In Fig. 11 we show the profiles of v, and «f in
the solitary wave as a function of x. ne is described by an oscillatory solu-
tion where v% > T/m, i.e., where F(x, w, k)> 0. On the other hand, far from
the solitary wave we have F(x, w, k) < 0, corresponding to exponentially
damped solutions. These solutions are connected at the turning points, at
which F( x, w k) = 0. Thus, the required localized solutions always exist and the
instability appears if there is a region in which vA> T/m inside the solitary
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wave. The growth rate for this instability is known to be of order Qg [in a
"zero-temperature" plasma the maximum growth rate is still higher, being
no(M/m)‘/s]. Several simplifying assumptions have been made in obtaining
these results. The problem is somewhat more complicated in the general
case: the equation corresponding to Eq. (48) is a fourth-order equation and the
connecting points move into the complex plane of x. However, the instability
condition v3 > T/m remains unchanged.

The peak value of v, in the solitary wave increases as the Mach number

V 4nnM
M (W = u_Hono ) increases. There is a critical value of the Mach

(Mt = oM*) at which v, exceeds the mean thermal velocity of the electrons
so that the wave becomes unstable. Using the solution for the profile of the
solitary wave given earlier, we can show easily that for a cold plasma

(nT « H2/8T)

3 /8nngT\'/»
* A R | bl Lt
e/%~1+8(Hg> : (50)
Essentially this result means that by taking some care in analyzing inhomo-
geneous problems we can use the same criterion for the two-stream instability
as in a uniform plasma. Let us now verify the original assumption that the
growth time for the instability is appreciably smaller than the time for the

Hy

" 4ﬂﬂoM

solitary wave to move through the plasma region mi (
0

)—1 S,

Substituting v ~ g, we find H?, <« 41rnomcz.
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The development of the two-stream instability has an effect on the
initial nonlinear wave by causing an effective damping; the energy associated
with the ordered electron motion in the nonlinear wave is converted into the
energy of random electron Langmuir oscillations. In this sense the net effect
of the instability can be regarded as a kind of "collective" frictional force
between the electrons and ions [4, 17, 18].

Although we have been interested in the instability of a solitary steady-
state wave it is clear that similar considerations hold for other plasma waves
in a magnetic field. The two-stream instability pertains to only one particular
class of problems. The so-called "decay" instability, which can be observed
in periodic nonlinear waves [19], is of a more general nature.

We start our analysis of the "decay” mode with some general remarks.
In investigating the stability of stationary nonlinear waves (which for brevity
will be called the "background”) it is convenient to transform to a coordinate
system that moves with the wave. In this coordinate system the coefficients
in the linearized equations that describe the small deviation fromthe back-
ground are independent of time and the time dependence of the solutions can
be written in the form eiw!l. The problem then reduces to that of solving a
system of equations which can be written symbolically in the form

Lo =0, (651)

where T is a linear differential operator. The actual form of the operator de-
pends on the background and the characteristic frequency w, the determmatlon
of which represents the essence of the stab1hty investigation. The operator L
can be written as a sum of terms to and Ll. t is a differential operator with
constant coefficients while Ll is a differential operator that goes to zero to-
gether with the infinitesimally small amplitude of the perturbation used to
test the stablhty of the stationary wave, For a wave of finite (but small) am-
plitude Ll will be small and it is natural to use a perturbation-theoretic treat-
ment. In the zeroth approximation* the equation

Lyp=0 (52)
*If dissipation is neglected in the hydrodynamic approximation /l\,o is a self-

adjoint operator and its characteristic functions must correspond to undamped
waves.
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describes the oscillations of a uniform plasma with characteristic functions
proportional to eikr and characteristic values of w that satisfy the dispersion
equation w = «(k). In the first approximation in Ll we have diagonal matrix

elements < Qo I Lll ¢, —> in which the spatial dependence of Ll is given

by the factors e*iKof 1t is clear that the matrix elements will vanish if

each value of the frequency w corresponds to only one value of the modulus
of the wave vector k. The first perturbation-theoretic approximation gives a
nonvanishing contribution only when there are degenerate states for which one
value of w corresponds to at least two wave vectors (k; and kp). In this case
the quantities ky and k, must satisfy the relation

ky = ko + kg, (63)

and the fact that they correspond to the same frequency can be written in the
form wy = wy. If we now convert from the wave coordinate system to the
laboratory coordinate system the frequencies w; and w, will be different. The
following condition will be satisfied:

Q, = Qy + Q,, (64

where @, is the oscillation frequency of the background (Qq = keu) while
and g, are frequencies corresponding to the wave vectors ky and ky (@1 =

wy + kyu, Qp = wp + kpu). The conditions in (53) and (54) can be re-

garded as conservation laws for the quasi-energy and quasi-momentum in the
interaction (decay) of the quasi-particles that represent the waves. Herein-
after we shall call these the decay conditions, and the instability that arises
will be called the decay of a wave with fr.quency @, and wave vector Kk, into
waves with frequencies ©, and @, and wave vectors k; and k,. The decay con-
ditions are not necessarily satisfied for arbitrary dispersion relations w(k).
Curves corresponding to various kinds of spectra are shown in Fig. 12.

It is evident that decay can occur only for the spectra denoted by 1 and
4. Waves characterized by spectra similar to 2 and 3 are stable against decay.
However, if there are several branches in a spectrum, waves characterized by
spectra similar to 2 can be unstable against decay into waves which belong to
a different branch. To put the matter more precisely: decay is possible when
three points exist, corresponding to waves Qp, Q;, and Q, (in general these
three points can lie on different branches), such that it is possible to draw a
curve similar either to curve 1 or to curve 3 (in certain cases transitions be-
tween different branches are "forbidden" by polarization conditions). The




62 R. Z. SAGDEEV

Fig. 12

fact that the decay conditions are satisfied does not necessarily mean that an
instability will exist. If the correction to the frequency is computed in the
first perturbation-theoretic approximation it will be found that either the fre-
quence is imaginary, i.e., there actually is an instability, or that it is real, i.e.,
that the frequency is merely shifted. It is necessary to make a specific investi-
gation to determine what actually happens in a given case. The quantities Ay,
which characterize the background, can be written in the form

Ay = Ay + 28 (ko) sin kyr + 0 (847),

where ky is the wave vector. In what follows we shall neglect the O(5A§)
term, that is to say, we shall investigate the stability of the fundamental tak-
ing account of the interaction of the fundamental with small deviations from
the background. For this purpose we must first consider possible cases in which
the decay conditions can be satisfied.

