Chapter 1

Boltzmann Transport

1.1 References

H. Smith and H. H. Jensen, Transport Phenomena

e N. W. Ashcroft and N. D. Mermin, Solid State Physics, chapter 13.

P. L. Taylor and O. Heinonen, Condensed Matter Physics, chapter 8.

e J. M. Ziman, Principles of the Theory of Solids, chapter 7.

1.2 Introduction

Transport is the phenomenon of currents flowing in response to applied fields. By ‘current’
we generally mean an electrical current j, or thermal current j,. By ‘applied field” we
generally mean an electric field € or a temperature gradient V T'. The currents and fields
are linearly related, and it will be our goal to calculate the coefficients (known as transport
coefficients) of these linear relations. Implicit in our discussion is the assumption that we
are always dealing with systems near equilibrium.
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1.3 Boltzmann Equation in Solids

1.3.1 Semiclassical Dynamics and Distribution Functions

The semiclassical dynamics of a wavepacket in a solid are described by the equations’

dr 10en(k) dk
* - n ok @ x 2, (k) (1.1)
dk e e dr

Here n is the band index and e, (k) is the dispersion relation for band n. The wavevector
is k (hk is the ‘crystal momentum’), and e,(k) is periodic under k — k + G, where G
is any reciprocal lattice vector. The second term on the RHS of Eqn. 1.1 is the so-called
Karplus-Luttinger term, defined by

Ank) = =i (up (k)| 2 | un (k) (1.3)

OhK) = (1.4)

okv 7’
arising from the Berry phases generated by the one-particle Bloch cell functions |u,(k)).
These formulae are valid only at sufficiently weak fields. They neglect, for example, Zener
tunneling processes in which an electron may change its band index as it traverses the
Brillouin zone. We assume §2,,(k) = 0 in our discussion, i.e. we assume the Bloch bands
are non topological. Finally, we neglect the orbital magnetization of the Bloch wavepacket
and contributions from the spin-orbit interaction. When the orbital moment of the Bloch
electrons is included, we must substitute

En(k) - gn(k) - Mn(k) ' B(’l“, t) (15)
where
M (k) = e e Im <gz§ e, (k) — Ho(k)‘g:;> , (1.6)

where Hy(k) = e*" Hye " and H, = % + V(7) is the one-electron Hamiltonian in
the crystalline potential V(r) = V(r + R), where R is any direct lattice vector. Note
Hy(k)|u,(k)) = €,(k) |u,(k)) and that u,(k,r + R) = u,(k,r) is periodic in the direct
lattice.

We are of course interested in more than just a single electron, hence to that end let us
consider the distribution function f,,(r, k,t), defined such that?

d3 d%  # of electrons of spin ¢ in band n with positions within

(2m)3 d% of r and wavevectors within d% of k at time t.

fro (7, K, ) (1.7)

!See G. Sundaram and Q. Niu, Phys. Rev. B 59, 14915 (1999).
2We will assume three space dimensions. The discussion may be generalized to quasi-two dimensional
and quasi-one dimensional systems as well.
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Note that the distribution function is dimensionless. By performing integrals over the
distribution function, we can obtain various physical quantities. For example, the current
density at r is given by

3
jlr,t) = —ez/(if)g Fro(r K, 1) vy (K) (1.8)
n,o a

The symbol Q) in the above formula is to remind us that the wavevector integral is performed
only over the first Brillouin zone.

We now ask how the distribution functions f,,(7, k,t) evolve in time. To simplify matters,
we will consider a single band and drop the indices no. It is clear that in the absence of
collisions, the distribution function must satisfy the continuity equation,

0

J+V-(uf):O. (1.9)
ot

This is just the condition of number conservation for electrons. Take care to note that V
and w are siz-dimensional phase space vectors:

w o= (&,9, 2, ke, ky, k) (1.10)
o o0 90 9 9 0

v = [~ =2 2 = “Z Z ). 1.11

(8x’8y’82’8kx’8ky’8kz> (1.11)
Now note that as a consequence of the dynamics (1.1,1.2) that V - u = 0, i.e. phase space
flow is incompressible, provided that (k) is a function of k alone, and not of r. Thus, in
the absence of collisions, we have

of

o Tu V=0, (1.12)

The differential operator Dy = 0y + u - V is sometimes called the ‘convective derivative’.
EXERCISE: Show that V - u = 0.

Next we must consider the effect of collisions, which are not accounted for by the semi-
classical dynamics. In a collision process, an electron with wavevector k and one with
wavevector k' can instantaneously convert into a pair with wavevectors k + q and k' — g
(modulo a reciprocal lattice vector G), where q is the wavevector transfer. Note that the
total wavevector is preserved (mod G). This means that D;f # 0. Rather, we should write

of . of . of [Of _
a +T ' E + k . % B (at>coll :Ik{f} (113)

where the right side is known as the collision integral. The collision integral is in general
a function of r, k, and t and a functional of the distribution f. As the k-dependence is
the most important for our concerns, we will write Z; in order to make this dependence
explicit. Some examples should help clarify the situation.
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First, let’s consider a very simple model of the collision integral,

f(’f‘, k7 t) — fo(r’ k)
7(e(k))

This model is known as the relaxation time approximation. Here, fO(r, k) is a static dis-
tribution function which describes a local equilibrium at r. The quantity 7(e(k)) is the
relaxation time, which we allow to be energy-dependent. Note that the collision integral in-
deed depends on the variables (7, k, t), and has a particularly simple functional dependence
on the distribution f.

L{ft=— (1.14)

A more sophisticated model might invoke Fermi’s golden rule, Consider elastic scattering
from a static potential ¢ (r) which induces transitions between different momentum states.
We can then write

ke
31./
- hv/(d k)s |U(k — K (fr — fr) 6(er — ew) (1.16)

where we abbreviate fi = f(r, k,t). In deriving the last line we’'ve used plane wave wave-
functions® ¥y (r) = exp(ik - 7)/V/V, as well as the result

> A(k) /57:; A(k) (1.17)

ke A

for smooth functions A(k). Note the factor of V! in front of the integral in eqn. 1.16.
What this tells us is that for a bounded localized potential (r), the contribution to the
collision integral is inversely proportional to the size of the system. This makes sense
because the number of electrons scales as V' but the potential is only appreciable over a
region of volume o< V9. Later on, we shall consider a finite density of scatterers, writing

U(r) = ZZJ.V;TP (r — R;), where the impurity density n;,,, = Ny, /V is finite, scaling as
V0. In this case U(k — k') apparently scales as V, Which would mean Z, {f} scales as V,
which is unphysical. As we shall see, the random positioning of the impurities means that
the O(V?) contribution to [ (k — k')|? is incoherent and averages out to zero. The coherent
piece scales as V, canceling the V' in the denominator of eqn. 1.16, resulting in a finite value

for the collision integral in the thermodynamic limit (i.e. neither infinite nor infinitesimal).

Later on we will discuss electron-phonon scattering, which is inelastic. An electron with
wavevector k' can scatter into a state with wavevector k = k€’ — ¢ mod G by absorption of
a phonon of wavevector g or emission of a phonon of wavevector —q. Similarly, an electron
of wavevector k can scatter into the state k' by emission of a phonon of wavevector —q or

3Rather than plane waves, we should use Bloch waves v, (") = exp(ik - ) u,,(T"), where cell function
u,,(T) satisfies u, (7 + R) = u,1(T), where R is any direct lattice vector. Plane waves do not contain
the cell functions, although they do exhibit Bloch periodicity ¢, (7 + R) = exp(ik - R), 1, (7).
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(c) k-k' via emission of —q (d) k-k’ via absorption of q

Figure 1.1: Electron-phonon vertices.

absorption of a phonon of wavevector g. The matrix element for these processes depends
on k, k', and the polarization index of the phonon. Overall, energy is conserved. These
considerations lead us to the following collision integral:

Ik{fan} = ;7‘7; Z ’g)\<k7 k/)‘Q{(l - fk) fk:’ (1 + nq,/\) 6(5k + hwq/\ - 8k’)
KA
+(1 = fi) frr n—gr (e — hw_gr — €xr)
—fie (L= frr) (14 n_gr) d(ex — hw_gx — ex)
—fie (1 = frr) ngr 0 (e + hwgy — Ek’)} dqk'—k mod G » (1.18)

which is a functional of both the electron distribution f), as well as the phonon distribution

n,,- The four terms inside the curly brackets correspond, respectively, to cases (a) through
(d) in fig. 1.1.

