Physics 211B : Assignment #2

[1] Rectangular Barrier — Consider a symmetric planar barrier consisting of a layer of
Al,Gaq_,As of width 2a imbedded in GaAs. The barrier height Vj is simply the difference
between conduction band minima A F. at the I' point; energies are defined relative to ElgaAS.
Derive the S-matrix for this problem. Show that
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where n = E/Vy and b = a/f with £ = h/\/2m*Vj. Sketch T(E) versus E/Vj for various
values of the dimensionless thickness b.

T(E) = (n>1),

[2] Multichannel Scattering — Consider a multichannel scattering process defined by the
Hamiltonian matrix

 2m Ox2

which describes the scattering among N channels by a J-function impurity at x = 0. The
matrix €);; allows a particle in channel j passing through = 0 to be scattered into channel
i. The {g;} are the internal (transverse) energies for the various channels. For = # 0, we
can write the channel j component of the wavefunction as
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where the k; are positive and determined by
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Show that the incoming and outgoing flux amplitudes are related by a 2IN x 2N S-matrix:
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where v = diag(v,,...,vy) with v, = hk;/m > 0. Find explicit expressions for the compo-

nent N x N blocks 7, t, t/, r’, and show that S is unitary, i.e. S'S = SST = L.

[3] Spin Valve — Consider a barrier between two halves of a ferromagnetic metallic wire.
For z < 0 the magnetization lies in the 2 direction, while for x > 0 the magnetization is



directed along the unit vector n = (sin 6 cos ¢, sin 0 sin ¢, cos ). The Hamiltonian is given
by
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where Hjy is the (spontaneously generated) internal magnetic field and pug = efi/2mec is
the Bohr magneton'. The magnetization M points along Hi,?. For z < 0 we therefore

have
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where A = pugyHine. A similar relation holds for the Fermi wavevectors corresponding to
spin states ‘ 'fL> and | — ﬁ> in the region z > 0.
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Consider the S-matrix for this problem. The ‘in’ and ‘out’ states should be defined as
local eigenstates, which means that they have different spin polarization axes for x < 0 and
x > 0. Explicitly, for x < 0 we write
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while for z > 0 we write
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where u = cos(0/2) and v = sin(0/2) exp(i¢). The S-matrix relates the flux amplitudes of
the in-states and out-states:
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Derive the 2 x 2 transmission matrix ¢ (you don’t have to derive the entire S-matrix) and
thereby obtain the dimensionless conductance g = Tr (t't). Define the polarization P by
n,—n
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where n, = k, /7 is the electronic density. Find g(P,0).

'Note that it is the bare electron mass m, which appears in the formula for s and not the effective mass
m*!).
2 . . . . 2 .
For weakly magnetized systems, the magnetization is M = 3 g(s,) Hin, where g(ey) is the total
density of states per unit volume at the Fermi energy.



[4] Distribution of Resistances of a One-Dimensional Wire — In this problem you are asked
to derive an equation governing the probability distribution P(R, L) for the dimensionless
resistance R of a one-dimensional wire of length L. The equation is called the Fokker-Planck
equation. Here’s a brief primer on how to derive Fokker-Planck equations.

Suppose z(t) is a stochastic variable. We define the quantity
dz(t) = x(t + ot) — z(t) , (1)
and we assume
(a(0)) = F (u(0)) bt
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but ([6z(t)]") = O((6t)?) for n > 2. The n = 1 term is due to drift and the n = 2 term is
due to diffusion. Now consider the conditional probability density, P(z,t|z,t,), defined
to be the probability distribution for x = xz(t) given that x(t,) = z,. The conditional
probability density satisfies the composition rule,
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for any value of t/. Therefore, we must have
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Now we may write

P(z,t+dt]|2',t) = (§(x — 2’ — 6z(t)))
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where the average is over the random variables. Upon integrating by parts and expanding
to O(dt), we obtain the Fokker-Planck equation,
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That wasn’t so bad, now was it?

For our application, z(t) is replaced by R(L). We derived the composition rule for series
quantum resistors in class:

R(L + L) = R(L) + R(6L) + 2R(L) R(5L)
—2cosf\/R(L) [1 +R(L)] R(SL) [1 + R(GL)] .




where (§ is a random phase. For small values of §L, we needn’t worry about quantum
interference and we can use our Boltzmann equation result. Show that
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where ¢ = vpT is the elastic mean free path. (Assume a single spin species throughout.)

Find the drift and diffusion functions F;(R) and F5(R). Show that the distribution function
P(R, L) obeys the equation
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Show that this equation may be solved in the limits R < 1 and R > 1, with
1 —R/z
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for R < 1, and
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for R > 1, where z = L/2( is the dimensionless length of the wire. Compute (R) in the
former case, and (InR) in the latter case.