Let us first consider the simplest case, a plasma with no magnetic field.
In such a plasma there are two branches: longitudinal electron waves and ion-
acoustic waves (Te » Tj). The electron waves are characterized by a spec-
trum corresponding to curve 2 (cf. Fig. 12) while the ion waves are charac-
terized by a spectrum corresponding to curve 3; consequently these waves
are stable when not coupled. However, coupled decays of the following form
are allowed:
electron wave

electron wave < g
ion wave

. electron wave
ion wave <
electron wave
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The decay of the longitudinal electron wave into a longitudinal electron

wave and a longitudinal ion wave represents one of the simplest examples of
a decay instability., The equations for small perturbations are of the form
’

0 "
(% +u 9 ) U‘.—iE:—Qavta(U" Sin kox),

Ox M
d du; a "
(7?7 +u 73?) n; +n, Tl;‘ = —2 5 {(ndv; + v,dny) sin kyx}, e
- T 0 T 0 3
eE -+ == a"; =9 7g--a(n,ﬁn,sm k%)

(this system of equations describes the ion wave). Here, v; andn;  are theion
velocity and the ion (electron) density.

The hydrodynamic forms of the electron equations are

p) a 1 ape a !
(3 8 5) Vet B+ gy G = — 2000 35 (0 s )+
a .
i ;’::8 +28n, - (n, sin kyx),
a d 0 :
(737 +u W) ne + Ny ;: =—2 % {(n.0v, + v,0n,) sin kyx}, (56)

(5 +u&) (v ) =2 22 (& 4 u d)x

X (ngsin kyx),

OE

== 4men.,,
where ve is the electron velocity; y is the adiabaticity index for the electrons,
which can be set equal to 3 in the one-dimensional case; pe is the electron
pressure; v and én are the amplitudes of the velocity and density of the elec-
trons and ions in the original electron wave whose stability is being investi-
gated. For reasons of simplicity we are treating a one -dimensional case, i.e.,
it has been assumed that quantities describing the small deviations from the
background depend only on the time and the x-coordinate (kg is in the x-direc-
tion).

In accordance with the stability scheme proposed above we now seek a
perturbation in the form of a superposition Cjef (0+kx) - C el (0tkx)  of
ion and electron waves. These wave are independent in the zeroth approxima-
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tion; however, coupling is provided by the right sides of Eqs. (55) and (56).
Using the conditions that must be satisfied in order to solve the equations for
Ci and Cg, after some simple but rather tedious calculations we obtain the
following expression for the square of the imaginary part of the frequency:

B0e\2 kou Q
v () (%t 60— ke S

where v = Yy py/ngm and @, and Q, are the ion and electron wave frequencies
in the laboratory coordinate system.

The decay conditions are written in the following form:

i|k1|:""o'—"|kzlv

58
+ kyu, = |/ 03 T 30T — )/ 08 F R, o9

where uj = Vpy/ngM.

Using Eqgs. (57) and (58) we can show that ~w?%> 0,that is to say, the
electron longitudinal waves are unstable against decay into an electron longi-
tudinal wave and an ion longitudinal wave. The most unstable waves are the
short waves (kg € %3 1/% is the Debye radius). In this case

Sv |‘/‘m“ 59
'vmaXNT —H.mo_ ( )

All of the above calculations have been carried out in the hydrodynamic ap-
proximation, i.e., the electron thermal motion has been introduced only by
including the electron pressure. It is well known, however, that thermal mo-
tion can also cause wave damping. This damping of the electron waves can
be neglected if k « . The damping is not, however, exponentially small for
the ion waves and instability of the background actually requires that the in-
equality v > vj must be satisfied, where vj represents the damping of the ion
waves. It is well known(cf., for example,[20]) that when pj « p,

vy = V-%—Ql V% (%0)

Comparing this expression with Eq. (59) we find that waves whose amplitudes
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satisfy the inequality év/u > ( m/M)s/ 4 will be unstable. Further, we note
from Eqgs. (567) and (58) that decay leads to electron oscillations with fre-
quencies smaller than the frequency of the background.

Carrying out a similar analysis for the second case of coupled decay we
can show that the ion waves are stable: the coupling between C; and C, only
leads to a frequency shift. Proceeding in the same way as in the first case we
can investigate the stability of various kinds of nonlinear periodic low -
amplitude plasma waves in a magnetic field. An investigation of this kind has
been carried out for the case of Alfvén waves [21]. It is well known in mag-
netohydrodynamics (not necessarily only for an incompressible fluid, but for
a gas as well) that the Alfvén waves are exact solutions for the nonlinear equa-
tions. Hence it might be thought that these waves could exist indefinitely
without change of form. Analysis shows, however, that the Alfvén wave de-
cays into two waves: an Alfvén wave and a slow magnetoacoustic wave (or a
fast magnetoacoustic wave and a slow magnetoacoustic wave). The growth
rates for the decay instability are proportional to the first power of the ampli-
tude of the initial nonlinear wave; thus, a low-amplitude wave can persist for
a long time without decaying.

A more exact investigation of the equations io«’ = il ¢ which arise in
the analysis of the decay instability shows that the form of the dispersion rela-
tion provides a means of telling whether the correction to the frequency will

be imaginary (instability) or real (frequency shift). If |Qo[> |Q1], |2 2], and if

the decay conditions (53) and (54) are satisfied the initial wave characterized
by frequency Q is unstable. It will be shown below that the decay instability
plays an important role in the theory of collisionless shock waves, a subject
to which we now turn our attention.