While collisions will violate crystal momentum conservation, they do not violate conserva-
tion of particle number. Hence we should have?

3
/d3 /(;Z:):,) Ti{f}=0. (1.19)

e
Q

41f collisions are purely local, then f% T {f} = 0 at every point 7 in space.
Q
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The total particle number,

N = /d3r/ A% f(r, k,t) (1.20)
(27_[_)3 Y 9y M
Q
is a collisional invariant - a quantity which is preserved in the collision process. Other
collisional invariants include energy (when all sources are accounted for), spin (total spin),
and crystal momentum (if there is no breaking of lattice translation symmetry)®. Consider
a function F'(r, k) of position and wavevector. Its average value is

3
Plt) = /d?’r/(;’;g Fr k) f(r k1) . (1.21)

Q

Taking the time derivative,

dF oF d% o . o .
A L[ HCUT e IR RREh)

Q

- /d?’r/@dj;g

Q

OF dr OF dk
{[ar.dtJrak.dt]erFIk{f}} : (1.22)

Hence, if F' is preserved by the dynamics between collisions, then

n 3
% = /d%/(j:)g FT{f}, (1.23)

Q

which says that F(t) changes only as a result of collisions. If F' is a collisional invariant,

then F' = 0. This is the case when F' = 1, in which case F' is the total number of particles,
or when F' = ¢(k), in which case F is the total energy.

1.3.2 Local Equilibrium

The equilibrium Fermi distribution,

k) = {exp (*f(’;g“) + 1}_1 (1.24)

is a space-independent and time-independent solution to the Boltzmann equation. Since
collisions act locally in space, they act on short time scales to establish a local equilibrium
described by a distribution function

PO ko, t) = {exp <W> + 1}1 (1.25)

5Note that the relaxation time approximation violates all such conservation laws. Within the relaxation
time approximation, there are no collisional invariants.
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This is, however, not a solution to the full Boltzmann equation due to the ‘streaming terms’
7 - Or + k - O in the convective derivative. These, though, act on longer time scales than
those responsible for the establishment of local equilibrium. To obtain a solution, we write

fr ke, t) = fO(r k,t) + 0f (v, k, 1) (1.26)

and solve for the deviation Jf (r, k,t). We will assume p = p(r) and T' = T'(r) are time-
independent. We first compute the differential of f°,

of° €— [
0 _
i = kT Oe d< k:BT>

af° du (e —p)dT  de
— g Z)
5t e { BT k% BT

af° | ou e—p 0T Oe
from which we read off
af° B o e—pu dT of°
o - {aﬁ T or [\ os (128
af° B af°
We thereby obtain
0of _efgyl oof e L0 g g
5t +v-Vif h[E—i-cva] ok +wv [65—1— T VT]( e =Te{f" +9f}
(1.30)

where £ = —V(¢ — p/e) is the gradient of the ‘electrochemical potential’; we’ll henceforth
refer to &€ as the electric field. Eqn (1.30) is a nonlinear integrodifferential equation in df,
with the nonlinearity coming from the collision integral. (In some cases, such as impurity
scattering, the collision integral may be a linear functional.) We will solve a linearized
version of this equation, assuming the system is always close to a state of local equilibrium.

Note that the inhomogeneous term in (1.30) involves the electric field and the temperature
gradient V T'. This means that Jf is proportional to these quantities, and if they are small
then d0f is small. The gradient of J§f is then of second order in smallness, since the external
fields ¢ — /e and T are assumed to be slowly varying in space. To lowest order in smallness,
then, we obtain the following linearized Boltzmann equation:

WF ¢ yB 85f+u.[e5+5;”vﬂ (—8fo>—,c5f (1.31)

ot el T ok e

where L df is the linearized collision integral; L is a linear operator acting on Jf (we suppress
denoting the k dependence of £). Note that we have not assumed that B is small. Indeed
later on we will derive expressions for high B transport coefficients.
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1.4 Conductivity of Normal Metals

1.4.1 Relaxation Time Approximation

Consider a normal metal in the presence of an electric field £. We’ll assume B =0, VT = 0,
and also that &€ is spatially uniform as well. This in turn guarantees that Jf itself is spatially
uniform. The Boltzmann equation then reduces to

0
% - % ev- € =T {f'+f}. (1.32)

We'll solve this by adopting the relaxation time approximation for Z{ f}:

-0

T T

L{f} = - (1.33)

where 7, which may be k-dependent, is the relaxation time. In the absence of any fields
or temperature and electrochemical potential gradients, the Boltzmann equation becomes
of = —0f /7, with the solution df (t) = f(0) exp(—t/7). The distribution thereby relaxes to
the equilibrium one on the scale of 7.

Writing £(t) = € e, we solve

aéf(kv t) —iwt 8f0 _ 5f(k7 t)
5 —cv(k)-Ee e = _T(€(k)) (1.34)
and obtain ;
(Sf(k,t) _ ek - ’U(k) T(E(k)) 8f e—iwt ) (135)

1 —iwt(e(k)) Oe

The equilibrium distribution fY(k) results in zero current, since f°(—k) = f°(k). Thus,
the current density is given by the expression

3
j*(rt) = —26/57:;35va‘
a
_ Lot [ A% T(e(k) v (K)o (k) [ Of°
= 2268 /(%)3 T oo (o () <—86>. (1.36)

Q

In the above calculation, the factor of two arises from summing over spin polarizations. The
conductivity tensor is defined by the linear relation j*(w) = o4s(w) EP(w). We have thus
derived an expression for the conductivity tensor,

B A% T1(e(k)) v (k) v (k) a9
“aﬁ(“)_262/ @ 1 iwr(e(k)) (‘ ag> (137)

Q
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Note that the conductivity is a property of the Fermi surface. For kT < ep, we have
—0fY/0e ~ §(ep — £(k)) and the above integral is over the Fermi surface alone. Explicitly,
we change variables to energy ¢ and coordinates along a constant energy surface, writing

dedS:  dedS;

Ak = =
|0e | Ok| hlv|

(1.38)

where dS; is the differential area on the constant energy surface e(k) = ¢, and v(k) =
1=V, e(k) is the velocity. For T < T, then,

2

e T(ep v (k) 0P (k
o) o T s, S0 0

For free electrons in a parabolic band, we write (k) = h%k?/2m*, so v*(k) = hk®/m*. To
further simplify matters, let us assume that 7 is constant, or at least very slowly varying in
the vicinity of the Fermi surface. We find

2 et af
ap(w) = 0ap el S —- /ds gle)e <_85> , (1.40)

where g(¢) is the density of states,

3
gle) =2 /(3:;3 d(e—e(k)) . (1.41)

The (three-dimensional) parabolic band density of states is found to be

(2m*)3/2
2m2h3

9(e) = VEO(e) . (1.42)

where O(z) is the step function. In fact, integrating (1.40) by parts, we only need to know
about the /e dependence in g(g), and not the details of its prefactor:

Jizeae) (<5F) = [ae ez coen
_ 3 / de g(e) °() = 3 | (1.43)

where n = N/V is the electron number density for the conduction band. The final result
for the conductivity tensor is

ne’r 6
Tap(w) = — 70— (1.44)

This is called the Drude model of electrical conduction in metals. The dissipative part of
the conductivity is Reo. Writing 0,3 = 06,4 and separating into real and imaginary parts
o =o' +1i0”, we have

nexr 1

, —_— e
o(w) = m* 1+w?r?’

(1.45)
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4
* Liquid Na
* * Experimental points by T. Inagaki et al
Theory
3 ¢ e Drude approximation

o(0)(10%/sec)
1

Figure 1.2: Frequency-dependent conductivity of liquid sodium by T. Inagaki et al, Phys.
Rev. B 13, 5610 (1976).
The peak at w = 0 is known as the Drude peak.

