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Principle of Maximum Likelihood 

 

• Best estimates of X and s from N 

measurements (x1 - xN) are those for which 

ProbX,s (xi) is a maximum 



Upon flipping a coin three times, what are the 

chances of three heads in a row? 

Clicker Question 8 

(a) 1 

(b) 0.5 

(c) 0.25 

(d) 0.125 

(e) 0.0625 



What are the chances that two people in this 

room have a Birthday within one day of 

someone else? 

Clicker Question 8.5 

(a) > 80% 

(b) 60 - 80% 

(c) 40 - 60% 

(d) 20 - 40% 

(e) < 20% 
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Weighted averages (Chapter 7) 

 



Weighted averages 

• X = x =                     where  wi =  

 

 

 

•  swav =  

 1 

si
2 
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Two measurements of the speed of sound give the answers: 

uA = (332 ± 1) m/s and  uB = (339 ± 3) m/s.   

What is the random chance of getting two results that is  this 

difference ? 

Clicker Question 9 

(A)  2 % 

(B)  3 % 

(C)  4% 

(D)  8 % 

(E)  40% 





Two measurements of the speed of sound give the answers: 

uA = (332 ± 1) m/s and  uB = (339 ± 3) m/s.   

What is the best estimate (weighted mean)? 

Clicker Question 10 

(A)  336.5 ± 2 m/s 

(B)  336 ± 2 m/s 

(C)  336.5 ± 0.9 m/s 

(D)  332.7 ± 0.9 m/s 

(E)  333 ± 2 m/s 



b) Best estimate is the weighted mean:  



Linear Relationships: y = A + Bx 

(Chapter 8) 

• Data would lie on a 

straight line, except 

for errors 

• What is ‘best’ line 

through the points? 

• What is uncertainty in 

constants? 

• How well does the 

relationship describe 

the data?  

0 2 4 6 8
0

2

4

6

8

Slope = 1.01 

 

 

Y
 v

al
u
e

X Value



Analytical Fit 

• Best means ‘minimize 

the square of the 

deviations between 

line and points’ 

• Can use error analysis 

to find constants, error 
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The Details of How to Do This 

(Chapter 8) 

• Want to find A, B that 

minimize difference 

between data and line 

• Since line above some 

data, below other, 

minimize sum of 

squares of deviations 

• Find A, B that 

minimize this sum 



y  A Bx



yi  y  yi  ABxi



(yi  A  Bx i)
2

i1

N







A
 y i  AN  B x i  0



B
 x iy i  A x i  B x i

2  0

 deviation 

     of yi 

y 

yi 



Finding A and B 

• After minimization, 

solve equations for A 

and B 



A 
x i

2 y i  x i x iy i


B 
N x iy i  x i y i



  N x i

2  x i 
2





A
 y i  AN  B x i  0



B
 x iy i  A x i  B x i

2  0

•   Looks nasty, not so           

 bad… 

•   See Taylor, example 

8.1 



Uncertainty in Measurements of y 

• Before, measure 

several times and take 

standard deviation as 

error in y 

• Can’t now, since yi’s 

are different quantities 

• Instead, find standard 

deviation of deviations 



s x 
1

N
(xi  x )2

i1

N





s y 
1

N 2
(yi  A Bx i)

2

i1

N





Uncertainty in A and B 

• A, B are calculated 

from xi, yi 

• Know error in xi, yi ; 

use error propagation 

to find error in A, B 

• A distant extrapolation 

will be subject to large 

uncertainty 


sA s y

x i

2


sB s y

N



  N x i

2  x i 
2



Uncertainty in x 

• So far, assumed 

negligible uncertainty 

in x 

• If uncertainty in x, not 

y, just switch them 

• If uncertainty in both, 

convert error in x to 

error in y, then add 

errors 

actual 

error in x 

equivalent  

error in y 



y  Bx

s y (equiv)  Bs x

s y (equiv)  s y

2
 Bs x 

2



Other Functions 

• Convert to linear 

• Can now use least 

squares fitting to get ln 

A and B 



y  AeBx

ln y  ln A  Bx



Experiment 3 
 

• Goals: Test model for damping 

• Model of a shock absorber in car 

• Procedure: develop and demonstrate critically 
damped system 

• check out setup, take data, do data make sense? 

• Write up results - Does model work under all 
conditions, some conditions? Need modification? 



Simple Harmonic Motion 

• Spring provides 

linear restoring force 

 Mass on a spring 

is a harmonic 

oscillator 



F  kx

m
d2x

dt 2
 kx



x(t)  x0 cost



T 
2





 
k

m



x  x0



x  0
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Damped SHM 

• Consider both position 

and velocity 

dependant forces 

• Behavior depends on 

how much damping 

occurs during one 

‘oscillation’ 



m
d2x

dt2
 kx b

dx

dt


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Relative Damping Strength: 

Weak damping 
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Relative Damping Strength: 

Strong damping 
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Relative Damping Strength: 

Critical damping 
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Comparison of the various types 

of damping 
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Terminal Velocity 

For velocity:      y(t) = vt[1 - e-(b/m)t] 

. 



Experimental Setup for Falling 

Mass and Drag 

How do you measure velocity? 



Plotting Graphs 

Give each graph a title 

 

Determine independent and dependent variables 

 

Determine boundaries 

 

Include error bars 



Demonstrate critical damping: 

show convincing evidence that 

critical damping was achieved 

• Demonstrate that damping is critical 

– No oscillations (overshoot) 

– Shortest time to return to equilibrium position 



Remember 

• Write-up for Experiment # 3 

• Homework Taylor #8.6, 8.10  

– Last assignment 

• Read Taylor Chapter 12 