§3. Shock Waves in Collisionless Plasmas

A survey of the voluminous literature on collisionless shock waves that
has appeared in the last several years indicates the existence of completely
different, and even contradictory, opinions on this subject. As a first approxi-
mation we might divide these opinions into two classes,each class being
characterized by an opposite point of view:

1. Shock waves in which the thickness of the shock front is appreciably
smaller than the mean free path do, in fact, exist and all phenomena
that occur within the front can, in principle, be described within the
framework of the laminar theory, i.e., ordered nonlinear oscillations;

2. The anomalousdissipation in a shock front is related to plasma tur-
bulence.
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In addition, there is a third and negative point of view, i.e., that col-
lisionless shock waves do not exist at all. The arguments advanced by the
proponents of the various theories contain many weak points so that it is dif-
ficult to make a choice between them. For example, in the turbulence ap-
proach the instability mechanism responsible for the transition to the turbu -
lent state is not clearly indicated. On the other hand,the laminar theory is not
supported by unambiguous results; indeed, it appears that contradictory results
have been obtained in many cases. One feels that a natural and reasonable
approach to the theory of collisionless shock waves should start with a laminar
theory, based on the notion of regular oscillations (this step makes use of the
development in the preceding section). The stability of the solutions obtained
in this way would then be examined. Finally, in the unstable cases (and when
no laminar solutions exist) the turbulence question would be examined.

1. The laminar analysis can be formulated quite easily: it is sufficient
to take account of the effect of damping on the steady-state nonlinear waves.
In the absence of damping these waves imply reversible motion. Thus, the
state of the plasma after the passage of a solitary wave is found to be the
same as it was before. It is clear that taking account of dissipation must vio-
late reversibility so that the plasma state after the passage of the shock wave
must be different from what it was before. If the nonlinear motion is described
by the equations of mass, momentum, and energy conservation, in the steady-
state these equations must, by definition, connect states governed by the equa-
tions of the Hugoniot adiabat. If damping is neglected the plasma states
before and after the passage of the solitary wave satisfy the Hugoniot conditions
trivially. We now ask how the form of the solitary wave changes if dissipation
is included. The state following the passage of the solitary wave must be dif-
ferent from the original state, and this difference is obviously determined by
the dissipation mechanism and the magnitude of the dissipative effects.

On the other hand, the Hugoniot conditions do not depend on dissipation,
In the analysis of the thickness of a shock front in ordinary gas dynamics this
apparent paradox is resolved by saying that the shape of the transition layer
(thickness) depends on the viscosity, thermal conductivity, and so on. In a
collisionless plasma, however, the "thickness" of a solitary wave (for small
dissipation) is specified independently of the Hugoniot adiabat, by the dis-
persion properties. The resolution of this apparent paradox lies in the fact that
the plasma is in a "perturbed" state after the passage of the solitary wave: the
plasma supports intense oscillations whose contribution to the momentum and
energy flux must be taken into account. This picture implies that regular os-
cillations of finite amplitude must grow spontaneously within the shock front.
It is well known that the thickness of a weak shock front in ordinary gases is
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appreciably greater than the mean free path. Because of this circumstance it
is possible to investigate the structure of the shock front using the gas-dynamic
equations with dissipative effects included.

We start our analysis with shock waves in a plasma in a magnetic field.
In a collisionless plasma in a magnetic field in which the mean free path is
appreciably greater than the mean ion Larmor radius the formal gas-dynamic
description applies (for motion across the lines of force) within spatial regions
smaller than the mean free path. The only requirement is that all quantities
must not vary significantly over distances of the order of the Larmor radius. In
analyzing the structure of a shock front propagating across the magnetic field
in a collisionless plasma we shall assume that the Larmor radius is small com-
pared with any characteristic dimension in the front, noting that this condi-
tion imposes a limitation on the wave amplitude. Consider a cold plasma
(px H2/81r). The first damping mechanism we shall examine is Joule heat-
ing due to collisions between ions and electrons (as we shall see below, the
actual magnitude of the damping is of purely academic interest in the
present case). Our problem now is that of finding a set of differential equa-
tions for the quantities that characterize the plasma and the self-consistent
electromagnetic fields within the shock front and solving this set. We intro-
duce a coordinate system in which the wave front is at rest; the magnetic field
is along the z-axis and the zy-plane is the plane of the front. The electric
current is carried by the electrons in the y-direction (Fig. 13) and the electron
inertia will turn out to have an important effect on the structure of the front.
For reasons of simplicity we assume that the neutrality condition is satisfied

Fig. 13
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inside the front nj = ne, where nj ¢ is the number density of the ions (elec-
trons); this assumption is in accordance with the analogous problem on un-
damped nonlinear waves propagating across a magnetic field that was con-
sidered in §2.

The quantities that define the plasma and the fields are as follows: n;
H; v is the plasma velocity in the direction of propagation of the wave; v, is
the velocity of the electrons carrying the current; Ey is the electric field along
the y-axis (the Ex component of the field does not appear in the equations be-
cause of the neutrality condition). For these six unknown quantities we have
six equations: a) the equation for the conservation of particle flux; b) the
equation for the conservation of momentum flux; c) the equation for the
conservation of energy flux; d) the equation of rnotion for the electrons in the
direction in which electrical current is transported, the y-axis; e) and f) the
Maxwell equations for the appropriate components of curl E and curl H. The
original system of six equations can, after some simple transformations, be
reduced to a second-order differential equation for one of the variables, say H.
However, since the gas-dynamic approximation itself only holds for weak
shock waves, the equations can be simplified at the outset. In a weak wave
propagating in a cold plasma the plasma pressure differential will be negli-

gibly small compared with the magnetic pressure differential p/Hﬁ« (H—H,)/H,.

The equation for conservation of momentum flux can then be used to express
the plasma velocity v directly in terms of H and there is no subsequent need
for using the energy-flux conservation equation since p does not appear in the
remaining equations (the initial set of equations has been separated). When
these approximations are introduced the equations become

= (T + ) =0

(61)
dvy, e s
mno 3 = — enEy -+ —C-an — anvy,

dE,

dx :0’

o

The last term on the right side of the electron equation of motion denotes the
friction force excited on the electrons by the ions (¥ is the mean electron—ion
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collision frequency n < veo >, where n is the ion number density, o is the col-
lision cross section, and v, is the relative electron—ion velocity; v can be re-
garded as approximately constant within the front in a weak shock); M and m
are the ion and electron masses.

Eliminating all variables except H we reduce the set in (61) to the fol-
lowing differential equation:

—p®H
dx?