Here’s an elementary derivation of this result. Let p(t) be the momentum of an electron,
and solve the equation of motion

dp P i
—=—=—ecEe ™ 1.46
dt T cec ( )
to obtain ¢ .
er - er
t)= - et 0 -t 1.47
p(0) = 1T [0+ 1T (1.47)
The second term above is a transient solution to the homogeneous equation p + p/7 = 0.
At long times, then, the current j = —nep/m* is
ne’r

j(t) =

In the Boltzmann equation approach, however, we understand that n is the conduction
electron density, which does not include contributions from filled bands.

—  _Ee W, 1.4
m*(1 — iwT) Ee (1.48)

In solids the effective mass m* typically varies over a small range: m* ~ (0.1 — 1) me. The
two factors which principally determine the conductivity are then the carrier density n and
the scattering time 7. The mobility pu, defined as the ratio o(w = 0)/ne, is thus (roughly)
independent of carrier density®. Since j = —nev = o0&, where v is an average carrier

5Tnasmuch as both 7 and m* can depend on the Fermi energy, 1 is not completely independent of carrier
density.
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velocity, we have v = —p&, and the mobility p = er/m* measures the ratio of the carrier
velocity to the applied electric field.

1.4.2 Optical Reflectivity of Metals and Semiconductors

What happens when an electromagnetic wave is incident on a metal? Inside the metal we
have Maxwell’s equations,

VxH:4£j+178D — ik x B = (47W—M>E (1.49)
c c Ot c c
10B ;

vxE-_19B — ikxE="B (1.50)
c Ot c

V-E=V-B=0 — ik-E—=ik-B=0, (1.51)

where we've assumed p = € = 1 inside the metal, ignoring polarization due to virtual
interband transitions (i.e. from core electrons). Hence,

2 A
k2 = %2 + % o(w) (1.52)
w? wg WT w?

where w, = \/4mne?/m* is the plasma frequency for the conduction band. The dielectric
function,

(W) =1 4mio(w) 14 g iwT (1.54)
€(w) = = — .
w w? 1 —iwt

determines the complex refractive index, N(w) = /€(w), leading to the electromagnetic
dispersion relation k = N(w)w/c.

Consider a wave normally incident upon a metallic surface normal to 2. In the vacuum
(z < 0), we write

E(r,t) = By & e/t 4 By g e~/ cmiwt (1.55)
B(r,t) = i V X E = By § /e — By g e w?/cemiwt (1.56)
while in the metal (z > 0),
E(r,t) = B3 & eNw?/cemiwt (1.57)
B(r,t) = =V x E = N Ey g ¢tNez/ceist (1.58)
ww

Continuity of E x n gives F1+ Fo = E3. Continuity of H xn gives Fy — Fo = N FEj3. Thus,

E, 1-N E; 2
L2 _ R . (1.59)
E, 1+N E, 1+N
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and the reflection and transmission coefficients are

| B? 1= NW)|?

Rw) = 'El - ’1+N(w) (1.60)
| Bs)? 4

Tw =g = 1+ Nw)|* (161

We’ve now solved the electromagnetic boundary value problem.

Typical values — For a metal with n = 10?2 cm® and m* = m., the plasma frequency is
wp = 5.7 10'°s~1. The scattering time varies considerably as a function of temperature. In
high purity copper at T = 4K, 7 ~ 2x 107" s and WpT ~ 107. At T =300K, 7~ 2x 107145
and wpT ~ 100. In either case, w7 > 1. There are then three regimes to consider.

o WT K 1 KwpT:

We may approximate 1 — tw7 = 1, hence

2 2

LWAT TWAT
N2 =1 p ~ p
() + w(l —iwT) w
14 (2r) 2v/2
Nw~—" 2] = Ra1- 22T (1.62)
V2 w WpT
Hence R ~ 1 and the metal reflects.
o 1 Kwr K wpT:
In this regime,
2 .9
w Tw
N2(w)~1-— R4 22 1.63
(w) 5t (1.63)

which is almost purely real and negative. Hence N is almost purely imaginary and
R ~ 1. (To lowest nontrivial order, R = 1 — 2/w,7.) Still high reflectivity.

o I < wpT K wr:

Here we have

(1.64)

and R < 1 — the metal is transparent at frequencies large compared to wy.

1.4.3 Optical Conductivity of Semiconductors

In our analysis of the electrodynamics of metals, we assumed that the dielectric constant
due to all the filled bands was simply ¢ = 1. This is not quite right. We should instead
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Figure 1.3: Frequency-dependent absorption of hcp cobalt by J. Weaver et al., Phys. Rev.

B 19, 3850 (1979).
(1.65)

w?  4riwo(w)
2
(1.66)

have written
2 _

k® =€ 2

} b}

where €, is the dielectric constant due to virtual transitions to fully occupied (i.e. core)
(1.67)

and fully unoccupied bands, at a frequency small compared to the interband frequency. The

4mrne?

plasma frequency is now defined as
1/2
W =
P (m* €co >
where n is the conduction electron density. Note that ¢(w — 00) = €, although again this
is only true for w smaller than the gap to neighboring bands. It turns out that for insulators
2
(1.68)

one can write
2%
€o =1+ 22
2
We

where wp, = VA4mnye? /me, with n, the number density of valence electrons, and wg s
the energy gap between valence and conduction bands. In semiconductors such as Si and
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Figure 1.4: Frequency-dependent conductivity of hcp cobalt by J. Weaver et al., Phys.
Rev. B 19, 3850 (1979). This curve is derived from the data of fig. 1.3 using a Kramers-
Kronig transformation. A Drude peak is observed at low frequencies. At higher frequencies,
interband effects dominate.

Ge, wg ~ 4eV, while wp,, ~ 16eV, hence e ~ 17, which is in rough agreement with the
experimental values of ~ 12 for Si and ~ 16 for Ge. In metals, the band gaps generally are
considerably larger.

There are some important differences to consider in comparing semiconductors and metals:

e The carrier density n typically is much smaller in semiconductors than in metals,
ranging from n ~ 10 cm™ in intrinsic (i.e. undoped, thermally excited at room
temperature) materials to n ~ 1012 cm™3 in doped materials.

® coo &~ 10— 20 and m*/me =~ 0.1. The product exom™* thus differs only slightly from its
free electron value.

: —4
Since ng,; <107%n .1, one has
semi —2 , metal —14
wp™ A 107w A~ 107 s (1.69)

In high purity semiconductors the mobility u = er/m* 210 cm?/vs the low temperature
scattering time is typically 7 ~ 10~ ''s. Thus, for w >3 x 10°s~! in the optical range, we
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have wr > wpT > 1, in which case N(w) ~ /€x and the reflectivity is
R 1—/ex
1+ /€0

Taking eso = 10, one obtains R = 0.27, which is high enough so that polished Si wafers
appear shiny.

2
(1.70)

1.4.4 Optical Conductivity and the Fermi Surface

At high frequencies, when w7 > 1, our expression for the conductivity, eqn. (1.37), yields

ow) = 127r3hw/ ( 8f0> /ds [o(k)

where we have presumed sufficient crystalline symmetry to guarantee that .3 = 0 dng is
diagonal. In the isotropic case, and at temperatures low compared with 7%, the integral
over the Fermi surface gives 47k2 v, = 1273hn/m*, whence ¢ = ine?/m*w, which is the
large frequency limit of our previous result. For a general Fermi surface, we can define

: (1.71)

2
clw>rthH= me

(1.72)

MW

where the optical mass m is given by

I of°
-~ = 19230m /de( 9% > /dS "v } . (1.73)

Note that at high frequencies o(w) is purely imaginary. What does this mean? If

E(t) = Ecos(wt) = 1 € (e7™! 4 eti1) (1.74)
then
i) = % {o(w) ™™ + o(—w) et}
= ¢ € sin(wt) , (1.75)
MW

where we have invoked o(—w) = 0*(w). The current is therefore 90° out of phase with the
voltage, and the average over a cycle (j(t) - £(t)) = 0. Recall that we found metals to be
transparent for w > wy, > 1

At zero temperature, the optical mass is given by

L1 /dsF\v(k)}. (1.76)

Mept 1273hn
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The density of states, g(ey), is

o) = 4733}1/dSF (k)| (1.77)

from which one can define the thermodynamic effective mass my;, appealing to the low
temperature form of the specific heat,
2 *
™2 — M4h o
c, = —kgT glep) = c 1.78
v= TR Tgle) = 0 (178)

(S

where
o MmekiT
o =
v 312

(37%n)/3 (1.79)

is the specific heat for a free electron gas of density n. Thus,

S |’U(k)‘71

(1.80)

* —
My =

h /d
4 (3m2n)1/3

Mo /Me myy,/Me
Metal || thy ‘ expt | thy ‘ expt
Li 1.45 | 1.57 | 1.64 | 2.23
Na 1.00 | 1.13 | 1.00 | 1.27
K 1.02 | 1.16 | 1.07 | 1.26
Rb 1.08 | 1.16 | 1.18 | 1.36
Cs 1.29 | 1.19 | 1.75 | 1.79

Cu - ~ [ 1.46 | 1.38
Ag _ ~ [ 1.00 | 1.00
Au _ ~ [ 1.09 | 1.08

Table 1.1: Optical and thermodynamic effective masses of monovalent metals. (Taken from
Smith and Jensen).