CHy—H M e an (e

8nMn,u® TV &

Here, Hy is the magnetic field in the plasma before passage of the shock wave
(for x = 9; ng is the unperturbed ion number density (electron); u is the
velocity of the shock wave with respect to the unperturbed plasma;

P me? ¢*

=g = —5.
4ane op

If the friction term is eliminated this equation is reminiscent of Eq. (31). The
only difference is that the present equation is limited to low amplitudes. Equa-
tion (62) describes an anharmonic oscillator with friction; H plays the role of
the generalized coordinate and x plays the role of the time.

The shape of the potential well is given by

! H + Hy) (63
V (H) :T(H~H0)2[—————‘IGJOM3}, —1]. )
viK)
#p H* ’/Vmax
Fig. 14
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Figure 14 shows the form of V(H). When

H=H -————~+l/8nn0Mu+

V(H) reaches a minimum. Using the analogy with the oscillator case it is a
simple matter to establish the profile of H inside the shock front; H oscillates
about the value H*, with an amplitude that is damped until H = H* , which
corresponds to the magnetic field behind the shock front. If Hy is to correspond
to the minimum magnetic field in the wave, i.e., in order for V(H) to have the
form shown in Fig. 14, the condition u?s Hg/41rnoM must be satisfied. When
v — 0 the maximum amplitude, reached at the end of the first half cycle, is

Hpax= 40V angM —

The explicit form of H(x) cannot be found; however, if the damping per
period is small it is possible to use a simple approximate method—the so-called
method of slowly varying amplitudes, in which averages are taken over the
fast oscillations. In the absence of friction the motion of the "particle™ in the
potential well is determined by the single constant ¢, which represents the
total energy of the particle (cf. Fig. 14). Then, the inverse functional de-
pendence of x on H reduces to the quadrature

dH

_S‘V(H—Ho)”[l _%]“LC

Suppose that the solution of the frictionless problem is H = & (x, C). Using the
method of slowly varying amplitudes we can seek a solution (taking account
of friction) in the form H = & (x, Cy), where C is now assumed to be slowly
diminishing function of x (as a consequence of the "dissipation" of energy).
When averages are taken the dependence of C on x is given by the equation:

® 1
® —, (64)

N == 2 P
dx T @ . (65)
[(Ve—m[ TG e
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Here, &, , represents the two positive roots of the equation

(@ + Ho)? N 6
(cD—Ho)z[x—W]Jrc_o, (66)

which are larger than Hy. The problem is thus reduced to solving Egs. (64)
and (65). When x — « we have as a boundary condition H - H,, dH/dx =0,
i.e., C - 0. Both equations have simple asymptotic solutions for small C.
Thus, &(x,0) is of the form

(D(x,O)zHo[l—i—Q(cy;{“——l)shz% mz—l],

which obviously coincides with the profile of the low-amplitude solitary wave

4nM nou’ 1

(cf. §2) where off = ( i ) /', the magnetic Mach number. When
0

C — 0, Eq. (65) becomes

i€ 4 v HBEx—1p (67)
7RI U e T e T T
oS
HyV o#% — 1
whence we find
V=i _. 4 % o 3 68
Cln—-o—-—:mf\,—ETBHo((%—l) x+C0nSt. ( )

When C is large, in which case the amplitude of the oscillations is reduced
appreciably compared with the initial oscillation, the solution is a damped
sinusoid

H—H*~e%xsin(' y}{-——l—"—).

a

The profile of H inside the shock front can be described as follows
(Fig. 156). There first appears in the unperturbed plasma a solitary wave, at
the crest of which the magnetic field reaches its maximum value; as a re-
sult of irreversible dissipation (friction) the state of the plasma after the pas-
sage of this wave is somewhat different from the initial state. At a distance
of order
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g
Fig. 15
b I Y
=1 e kB (69

behind the first wave there is a second wave, and so on. If one is not in-
terested in the exact structure of the oscillations in the shock front and con-
siders averages over distances greater than §,the quantity § can be taken as
the effective thickness of the shock_ front which connects the two plasma
states; the unperturbed state (before the passage of the wave) and the perturbed
state (modulated by intense oscillations); obviously the contribution of those
oscillations must be taken into account in computing the conservation relations
at the jump. In this sense the damping is really academic since the expression
for & (69) (width of the shock front) contains the damping in the argument of
the logarithm [22].

The damping of the nonlinear waves behind the shock front proceeds in
the following way. The amplitude diminishes gradually in the sequence of
solitary waves and the spacing between neighboring peaks in the magnetic

field is reduced to —%, with the sequence of peaks and valleys becom-
ing a damped sinusoid. The total damping length is of order A
& i (70)
v

This formula does not apply unless the Mach numbers are close to unity since
7 will be changed within the shock front. However, A can be estimated using
the simple expression u/<v >, where <w> is the mean frequency of electron—
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Fig. 16

ion collisions. Expressing quantities in terms of the mean free path A =7V, /v

(Ve is the mean relative velocity of the electrons with respect to the ions) we
find

A, (71)

whence it is evident that the collisional damping length corresponding to the
present approximation can be appreciably smaller than the mean free path (if
'8—1%7”@ & l). This result is a reasonable one because the electron tem-
perature is increased by the Joule heating and the electron relaxation time

is generally much smaller than the ion relaxation time because the electron
velocity is higher. The ions and electron temperatures will be equalized

Fig. 17
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when the oscillations inside the front are damped, at distances of order
AM/m)Y2,

There is another limitation, in addition to those noted above, when high
Mach numbers are considered. Although the plasma may be cold in the un-
perturbed state, it ultimately becomes so hot that the electron Larmor radius
becomes comparable with the characteristic wavelength c/wy. This situation
arises when the electron pressure becomes comparable with the magnetic pres-
sure nT ~ Hz/8'n'. On the other hand, the behavior in the initial stages will
be of the same general nature as that described above for reasonably large
Mach numbers. The oscillatory solution for the profile within the shock front
as seen in the phase plane (H', H) will exhibit the pattern shown in Fig. 16
(this is to be compared with the corresponding integral curves in the absence
of damping shown in Fig. 5).

It is instructive to establish the relation between the solution obtained
above for a collisionless plasma and the familiar expression for the shock front
obtained in plasma magnetohydrodynamics for the analogous case of a weak
wave propagating across a magnetic field

R i (72)

where 7 is the so-called magnetic viscosity (9, = ¢*/4m0, o = ne?/mv).
The point H = H* is a singular point of the equation (62). Up to now, in
treating collisionless plasmas we have beentacitly assuming that the damping
[last term in Eq. (62)] is small and that the point H* is automatically a

focus. However, in a dense plasma the singularity at H* becomes a node (Fig.
17) when

c c2mv. | H(')/”
@ dmne*u V6 (H* — Hy)'l* ' (73)

In contrast, in the limiting case in which

¢ Amv

w_o < 4nnetu
we obtain the familiar hydrodynamic profile, determined by the magnetic
viscosity. The thickness of the shock front is then given by Eq. (72).
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2. What effects can be expected from the small "collisionless” damp-
ing due to those particles whose velocities are approximately the same as
the velocity of propagation of the shock wave [14, 23]? The damping is es-
sentially due to the acquisition ofenergy by the ions reflected from the poten-
tial barrier in the shock front (Fig. 18). The magnetic field is not importait
in such a reflection if the ion Larmor radius is appreciably greater than the

e : c 1
characteristic scale size of the wave oy A—T*

The greatest number of reflections occur at the first solitary wave (if
collisions and the "turning" effect of the magnetic field are neglected,
reflections occur only at the first solitary wave). It is difficult to treat the ef-
fect of ion reflections quantitatively and we shall not attempt to do so (this
calculation is given below for the simpler case of a wave in the absence of a
magnetic field).

We wish to point out a curious acceleration mechanism that operates on
certain ion bunches in such a shock wave. Ions whose velocities are very close
to the velocity of the shock wave will have small Larmor radii. Upon being
reflected from the potential barrier they are immediately "turned" by the
magnetic field and reflected again; this process occurs several times. After
several reflections (Fig. 19) these ions acquire a very high velocity in the y-
direction (in the plane of the front and transverse to H). However, this veloc-
ity cannot become arbitrarily large because as v,, increases the Lorentz
force (e/c) v,H becomes important in the region of the barrier; ultimately
this force becomes greater than the "reflection” force —eV ¢, and the ion passes
through the barrier. The maximum energy of such an ion is of order (M/m) *
Mu?/2, where Mu?/2 is the mean energy of the ordered motion executed by
an ion in these oscillations.
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Another possible mechanism for collisionless damping is represented by
any instability that tends to convert the energy of the ordered oscillations into
energy of random motion. Here we shall make use of the results of the earlier
sections, The most obvious instability candidate for a nonlinear wave
in a magnetic field is the two-stream instability, which can arise when the
mean ordered velocity of the electrons (with respect to the ions) is greater
than the mean thermal velocity (vy > ¥I/m). This condition is satisfied for
waves in which the Mach number is greater than

o143 (2T

[cf. Eq. (50)]. Physically the instability means that electrons moving with
respect to the ions are not only retarded by ordinary collisions [the last term
in Eq. (62)], but are also retarded by a specialized frictional force of col-
lective nature —the coherent emission of plasma oscillations as a consequence
of the instability. A rough estimate of the magnitude of this effect can be:made
on the basis of the following considerations: in the expression for the electrical
conductivity o ¢ ~ ne*/mv the quantity v is now taken to mean the reci-

Fig. 19
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procal time for the loss of electron energy by virtue of the instability. This
can reasonably be of the order of the effective growth time for the instability,
that is to say,

ne®
qeff ~ m . (74)*

If the condition o/ => o/* is satisfied the behavior at the leading
edge of the shock is determined specifically by this damping effect. In the
picture of the effective potential well V(H) the structure of the front will be
qualitatively that shown in Fig. 20. The sharp retardation of the particle at
the beginning is due to the effect of the instability. Then, as the amplitude
of the fluctuation decreases (as the temperature rises) the instability is sup-
pressed and further retardation is inhibited [17]. The main point here is that
the damping of the oscillations in this region can be anomalous because of
the decay instability.

3. Up to this point we have been considering the structure of a wave
propagating in a cold plasma at precisely right angles with respect to the mag-
netic field. The earlier analysis can now easily be generalized to the case in
which propagation is not exactly perpendicular to H. Dispersion effects are
extremely sensitive to the direction of propagation. If the wave does not pro-
pagate exactly perpendicularly the dispersion equation relating w and k is of
the form given by Eq. (20) of §2 and the characteristic dispersion length is

Fig. 20

* This means that when the instability condition v, > m is satisfied we have
an anomalous electrical resistance leading to anomalous dissipation. This ef-
fect has, in fact, been observed experimentally in high-amplitude waves in a
plasma in a magnetic field [24].
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(C/Q¢) 6 (when Ym/M « 6 « 1). The electron inertia is not important in
these waves, but it is now important to take account of the fact that the plasma
is a gyrotropic medium. The starting equations for this case

dv
M T = €E+ —V-H,
9+ divav =0,
—eE+%v>< H=0, %%—l-dnvnv;o,

1 6H
rot E = S <wry

4
rot H= =222 (v — )

can be reduced to the form

av H* | (HV)H
e =~ Vax T dm
9% | diveV =0 5
3t VoV =0, (75)
dH Mce dv
T =l'0tv X H— TTOtT.

The term(Mc/e)rot (dV/dt) is responsible for the deviation from linear
dispersion at large k. The stationary solution of this set of equations (in which
we must include the Joule dissipation as in the earlier case) describes the

H
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profile of the shock wave. When Ym/M « 6 « 1, the equation describing the
magnetic field profile in the wave is [17, 25]

2
A agdH Hy H? dH 7
Eg—e W'—H Lo 8rgeu? -8n90u3}_H°+a dx * 78

Here, both the dissipation length[c/w, is replaced by (c/§¢)©]and the nature of
the dispersion (w/k increases as k increases) are changed. Comparison of

Eq. (76) with Eq. (62)shows that the sign of the "effective mass™ has been
changed. If the damping term o dH/dx is neglected Eq. (76) describes a non-
linear periodic steady-state wave. The solitary wave (Fig. 21) is a particular
solution, but in this case this solitary wave is a rarefaction wave. The profile
of the shock front will be of the general form shown in Fig. 22. It is curious
to note that the magnetic field inside the shock now approaches a minimum
value which is smaller than the magnetic field in the unperturbed plasma.