1.5 Calculation of the Scattering Time

1.5.1 Potential Scattering and Fermi’s Golden Rule

Let us go beyond the relaxation time approximation and calculate the scattering time 7
from first principles. We will concern ourselves with scattering of electrons from crystalline
impurities. We begin with Fermi’s Golden Rule”,

ey = S5 SR (U R (o = i o) — <) (1.81)
-

TWe'll treat the scattering of each spin species separately. We assume no spin-flip scattering takes place.
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where U(r) is a sum over individual impurity ion potentials,

Nimp
Ur)= Y U(r— Ry) (1.82)

j=1

9 . Nimp ] , 2
(K Uk =V 2Ok K| Y B+ (1.83)
j=1

where V is the volume of the solid and

0(q) = / & U (r) e=ier (1.84)

is the Fourier transform of the impurity potential. Note that we are assuming a single species
of impurities; the method can be generalized to account for different impurity species.

To make progress, we assume the impurity positions are random and uncorrelated, and we
average over them. Using

Nimp 2
Z eiq.Rj = Nimp + Nimp(Nimp - 1) 5q,0 5 (185)
j=1
we obtain
V2l w2 Nimp |~ Nimp(Nimp — 1) |~
([t [0 = N — w4 Do @ome = 1) 25, (1.86)

V2 V2

EXERCISE: Verify eqn. (1.85).

We will neglect the second term in eqn. 1.86 arising from the spatial average (¢ = 0
Fourier component) of the potential. As we will see, in the end it will cancel out. Writing
f = f%+df, we have

27N, 3, 21.2 21,12
T = =5 [ \U(k—k’)|25<znlj* K ) fw — o). (L8D)

Q

where nimp = Nimp /V is the number density of impurities. Note that we are assuming a
parabolic band. We next make the Ansatz

of°

O =71(e(k))e& -v(k) —=—

o (1.88)

e(k)

and solve for 7(¢(k)). The (time-independent) Boltzmann equation is

af0  or K o o R2EE R2K”
a

) . (1.89)
e(k)

0 0
x <T<e<k’>> o) 2| ek oth) I2

e(k")
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Due to the isotropy of the problem, we must have 7(e(k)) is a function only of the magnitude
of k. We then obtain®

hk 1mp 1702 / N2 (k k,) /
= By /dkk /dk Uk — k)| e B K (1.90)
whence
1 m*animp 7./ 7 7.\ |2 1
= AB U (kb — k)2 (1 — - &) . (1.91)
F

If the impurity potential U (r) itself is isotropic, then its Fourier transform U(q) is a function
of ¢* = 4k? sin? 119 where cos9 = k- k' and q = k' — k is the transfer wavevector. Recalling
the Born approx1mat10n for differential scattering cross section,

* 2
o(9) = (2’:712) Uk — K2, (1.92)

we may finally write

= 27rnimva/dz9 op(?¥) (1 — cos¥) sinv (1.93)
0

7(er)

where v, = hkg/m* is the Fermi velocity?. The mean free path is defined by £ = v,T.

Notice the factor (1 —cos) in the integrand of (1.93). This tells us that forward scattering
(¥ = 0) doesn’t contribute to the scattering rate, which justifies our neglect of the second
term in eqn. (1.86). Why should 7 be utterly insensitive to forward scattering? Because
T(er) is the transport lifetime, and forward scattering does not degrade the current. There-
fore, o(¥ = 0) does not contribute to the ‘transport scattering rate’ 7-!(ez). Oftentimes
one sees reference in the literature to a ‘single particle lifetime’ as well, which is given by
the same expression but without this factor:

{thi} = 27y U ]dﬁap(ﬁ) { 0 ios 9 } sin ¥ (1.94)

0

Note that 75, = (nimp Vg UF,mt)*l, where or 1ot is the total scattering cross section at energy

€, a formula familiar from elementary kinetic theory.

The Boltzmann equation defines an infinite hierarchy of lifetimes classified by the angular
momentum scattering channel. To derive this hierarchy, one can examine the linearized
time-dependent Boltzmann equation with € = 0,

0 Of

ot = nlmp F/dk/ ( k;k/) (dfk’ - 5fk> 5 (195)

8We assume that the Fermi surface is contained within the first Brillouin zone.
9The subscript on oy, () is to remind us that the cross section depends on kg as well as 9.
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where v = hk/m* is the velocity, and where the kernel is 9,,, = cos™!(k - k). We now
expand in spherical harmonics, writing

0 (Vgps) = Oto Z v, Y (B) Y (K (1.96)
LM
where as before i
Ctot = 27T/d19 sindo(¥) . (1.97)
0
Expanding
ofk(t) = Z App () Yop (k) (1.98)
LM
the linearized Boltzmann equation simplifies to
0A
# + (1= ) Ny U Ogop Arar = 0 (1.99)

whence one obtains a hierarchy of relaxation rates,

-1
7, =(1-v;) NimpVr Tt » (1.100)
which depend only on the total angular momentum quantum number L. These rates de-
scribe the relaxation of nonuniform distributions when Jfi(t = 0) is proportional to some
spherical harmonic Y7 ,,(k). Note that 7,1, = 0, which reflects the fact that the total
particle number is a collisional invariant. The single particle lifetime is identified as

—1
Tap = Thoyoo = (nimva Oiot) (1.101)

corresponding to a point distortion of the uniform distribution. The transport lifetime is
then 7, = 7, _,.

1.5.2 Screening and the Transport Lifetime

For a Coulomb impurity, with U(r) = —Ze?/r we have U(q) = —4nZe?/¢?. Consequently,

Ze? 2
op(¥) = () , (1.102)

21
dep sin® 5U

and there is a strong divergence as ¥ — 0, with o.(9) oc ¥~%. The transport lifetime
diverges logarithmically! What went wrong?

What went wrong is that we have failed to account for screening. Free charges will rearrange
themselves so as to screen an impurity potential. At long range, the effective (screened)
potential decays exponentally, rather than as 1/r. The screened potential is of the Yukawa
form, and its increase at low ¢ is cut off on the scale of the inverse screening length A~
There are two types of screening to consider:
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e Thomas-Fermi Screening : This is the typical screening mechanism in metals. A weak
local electrostatic potential ¢(r) will induce a change in the local electronic density
according to on(r) = ep(r)g(ecr), where g(ep) is the density of states at the Fermi
level. This charge imbalance is again related to ¢(r) through the Poisson equation.
The result is a self-consistent equation for ¢(r),

V2¢ = 4re dn
=dre’g(ep) d = A ¢ - (1.103)

The Thomas-Fermi screening length is App = (47re2g(€F))_1/2.

e Debye-Hiickel Screening : This mechanism is typical of ionic solutions, although it may
also be of relevance in solids with ultra-low Fermi energies. From classical statistical
mechanics, the local variation in electron number density induced by a potential ¢(r)
is

on(r) = ne® ksl _p ~ neg(r) , (1.104)
kT
where we assume the potential is weak on the scale of k,T'/e. Poisson’s equation now
gives us
V24 = 4re dn
47Tne
= T ¢=Aph b - (1.105)

A screened test charge Ze at the origin obeys
Vi =\"2¢—4AnZed(r) , (1.106)

the solution of which is

A Ze?
a2

Ze?