The damping length due to the usual frictional force is of order
H2 \'s (17
A~ ()

The principle difference from the preceding case is the fact that the leading
edge of the oscillation front is not sharp. For this reason it might appear that
we are not dealing with a collisionless shock because Eq. (77), which gives

A (the damping length),contains A, the mean free path. However, the disper-
sion relation for these oscillations w(k) is precisely of the class in which the
nonlinear periodic waves are unstable against decay [26] (cf. §2). As a con-
sequence of the decay instability the nonlinear ordered oscillations are
damped much more rapidly than is indicated by Eq. (77) since their energy is
converted into the energy associated with a broad noise spectrum. The damp-
ing length A obtained in this way can be identified with the thickness of the
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shock front. To find A we must be able to determine the noise level that
arises as a result of the decay instability and the feedback effect of this noise
on the background. This problem, which is obviously a very complicated one,
has not yet been solved (an attempt to estimate A has been reported in [8]).

It is reasonable to assume that A is of the order of several oscillation lengths
(the problem has no other characteristic scale length other than the wavelength
of the oscillations).

Thus, the analysis of the laminar structure of nonlinear oscillations in-
side a shock front reduces to two different cases (Fig. 23): 1)The case in which
the dispersion curve w(k) is of the form denoted by 1 (waves perpendicular to
H in a cold plasma); in this case the leading edge of the front is sharp (all
phenomena start with solitary waves)and one can speak of a collisionless shock
wave even in the laminar theory; 2) the case in which the short waves have a
higher propagation velocity than the long waves (the curve denoted by 2). In
this case the leading edge of the wave front becomes smeared out because the
short waves outrun the front. Anomalous damping is required in order for a
collisionless shock to exist in this case. The origin of this damping can be the
decay instability (which is inherent in a spectrum of the type denoted by 2).
The plasma becomes turbulent as a result of the development of this instabil-
ity. The evaluation of the shock thickness is simple in the first case; in the
second case, however, a quantitative analysis is extremely complicated.
Nevertheless the mechanisms which are important in this case are already
qualitatively clear.

There are other examples which can be related to one or the other of
the two cases that have been analyzed. For instance, a shock wave propagat-
ing across a magnetic field in a high-pressure plasma (p > H2/ 8m) is to be as-

/et

Fig. 23
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sociated with the second case noted above since the corresponding dispersion
relation (cf. §2) can be classified as a type 2 relation. The ion-acoustic
wave in a two-temperature plasma (Te > T;) is characterized by a type 1
spectrum so that the question of a collisionless shock wave can be resolved
within the laminar formulation.

4. In order to establish the profile of the shock front in the ion-acoustic
case we proceed by analogy with the preceding analysis. In the absence of a
magnetic field nonlinear steady-state oscillation can be excited when T > Tj.
If damping is neglected the equation that describes the potential profile of ¢
in this wave [cf. Eq. (37)] is

d*p u = dv ()
—— =g | ———=—¢ 7 =_—d%—’ (78)

dax
=

where V( ¢) is the effective potential energy. We shall asume that the usual
dissipation due to the ion—ioncollisions is absent but shall take account of
the reflection of ions from the leading edge of the front; this process plays
the role of a collisionless dissipation mechanism.

The structure of the collisionless shock wave that arises under these
conditions can be described by the following simplified picture. In the ab-
sence of any dissipation we have a solitary wave, which is represented by a
symmetric potential barrier. However, there always are ions that are reflected
from the moving potential barrier (even if the number of such ions is arbi-
trarily small) causing an asymmetry to arise; beyond the barrier there are
periodic oscillations. The net result is a peculiar kind of shock wave which
connects two different plasma states: the unperturbed state (in front of the
shock) and a state with intense ordered oscillations (behind the front). A cor-
rect "shock adiabat™ must take account of the additional contributions to the
energy and momentum fluxes associated with these ordered oscillations be-
hind the front. It should be noted, however, that the distribution of energy
between the thermal motion and the oscillations depends on the actual col-
lisionless dissipation mechanism. The shock profile can be determined if the
number of reflected particles is small. The potential profile in the wave is
shown in Fig. 24. In the absence of dissipation ¢ = ¢ and A\ = «» and we have
the symmetric solitary wave.

If ion reflections are taken into account the potential in region I (cf.
Fig. 24) is described by an equation which differs from Eq. (78) by the pres-
ence of additional terms on the right side:
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— drngef (¢;) ——ee— + 2- 47 ef (¢).
3 2e
=

The first term corresponds to subtraction of the reflected ions from the total
number of ions ny; the second term represents the contribution of the reflected
ions. The quantity ngf(¢) is the total density of the reflected ions at a point
characterized by the potential ¢ (the actual form of f can be found easily if
the unperturbed ion velocity distribution is known).

The potential jump ¢ is associated with ions that are reflected from
the potential barrier and escape to infinity; in the case being considered here,
in which the number of reflected particles is small ( f « 1), the potential jump
oy is proportional to f. However, ¢, will be proportionalto the square root of
the number of reflected particles so that ¢; « ¢,. The plasma state behind
the front (region II) is characterized by the quantities ¢, and ¢, which deter-
mine the amplitude of the oscillations and their wavelength \; Eq. (78) holds
in this region.

By solving the potential equation in regions I and II taking account of
the continuity requirements on ¢ and d ¢/dx we can find the potential profile.
If the analogy with the motion of a particle in a potential well V(¢) is again
invoked it can be shown that the effect of the reflected ions is essentially to
make the total energy C negative. This leads to periodic motion (a periodic
structure behind the shock front).

The reduction energy C is proportional to the number of reflected ions

Fig. 24
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Pmax

— G offm:)dcp.

Since the potential energy V(¢) varies quadratically at small ¢ the turning
point ¢ is proportional to the square root of the energy —C

g2~V —C,

and the oscillation period increases logarithmically as the energy is reduced
1
A~In —-C:

Thus, the minimum value of the potential behind the front ¢, is

o 7 Pmax a .

o/ u
‘Pz=—-——<— f(‘P)d(P) M =)

Vi —1 \ € oj _X;_ (19
The value of ¢ .. is very close to the corresponding value in a solitary wave

with the same Mach number.