U(r) = —eg(r) :—Te*’”“ — Uq) = (1.107)

The differential scattering cross section is now

2
Ze? 1
o) = [ 25 (1.108)
dep  sin? 10 4 (2kp )2

and the divergence at small angle is cut off. The transport lifetime for screened Coulomb
scattering is therefore given by

2
1 1
= 277, Vp < > /dﬁ sin? (1 — cos 1) < 7 )
T(er) dep sin® 50 + (2kpA) 2

Ze2\ e
= 2N, Vp <2€F) {ln(l +7¢) — T W(} , (1.109)
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Figure 1.5: Residual resistivity per percent impurity.

with
W2k,
m*e2

4
= —k2\? = = kypal, . (1.110)
7T

Here a}, = eoo h?/m*e? is the effective Bohr radius (restoring the e factor). The resistivity
is therefore given by

_ m* _ 72 h o Mimp *
p=—g =2 Gay = F(keap) (1.111)
where . ¢
T
F(¢) = =<In(1 - . 1.112
© =g {ma+no - 5o (1112)
With h/e? = 25,813Q and af, = ap = 0.529 A, we have
nim
p=137x10"1Q -em x 722 2L F(kpal) . (1.113)
n

1.6 Boltzmann Equation for Holes

1.6.1 Properties of Holes

Since filled bands carry no current, we have that the current density from band n is

3 3,
(1) = _26/&:;3 Fulrs ko, ) o (k) = +2e/(;l:)3 Lok onk) ,  (1.114)

Q Q
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Impurity | Ap per % || Impurity | Ap per %
Ton (12-cm) Ton (u€2-cm)
Be 0.64 Si 3.2
Mg 0.60 Ge 3.7
B 1.4 Sn 2.8
Al 1.2 As 6.5
In 1.2 Sb 5.4

Table 1.2: Residual resistivity of copper per percent impurity.

where f = 1 — f. Thus, we can regard the current to be carried by fictitious particles of
charge +e with a distribution f(r, k,t). These fictitious particles are called holes.

1. Under the influence of an applied electromagnetic field, the unoccupied levels of a
band evolve as if they were occupied by real electrons of charge —e. That is, whether
or not a state is occupied is irrelevant to the time evolution of that state, which is
described by the semiclassical dynamics of egs. (1.1, 1.2).

2. The current density due to a hole of wavevector k is +ewvy(k)/V.
3. The crystal momentum of a hole of wavevector k is P = —hk.

4. Any band can be described in terms of electrons or in terms of holes, but not both
simultaneously. A “mixed” description is redundant at best, wrong at worst, and
confusing always. However, it is often convenient to treat some bands within the
electron picture and others within the hole picture.

It is instructive to consider the exercise of fig. 1.6. The two states to be analyzed are
|9 ) :¢I,k¢v,k|‘1’0> :e,th,U()> (1.115)
W) = 0lp e 4 Wo) = el hly]0) (1.116)

where eL = 1[}2 ;. is the creation operator for electrons in the conduction band, and h}; =1,
is the creation operator for holes (and hence the destruction operator for electrons) in the
valence band. The state ‘ \IJO> has all states below the top of the valence band filled, and
all states above the bottom of the conduction band empty. The state ‘ 0> is the same state,
but represented now as a vacuum for conduction electrons and valence holes. The current
density in each state is given by j = e(v, —ve)/V, where V is the volume (i.e. length) of the
system. The dispersions resemble ¢, ~ :I:%Eg + h2k?/2m*, where E, is the energy gap.

e State ‘ v, >:
The electron velocity is ve = hk/m*; the hole velocity is v, = —hk/m*. Hence,

the total current density is j ~ —2ehk/m*V and the total crystal momentum is
P =pe+p, =hk—nhk=0.



1.6. BOLTZMANN EQUATION FOR HOLES 23

conduction band
(electron description)

valence band
(hole description)

¥,) [¥y)

Figure 1.6: Two states: }\I/A> = eL hL| 0> and ‘\I/B> = eL hT_k‘ 0>. Which state carries
more current? What is the crystal momentum of each state?

o State | Uy ):
The electron velocity is ve = hk/m*; the hole velocity is v, = —h(—Fk)/m*. The

total current density is j ~ 0, and the total crystal momentum is P = pe + p, =
hk — h(—k) = 2hk.

Consider next the dynamics of electrons near the bottom of the conduction band and holes
near the top of the valence band. (We’'ll assume a ‘direct gap’, i.e. the conduction band
minimum is located directly above the valence band maximum, which we take to be at the
Brillouin zone center k = 0, otherwise known as the I' point.) Expanding the dispersions
about their extrema,

e (k) = ey — gh*mys ' kO kP (1.117)
eo(k) =e§+ 3n°mss RO KD (1.118)
The velocity is
1 Oe —1
apy = 295 _ 4 B 1.11

where the + sign is used in conjunction with m® and the — sign with m¥. We compute the
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acceleration a = 7 via the chain rule,

o O AP
- OkP dt
~ 1
=Fem,} [Eﬁ + = (v % B)ﬁ] (1.120)
N 1
F*=m,,d’ = Te {Eﬁ + - (v % B)ﬁ] . (1.121)

Thus, the hole wavepacket accelerates as if it has charge +e but a positive effective mass.

Finally, what form does the Boltzmann equation take for holes? Starting with the Boltz-
mann equation for electrons,

OF L .90 L. 9f

SN - A (1122)

we recast this in terms of the hole distribution f =1 — f, and obtain

of of of _ 7
o T Tk o = —T{1- ) (1.123)

This then is the Boltzmann equation for the hole distribution f. Recall that we can expand
the collision integral functional as

Te{fO+0f} =Lof +... (1.124)

where £ is a linear operator, and the higher order terms are formally of order (Jf)2. Note
that the zeroth order term Zp{f"} vanishes due to the fact that f° represents a local
equilibrium. Thus, writing f = f° + 6f

Tl - fy =T {1 - fO—of} = L6f + ... (1.125)

and the linearized collisionless Boltzmann equation for holes is

8f0
Oe

£—H
T

ot he’ 7 ok

oof e B d of v.[e VT} = L6f (1.126)

which is of precisely the same form as the electron case in eqn. (1.31). Note that the local
equilibrium distribution for holes is given by

fo(r k,t) = {exp <W> + 1}1 (1.127)
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1.7 Magnetoresistance and Hall Effect

1.7.1 Boltzmann Theory for p,s(w, B)

In the presence of an external magnetic field B, the linearized Boltzmann equation takes

the form!? o5f o0 o5f
e
We will obtain an explicit solution within the relaxation time approximation £df = —df /7

and the effective mass approximation,
e(k) =+ WPm kK’ — v*=+hm_ k", (1.129)

where the top sign applies for electrons and the bottom sign for holes. With £(t) = € =™,
we try a solution of the form

6f (k,t) = k- A(e) e ™t = §f (k) e ! (1.130)

where A(e) is a vector function of € to be determined. Each component A, is a function of
k through its dependence on € = ¢(k). We now have

0
(771 —iw) kFAF — % €0y U BP % (kFAF) =ev - E % , (1.131)

where € By is the Levi-Civita tensor. Note that

0 0A!
appf HARY — app ol B
€apy VB o (KtAF) = €,5, V"B (A +k 8k‘7>
0AH
— apB
= 60&67” B <A’7+hk“1ﬂ 85)
= €og, VO BPAY (1.132)

owing to the asymmetry of the Levi-Civita tensor: e afy v*v7 = 0. We now invoke the

identity hk* = £m, v? and match the coefficients of v® in each term of the Boltzmann
equation. This yields,

of°

[(7—1 —iw) maﬁigeam BV] AP = the e (1.133)
Defining
Top = (17! —iw)m,z+ zeam B, (1.134)
we obtain the solution 90
of = +ev®mys gl &= (1.135)

0For holes, we replace f° — 7° and §f — Jf.
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From this, we can compute the current density and the conductivity tensor. The electrical
current density is

% af°
_ 2 a, v -1
= 42e 87/ 3 Vv m,5 5. (€) <_8€) , (1.136)

where we allow for an energy-dependent relaxation time 7(¢). Note that I',5(e) is energy-
dependent due to its dependence on 7. The conductivity is then

&% a0
0 5(w0, B) = zh%ama;{/(%)g b (‘ai) r;g@)} (1.137)
Q
2,1 af0
=43 eZ/dggg(a) () (—é’i) : (1.138)

where the chemical potential is measured with respect to the band edge. Thus,
Oop(w, B) =ne® (T 5) (1.139)
where averages denoted by angular brackets are defined by
[e’s) 0 B
[ deeg(e) (‘{TQ) Faé(s)

(T = ——= - . (1.140)
_f deegl(e) (—%)

The quantity n is the carrier density,

o0

B fO(e) (electrons)
n —_/deg(s) X {{1 “ @)} (holes) (1.141)

EXERCISE: Verify eqn. (1.138).

For the sake of simplicity, let us assume an energy-independent scattering time, or that the
temperature is sufficiently low that only 7(ep) matters, and we denote this scattering time
simply by 7. Putting this all together, then, we obtain

Oup = ne? F;é (1.142)
1 1 1. e ~
pap = —5Tas = —— [T —iw)m s £ S e BT . (1.143)
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We will assume that B is directed along one of the principal axes of the effective mass
tensor m,, 5, which we define to be @, ¢, and 2, in which case

1 (17t —dw)m} +eB/c 0
—1 . *
Pus(w; B) e FeB/c (777 —iw) my | 0. (1.144)
0 0 (T —iw) m}
where my, . are the eigenvalues of m,,; and B lies along the eigenvector 2.
Note that .
m .
Puz(w, B) = ne;T (1 —dwr) (1.145)

is independent of B. Hence, the magnetoresistance,

vanishes: Apg,(B) = 0. While this is true for a single parabolic band, deviations from
parabolicity and contributions from other bands can lead to a nonzero magnetoresistance.

The conductivity tensor Top 18 the matrix inverse of p " Using the familiar equality

—1
a b 1 d -b
<c d> " ad — be (—c a ) ’ (1.147)

we obtain
(1—iwT)/m} weT/y/ T My 0
(1—iwT)2+(weT)? + (1—iwT)2+(weT)?
O op(w, B) = ne’r LT/ yme ™y (1—iwr)/my 0 (1.148)
(1—iwT)2+(weT)? (1—iwT)2+(weT)?
1
0 0 Ty
where B
W = TZ . (1.149)
1
with m’ = /mjmj, is the cyclotron frequency. Thus,
ne’r 1 —wr
B) = 1.150
Oz (W, B) mt 1+ (w2 — w?)712 — 2iwT ( )
ne’r 1
02w, B) =~ = — (1.151)
z

Note that 0,44y are field-dependent, unlike the corresponding components of the resistivity
tensor.
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1.7.2 Cyclotron Resonance in Semiconductors

A typical value for the effective mass in semiconductors is m* ~ 0.1 me. From

e

= 1.75 x 10" Hz/G , (1.152)
Me C

we find that eB/m*c = 1.75 x 101" Hz in a field of B = 1kG. In metals, the disorder is

such that even at low temperatures w.7 typically is small. In semiconductors, however, the

smallness of m* and the relatively high purity (sometimes spectacularly so) mean that w.r

can get as large as 10® at modest fields. This allows for a measurement of the effective mass

tensor using the technique of cyclotron resonance.

The absorption of electromagnetic radiation is proportional to the dissipative (i.e. real) part
of the diagonal elements of o, 5(w), which is given by

ne’r 14+ (N4 1)s?
14+2(A2+1)s2+ (A2 —1)2s

ol.(w,B) = (1.153)

*
ml‘

where A\ = B/B,,, with B, = m’ cw/e, and s = wr. For fixed w, the conductivity o, (B)
is then peaked at B = B*. When wr > 1 and w.r > 1, B* approaches B,,, where
ol . (w, B,) = ne*r/2m%. By measuring B, one can extract the quantity m* = eB,,/we.
Varying the direction of the magnetic field, the entire effective mass tensor may be deter-

mined.

For finite wr, we can differentiate the above expression to obtain the location of the cyclotron
resonance peak. One finds B = (1 + a)'/? B,,, with

—(2s2 4+ 1)+ /(252 +1)2 -1
o = 2

: (1.154)

1 1
=+ — 4078
454 * 856 +0(7)
As depicted in fig. 1.7, the resonance peak shifts to the left of B, for finite values of wr.
The peak collapses to B = 0 when wr < 1/v/3 = 0.577.

1.7.3 Magnetoresistance: Two-Band Model

For a semiconductor with both electrons and holes present — a situation not uncommon to
metals either (e.g. Aluminum) — each band contributes to the conductivity. The individual
band conductivities are additive because the electron and hole conduction processes occur
in parallel, exactly as we would deduce from eqn. (1.8). Thus,

0a5@) = (W), (1.155)

(n)

where 0,5 is the conductivity tensor for band n, which may be computed in either the
electron or hole picture (whichever is more convenient). We assume here that the two
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Figure 1.7: Theoretical cyclotron resonance peaks as a function of B/B,, for different values
of wr.

distributions df. and df, evolve according to independent linearized Boltzmann equations,
i.e. there is no interband scattering to account for.

The resistivity tensor of each band, pgg exhibits no magnetoresistance, as we have found.

However, if two bands are present, the total resistivity tensor p is obtained from p~! =
pet+pyts and

-1

p=(p" +p.") (1.156)

will in general exhibit the phenomenon of magnetoresistance.

Explicitly, then, let us consider a model with isotropic and nondegenerate conduction band
minimum and valence band maximum. Taking B = B2, we have

. 0 1 0 ac Be O
1-— B
p, = ( Zch)mc I+ 10 0ol = —Be e 0 (1.157)
Ne€27, neec\ g o0 0 0 0 a
. 0O 1 0 oy —0By 0
1-— Vv )My B
pv = ( woT )m ]I — —1 0 0 - BV Ay 0 9 (1]‘58)
Nye2Ty nvec \ 0 0 0 0 0 o
v
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where
1—1 B
o, = LT WTIme g =2 (1.159)
Ne€27, neec
1 —iwry)my B
o, = Lo dwn)m 8, =2 (1.160)
Ny €2 Ty nyvec

we obtain for the upper left 2 x 2 block of p:

2 2
Ay 4 Q¢ + /Bv + Be
af + 087 ad+ 52 oy + B ad+

-1

P =
Hmtatim  am T o
X , (1.161)
_ ﬁv _ ﬁc (62 _|_ (679
aGHpy aiHBE ofHAY T adHbE
from which we compute the magnetoresistance
al v )\ 2
pxﬁ(‘B) - pxﬁ(o) _ fYC ’)/V (@ B @) B 1 162
(0) B 2 2 (_1 1) g2 (1.162)
p 1
w (ve +1)% + (e w) (ncec + nvec) B
where
2
1
ye=agl =T (1.163)
Me 1 —wre
2
A% \% 1
v =agl =TV, . (1.164)

My 1—iwny

Note that the magnetoresistance is positive within the two band model, and that it saturates
in the high field limit:

2
xx B — Pzxx Te v (n’y;c o ﬁ)

pez(0) (Ve w)? (L + L)2

neec nyec

The longitudinal resistivity is found to be

Pre= (Ve + %) " (1.166)

and is independent of B.

In an intrinsic semiconductor, n. = ny o exp(—FEy/2k,T), and Apz(B)/pz2(0) is finite
even as T' — 0. In the extrinsic (i.e. doped) case, one of the densities (say, n. in a p-type
material) vanishes much more rapidly than the other, and the magnetoresistance vanishes
with the ratio n./ny.
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Figure 1.8: Nobel Prize winning magnetotransport data in a clean two-dimensional electron
gas at a GaAs-AlGaAs inversion layer, from D. C. Tsui, H. L. Stérmer, and A. C. Gossard,
Phys. Rev. Lett. 48, 1559 (1982). ps, and ps, are shown versus magnetic field for a set of
four temperatures. The Landau level filling factor is v = nhe/eB. At T = 4.2 K, the Hall
resistivity obeys pzy = B/nec (n = 1.3 x 10" em™2). At lower temperatures, quantized
plateaus appear in pg,(B) in units of h/e%.