The wavelength at the front is [27]

ot A Y Y2 Pmax

where A ~ 1.

5. We have not yet encountered cases in which a laminar analysis
of the shock front is not applicable. This situation arises in the examples that
have already been considered if the amplitudes become so highthat steady-state
nonlinear waves cannot be sustained. We first consider the case in which the
shock wave propagates across a strong magnetic field in a cold plasma. At low
values of the Mach number we know that ordered oscillations are sustained
within the shock front. The ordered oscillatory structure is destroyed when
the magnetic field in the wave becomes twice as large as the initial magnetic
field. Indeed, it follows from § 2 that a solitary wave is not formed at these
amplitudes (which correspond to Mach numbers greater than 2); furthermore
it is impossible to formulate a steady-state nonlinear flow with a unique
velocity, that is to say, a flow in which the ion velocity has a single value at
a given point in space. Physically this means that the wave breaks as soon as
the amplitude reaches a cricital value (H, . = 3Hg). There is then a point
in space at which the fast ions overtake the slow ions (Fig. 25), and the velocity
profile becomes triple-valued at this point.
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Fig. 25

It is interesting to note that the analogous effect has been studied quite
throughly in the theory of finite-amplitude waves on the surface of a heavy
liquid in a channel of finite depth. The latter case also gives rise to nonlinear
steady-state solitary waves and periodic waves and these waves also break at
high amplitudes. It is clear that any rigorous mathematical analysis of the
breaking phenomenon would be extremely difficult. We shall content our-
selves with a qualitative analysis of some of the important features which are
analogous to those in waves in a liquid.

The basic problem is to ascertain whether breaking means that the
plasma motion enters a steady-state regime or whether the transition region
(shown cross-hatched in Fig. 25) continues to spread without limit, as is the
case in an ordinary collisionless gas. In the case of surface waves in water,
breaking is followed by a steady-state flow called a water surge or "bore,"
characterized by a transition region of finite thickness; this is usually re-
placed by an idealized mathematical surface which divides the two plane
parallel flows. The appropriate conservation laws must be satisfied across this
surface. In some sense the bore is the analog of the shock wave. The sta-
tionarity of the width of the transition layer arises physically because those
parts of the profile which move ahead in breaking ultimately describe an arc
and fall under the effect of gravity, becoming "mixed" with the portions that
are at rest. In the plasma the role of gravity is played by the magnetic field,
which forces the ion to gyrate. As long as the ion velocity distribution is far
from Maxwellian the plasma states on both sides of the transition region can be
connected by the conservation laws for mass, momentum, and energkr; by
the energy of the thermal motion we are to understand (M/2) (v—¥)* (the bar
means an average over the velocity distribution). The width of the transition
region can be estimated as the radius of curvature of the ions after breaking oc-
curs in the magnetic field [22]. Inasmuch as the peak velocity v3H/V4mg ,
in a wave characterized by a Mach number greater than 2 the width of the
transition layer (the width of the collisionless shock wave) is of order
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vMce ¢ g 4nne?
S~ -~ (9= ). (81)

The multivelocity flow with velocities perpendicular to the magnetic
field, which arises after breaking, is necessarily unstable. For simplicity let
us consider a double-humped ion distribution with a velocity difference be-
tween the humps greater than VI/M; this distribution results in an instability
with excitation of waves characterized by wave vectors almost parallel to the
beam velocity. A bore also exhibits an instability of similar nature (opposed
flows); this is simply the instability due to the tangential discontinuity
between the incident jet and the surface of a liquid at rest.

If the characteristic dimensions of the regions of multivelocity motion
are appreciably greater than the wavelengths of the instabilities that arise it
is valid to make use of the stability analyses for a uniform plasma. For ex-
ample, in the case of two opposed ion flows moving across a magnetic field
with velocities vy and —v, the dispersion equation is [28]

2 | |
mleHg = To— kug)? + (0 + kvg)* * (89

The maximum growth rate is of order (wH; wy,)'/2. When vy €H/¥ZmnM the
characteristic wavelength of the instability is of order ¢/wy. Thus multivelo-
city motion across a magnetic field is unstable.

On the other hand, if the plasma is hot it is necessary to take account of
the velocity spread and the dispersion equation given in (82) no longer holds.
When vri ~ HA4T the maximum growth rate for the instability is of order

and the corresponding wavelength is of order ¢/Qq. These quantities
then characterize the thickness of a shock front in a strong magnetic field.*

* A numerical calculation for one-dimensional, high-amplitude plasma mo-
tion across a magnetic field in which the flow becomes multivalued (and un-
stable) appears in [29]. In particular, wheno#= 5.8 the effective "mixing
length" (the thickness of the front) is found to be 3.4 1j.

Kantrowitz and Petschek [7] have formulated a phenomenological theory
for the turbulent structure of a shock front propagating across a magnetic field.
These authors assume that some unknown plasma instability gives rise to a
broad spectrum of waves at the very beginning and that the interaction between
the various modes is responsible for the transport of energy and momentum.
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6. In theforegoing we have considered the question of collisionless tur-
bulent shock waves in a plasma with propagation occuring across a strong mag-
netic field. A magnetic field parallel to the plane of the shock front confines
the hotter particles and inhibits the expansion of the transition layer between
the unperturbed cold plasma (in front of the shock wave) and the heated
plasma behind the wave. A number of authors have also discussed the pos-
sibility of collisionless shock waves in a plasma with no magnetic field. It is
proposed that the mechanism responsible for inhibiting the expansion of the
transition region in this case is the two-stream instability [30]. This approach,
however, does not take account of the thermal spread within each of the beams.
A more rigorous analysis, which includes the thermal motiom, does not give
an instability for Mach numbers ranging from unity up to approximately
(M/m)-‘l2 if the electron temperature is comparable to or smaller than the ion
temperature (M is the ion mass and m is the electron mass; cf., for example,

(311).

This problem does not arise in a two-temperature plasma (Tg > Tj)
since it is possible to formulate a laminar analysis. However, another ap-
proach is needed when oMl > 1.6, because of the breaking phenomenon. One
possible method is based on the familiar velocity anisotropy instability.