1.7.4 Hall Effect in High Fields
In the high field limit, one may neglect the collision integral entirely, and write (at w = 0)
of% e 9of
v €2 & R 1.1
ev-& 5 " U T 0 (1.167)

We’ll consider the case of electrons, and take £€ = £y and B = B2, in which case the
solution is

he€  Of°
of = — k, — . 1.168
f =5 ka5 (1.168)
Note that k, is not a smooth single-valued function over the Brillouin-zone due to Bloch
periodicity. This treatment, then, will make sense only if the derivative 9f°/0e confines k
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Figure 1.9: Energy bands in aluminum.
to a closed orbit within the first Brillouin zone. In this case, we have
E [ d*% e Of°
j» = 2ec — k o 1.169
Jo B/(zﬂ)?’ " Ok, O (1.169)
9)
E [ d*% ofY
= 2ec — k . 1.170
B/(27T)3 T Ok, ( )
9)

Now we may integrate by parts, if we assume that fO vanishes on the boundary of the
Brillouin zone. We obtain

2ecE [ d%k nec
. __ aecc - T 1.171
O
We conclude that nec
Oy = — 0y = 5 (1.172)

independent of the details of the band structure. “Open orbits” — trajectories along Fermi
surfaces which cross Brillouin zone boundaries and return in another zone — post a subtler
problem, and generally lead to a finite, non-saturating magnetoresistance.

For holes, we have f0 =1 — f° and

2ec [ d*% ofo° nec
L Lo nee 1.1
I B Jentean - TB ¢ (1.173)
Q
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Figure 1.10: Fermi surfaces for electron (pink) and hole (gold) bands in Aluminum.

and o,y = +nec/B, where n is the hole density.

We define the Hall coefficient Ry = —pay/B and the Hall number

1
p=——, (1.174)
n,,,eclRy

where n;

is the ion density. For high fields, the off-diagonal elements of both Pos and
0,5 are negligible, and pzy = —ogy. Hence Ry = F1/nec, and z; = +n/n,, . The high
field Hall coefficient is used to determine both the carrier density as well as the sign of the

charge carriers; z;; is a measure of valency.

In Al, the high field Hall coefficient saturates at z;; = —1. Why is z;; negative? As it turns
out, aluminum has both electron and hole bands. Its valence is 3; two electrons go into a
filled band, leaving one valence electron to split between the electron and hole bands. Thus
n = 3n,,, The Hall conductivity is

Opy = (N, — 1) ec/B . (1.175)

The difference ny, — ne is determined by the following argument. The electron density in
the hole band is n;, = 2n,,, —n,, i.e. the total density of levels in the band (two states per

won
unit cell) minus the number of empty levels in which there are holes. Thus,

(1.176)

Ny = e = 2nion - (’I’Le + 7’1,‘/3) = Nion >
where we’ve invoked ne 4+ n), = njon, since precisely one electron from each ion is shared
between the two partially filled bands. Thus, oy = 1, ec/B = nec/3B and zy = —1. At
lower fields, zy = +3 is observed, which is what one would expect from the free electron
model. Interband scattering, which is suppressed at high fields, leads to this result.
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1.8 Thermal Transport

1.8.1 Boltzmann Theory

Consider a small region of solid with a fixed volume AV. The first law of thermodynamics
applied to this region gives TAS = AE — pAN. Dividing by AV gives

dq=Tds=de— pdn , (1.177)

where s is the entropy density, ¢ is energy density, and n the number density. This can be
directly recast as the following relation among current densities:

where j, = j/(—e) is the number current density, j. is the energy current density,

) d%
3522/(271_)3) €’U6f, (1179)
Q
and j, is the entropy current density. Accordingly, the thermal (heat) current density jq is
defined as

g, =Tjs = j. + gj (1.180)
a3
) _ . 1.181
[ = (1181)
a

In the presence of a time-independent temperature gradient and electric field, linearized
Boltzmann equation in the relaxation time approximation has the solution

5f = —7(c) v - (eg + % VT) (—%f) . (1.182)

We now consider both the electrical current j as well as the thermal current density j,.
One readily obtains

3
j = —26/(;Z7Tk;3 ’U(Sf = L11 E — L12 vT (1.183)
Q
) d%
-7q =2 (27[_)3 (8 — u) véf = L21 E — L22 vT (1.184)

Q
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where the transport coefficients L' etc. are matrices:

2 0 a, B
ag € of v* v
L = oo / de(e) <_a> / 45 Ty

af _mraf _ € _ _(97fo / v P
15 =718 = - e - (<) fas U

o 1 af° v P
LQQB = W/dfT(@) (€—M)2 (_85> /dSE W .

If we define the hierarchy of integral expressions

1 of° v 0P
af — _ ~ AT O 7
In'” = 4m3h /dgT(E) (&= n) ( Oe ) /dSE |v|

then we may write

1

I = L =TLY - —ed? 1= 15

T

The linear relations in eqn. (1.184) may be recast in the following form:

E=pj+QVT
Jg=NJ—-sVT,

where the matrices p, @, M, and x are given by

-1 -1
p= Ly Q= Ly Ly

-1 -1
M= Ly Ly k= Loy — Loy L1y Ly ,

_ 1 __
p=—=T;" Q=57

_ 1 _
I_I:—gjljol H:T<u72—u71~701j1) )

35

(1.185)
(1.186)

(1.187)

(1.188)

(1.189)

(1.190)
(1.191)

(1.192)
(1.193)

(1.194)

(1.195)

The names and physical interpretation of these four transport coeflicients is as follows:

e pisthe resistivity: £ = pj under the condition of zero thermal gradient (i.e. VT = 0).

e ( is the thermopower: € = QV T under the condition of zero electrical current (i.e.

7 =0). Q is also called the Seebeck coefficient.
e M is the Peltier coefficient: j; = Mg when VT = 0.

e r is the thermal conductivity: 3o = —kV T when 7 =0 .
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T=T

Vo= (QBiQA)(TliTO)

Figure 1.11: A thermocouple is a junction formed of two dissimilar metals. With no electri-
cal current passing, an electric field is generated in the presence of a temperature gradient,
resulting in a voltage V =V — Vp.

One practical way to measure the thermopower is to form a junction between two dissimilar
metals, A and B. The junction is held at temperature 77 and the other ends of the metals
are held at temperature 7Tp. One then measures a voltage difference between the free ends
of the metals — this is known as the Seebeck effect. Integrating the electric field from the
free end of A to the free end of B gives

B

Vi — Vi :—/8-dl: Qs — Qu)(T1 —Tp) . (1.196)
A

What one measures here is really the difference in thermopowers of the two metals. For an
absolute measurement of @, replace B by a superconductor (@ = 0 for a superconductor).
A device which converts a temperature gradient into an emf is known as a thermocouple.

The Peltier effect has practical applications in refrigeration technology. Suppose an electrical
current [ is passed through a junction between two dissimilar metals, A and B. Due to
the difference in Peltier coefficients, there will be a net heat current into the junction of
W = (Ma — M) I. Note that this is proportional to I, rather than the familiar I? result
from Joule heating. The sign of W depends on the direction of the current. If a second
junction is added, to make an ABA configuration, then heat absorbed at the first junction
will be liberated at the second. !

1Ty create a refrigerator, stick the cold junction inside a thermally insulated box and the hot junction
outside the box.
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L

I, = (TIg—1I1,) 1

Figure 1.12: A sketch of a Peltier effect refrigerator. An electrical current I is passed through
a junction between two dissimilar metals. If the dotted line represents the boundary of a
thermally well-insulated body, then the body cools when Mg > My, in order to maintain a
heat current balance at the junction.