When the faster ions from the region behind the front enter the unperturbed
plasma in front of the shock the ion velocity distribution in this region becomes
anisotropic. This plasma state is known to be unstable and random fluc-
tuations of the electric and magnetic fields arise. The thickness of the shock
front in this case is then a quantity of the order of the mean free path of the
ions with respect to scattering on these nonequilibrium fluctuations. To the
degree that "rigor” can be achieved in the theory of turbulence, it can be said
that this problem has been resolved in [27]. However, here we shall be con-
tent with some very qualitative physical estimates.

Assume that H = 0 in the unperturbed plasma. Let 1is now try to under-
stand the physical meaning of the anisotropic instability in this case. We
consider a plasma in which the mean particle energies are different in the x
and y directions [ex,y = M (V —V)’, withey > ex] and introduce a perturba-
tion in the form of an arbitrarily small fluctuation of the magnetic field, as-
surning that the field is in the z direction (Fig. 26). The anisotropy in the
distribution can cause this perturbation to grow. Consider particles moving
along the y-axis close to the point x,, where the magnetic field changes sign.
These particles are subject to a Lorentz force Fy = (e/c) Hv,. Particles for
which vy > 0 will be pushed toward x, and particles for which vy < 0 will be
pushed away from x,. Thus, a concentration of particles with vy > 0 tends to
build up near xy. This implies the appearance of an electric current jy' The
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direction of this current flow is such as to increase the original fluctuation in
the magnetic field and the ultimate result is an instability. However, we have
not taken account of the stabilizing effect of the thermal motion along the
x-axis, which tends to inhibit the concentration of particles with the same
sign of vy. In general, there is no instability if g = & y- However, when

&y > &x this inhibiting effect cannot quench the instability if the wavelength
is long enough. The critical wavelengths for these perturbations can be es-
timated easily. We need only consider two forces: the Lorentz force, which
tends to move the system away from equilibrium, and the counteracting force
which, for estimation purposes, can be taken to be the pressure gradient along
x. If the instability is to occur the following condition must be satisfied:

% v, nedH > grad Mulén, (83)

where §H and én are the fluctuations in magnetic field and density. On the
other hand, 6H and én are related by the Maxwell equation

rot 6H ~ 4T"[tevyébn. (84)

Fig. 26
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Writing 6H and én in a form ~elkX and using (84) we can write (83) as

B o, o
c_‘A vy > kvx;

whence, assuming that vi and vi, are of the same order, we find the charac-
teristic wave number k
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where 03 = 4wne’/M. The entire effect is obviously associated with the ions,
that is to say, the ions carry the basic energy.

Assume that a perturbation arises in some region of a collisionless
plasma. In the absence of any confinement mechanism the perturbation will
spread in the course of time because of the gradual loss of the faster particles.
However, when these particles arrive in new regions an anisotropy is produced
in the velocity distribution and this leads to an instability; the disordered mag-
petic field that results obviously scatters particles in much the same way as
collisions and there is a possibility of propagation of a nonspreading perturba-
tion which is of the same nature as a shock wave, as in ordinary gas dynam-
ics.

Now let us estimate the fluctuation §H in the nonlinear regime of the
growing instability. It might be expected that the magnetic-field fluctuation
would increase up to the point at which almost all of the surplus ion energy
nAe (due to the anisotropy) is converted into magnetic field energy(éHz)/ 8w
(we assume for simplicity that Ae ~ € ~ T). However the electrons, which
have not been taken into account as yet, are found to have a quenching ef-
fect which holds (8H)? to a rather low level. As soon as the mean electron
Larmor radius becomes of order A ~ 1/k, the wavelength of the perturbation
which characterizes the spatial magnetic inhomogeneity, the electrons are
frozen in the magnetic field. Any further increase in magnetic field requires
an enormous increase in electron energy because of the conservation of the
adiabatic invariant pg = mvﬁ_/ZH. Thus, it is reasonable to estimate §H from
the condition rjj, ~ 1/k, thereby obtaining

(6H?) m
8 ~ —M—nT (86)
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The ion scattering in this magnetic field is of a diffusional nature. The
diffusion coefficient (in velocity space) can be estimated easily:

e2 (8H)2 —
D~ S O (87
Thus, we find the ion "scattering” time r ~ vf/D and the corresponding mean
M
free path [ ~ r-u; ~ = ——Qc . These quantities then determine the order
0

of magnitude of the shock thickness

m Q" (88)

Qo =~ m for M—l<l; (89)

in this theory the dependence on wave amplitude is also taken into account.

A similar analysis can be carried out for a plasma in which there is
initially a weak magnetic field (H*/81 «nT). Starting at H ~ §H , the shock
front is compressed with increasing H [27, 32].

7. It thus appears that the general methods of shock-wave analysis can
be applied far beyond the bounds of ordinary gas-dynamic theory, which is
based on the notion of a mean free path with respect to two-particle collisions;
in a rarefied plasma the primary feature is the existence of cooperative phe~
nomena—plasma oscillations. At the present time there does not exist a uni-
fied theory for plasma shock waves from which the results for particular cases
can be obtained automatically. The varjety of effects associated with col-
lective phenomena is fartoolarge. In this review we have only summarized
various limiting cases and approaches with which it possible to understand
some of these new ideas and to compare them with ordinary gas dynamics:
some of these important features are the dispersion effects, the microscopic in-
stabilities, collisionless damping etc. Correspondingly, various limiting cases
give rise to "scale” lengths which characterize the thickness of the shock
front [the Debye radius, Larmor radius(C/Q4) M/m , and so on].

Unfortunately, at the present time almost no systematic laboratory ex-
periments on shock waves in collisionless plasmas have been reported. How -
ever, individual effects which constitute the basic ingredients of the theory of
collisionless shock waves have been experimentally verified in recent years.
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One indirect verification of the theory is furnished by the rapid initial
phase of geomagnetic storms. As far back as 19556 Wilde concluded that the
rapid rise of the earth's magnetic field (several minutes) in the first phase of a
magnetic storm could only be explained by assuming that solar flares generate
shock waves in the interplanetary gas. Assuming that the ion density in the
interplanetary plasma n ~ 10* em™® and using Eq. (88) we obtain a shock front
thickness of order 10°=10" ¢cm which, for a velocity 108 cm/sec, yields a
characteristic time of one minute.
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