1.8.2 The Heat Equation

We begin with the continuity equations for charge density p and energy density e:

dp

o TV =0 (1.197)
Oe . ,
a%—v'js—g‘E, (1.198)

where E is the electric field'2. Now we invoke local thermodynamic equilibrium and write

Oe Oe On  Os OT

o " onot T oT ot

w Op oT
=== — 1.199
e ot Vo (1.199)
where n is the electron number density (n = —p/e) and ¢, is the specific heat. We may

now write
oT 0e pudp
Cyp— = — + — —
Vot ot e ot

=j-E-V j,. (1.200)

12Note that it is /- J and not £ - J which is the source term in the energy continuity equation.
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Invoking j, = Mj — kV T, we see that if there is no electrical current (7 = 0), we obtain
the heat equation

or o

This results in a time scale 7, for temperature diffusion 7, = CL2CV /K, where L is a typical
length scale and C is a numerical constant. For a cube of size L subjected to a sudden
external temperature change, L is the side length and C = 1/37? (solve by separation of
variables).

1.8.3 Calculation of Transport Coefficients

We will henceforth assume that sufficient crystalline symmetry exists (e.g. cubic symme-
try) to render all the transport coefficients multiples of the identity matrix. Under such
conditions, we may write J L dap With

T, = Fl% /de (&) (e — )" <_08f€0> /ng lv| . (1.202)

The low-temperature behavior is extracted using the Sommerfeld expansion,

7= ?deH(e) <—88J;0> = 7D csc(nD) H(e)

—0o0

(1.203)
e=p

= H(p) + T:UfBT)QH”(u) +... (1.204)

where D = kT % is a dimensionless differential operator.!?

To quickly derive the Sommerfeld expansion, note that

af° 1 1
<_ Oe ) N kT [e(E—M)/kBT + 1] [e(u—a)/kBT + 1] J (1.205)

hence, changing variables to = (¢ — p)/k,T,

B T H(p+xk,T) r P
1= /d”” +)ertl) /d”“" R A

—00 — 00

oo
=271 Z Res

n=0

e=p
ezD

@+ e+ 1) ’ (1.206)

z=(2n+1)im

!3Remember that physically the fixed quantities are temperature and total carrier number density (or
charge density, in the case of electron and hole bands), and not temperature and chemical potential. An
equation of state relating n, p, and T is then inverted to obtain u(n,T’), so that all results ultimately may
be expressed in terms of n and T
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where we treat D as if it were c-number even though it is a differential operator. We have
also closed the integration contour along a half-circle of infinite radius, enclosing poles in
the upper half plane at z = (2n + 1)im for all nonnegative integers n. To compute the
residue, set x = (2n + 1)iw + €, and examine
e(2n+1)inD D 14+eD+ %62D2 + ...

(1—e)(1—e—€) 4+ Let4 ...

1 D ;
) { -+ -ID)+ O<€>}6(2”“)”D -~ (2o

. e(2n+1)'L7r’D

We conclude that the residue is —D e(27+1iD Therefore,

T=-2miDY e TP H(e)

n=0

= mDcsc(nD) H(e)

e=p

: (1.208)
e=p

which is what we set out to show.

Let us now perform some explicit calculations in the case of a parabolic band with an
energy-independent scattering time 7. In this case, one readily finds

Tn = %) 32 rDescnDed? (e — )" : (1.209)
€ E=H
where o, = ne?r/m*. Thus,
2 2
o 7w (kgT)
= 1+ — 1.210
Jo - + 5 2 + ( )
2 2
Og ™ (kBT)
= —— . 1.211
jl 62 2 L + ( )
2
_0oT 2
Ty =35 kD) 4 (1.212)
from which we obtain the low-T" results p = o L
72 k2T 72 nt
- = k2T 1.213
Q 2 €CEp " 3 m* v ( )
and of course M = T'Q. The predicted universal ratio
K 2 2 —8172 1c—2
o

is known as the Wiedemann-Franz law. Note also that our result for the thermopower
is unambiguously negative. In actuality, several nearly free electron metals have positive
low-temperature thermopowers (Cs and Li, for example). What went wrong? We have
neglected electron-phonon scattering!
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Figure 1.13: QT product for p-type and n-type Ge, from T. H. Geballe and J. W. Hull,
Phys. Rev. 94, 1134 (1954). Samples 7, 9, E; and F are distinguished by different doping
properties, or by their resistivities at 7 = 300K: 21.5Q-cm (7), 34.5Q-cm (9), 18.5Q-cm
(E), and 46.0 Q-cm (F).

1.8.4 Onsager Relations

Transport phenomena are described in general by a set of linear relations,
Ji = L, Fy, (1.215)

where the {F}} are generalized forces and the {J;} are generalized currents. Moreover,
to each force F; corresponds a unique conjugate current J;, such that the rate of internal
entropy production is

S:ZFJ = Fizgi. (1.216)
The Onsager relations (also known as Onsager reciprocity) states that
Lix(B) = ning Lii(—B) , (1.217)
where 7; describes the parity of J; under time reversal:
TJi=mniJi. (1.218)

We shall not prove the Onsager relations.



1.8. THERMAL TRANSPORT 41

The Onsager relations have some remarkable consequences. For example, they require, for
B = 0, that the thermal conductivity tensor j of any crystal must be symmetric, indepen-
dent of the crystal structure. In general,this result does not follow from considerations of
crystalline symmetry. It also requires that for every ‘off-diagonal’ transport phenomenon,
e.g. the Seebeck effect, there exists a distinct corresponding phenomenon, e.g. the Peltier
effect.

For the transport coefficients studied, Onsager reciprocity means that in the presence of an
external magnetic field,

pas(B) = psa(—B) (1.219)
Kos(B) = Ky (—B) (1.220)
Mos(B) =T Qu,(—B) . (1.221)

Let’s consider an isotropic system in a weak magnetic field, and expand the transport
coefficients to first order in B:

1.222
1.223
1.224
1.225

Pop(B) = pd s+ 1e,, ., B7
Kog(B) = Kb,z +we,q B
aﬁ(B) Qa5 + Ceaﬁv B
ap(B)=T0,5+0€,5 B

Onsager reciprocity requires M =T @ and 0 =T (. We can now write

(1.222)
(1.223)
(1.224)
(1.225)

E=pj+vixB+QVT+(VTxB (1.226)
j,=Nj+0jxB—-kVT-wVTxB. (1.227)

There are several new phenomena lurking!

e Hall Effect (55 = 9% = j, = 0)
An electrical current j = jx  and a field B = B, 2 yield an electric field £. The Hall

coefficient is Ry = &y /j. B. = —v.

e Ettingshausen Effect ( = Jy = Jgy =0)

An electrical current j = j, € and a ﬁeld B = B, z yield a temperature gradient g—:yp.

The Ettingshausen coefficient is P = 3y / Jz B: = —0/k.

o Nernst Effect (j, = jy, = 8y =0)
A temperature gradient VT = g—g « and a field B = B, 2z yield an electric field £.
The Nernst coefficient is A = &, / g% B, =—-(.

e Righi-Leduc Effect (j, = j, = Sy =0)
A temperature gradient V1T = ac and a field B = B, 2 yleld an orthogonal tem-
perature gradient ‘?95. The nghl—Leduc coefficient is £ = ay / B, =¢ /Q.
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1.9 Electron-Phonon Scattering

1.9.1 Introductory Remarks

We begin our discussion by recalling some elementary facts about phonons in solids:

e In a crystal with r atoms per unit cell, there are 3(r — 1) optical modes and 3 acoustic
modes, the latter guaranteed by the breaking of the three generators of space transla-
tions. We write the phonon dispersion as w = w,(q), where A € {1,...,3r} labels the
phonon branch, and g € Q. If j labels an acoustic mode, wj(q) =¢j(q)qas g — 0.

e Phonons are bosonic particles with zero chemical potential. The equilibrium phonon

distribution is
O 1

P xp(y (@) /kaT) — 1

(1.228)

e The maximum phonon frequency is roughly given by the Debye frequency wp. The
Debye temperature ©p = Awp ~ 100 K — 1000 K in most solids.

At high temperatures, equipartition gives ((0R;)?) o< kT, hence the effective scattering
cross-section oy, increases as T, and 72 1/n, vpoyy o< T71. From p = m*/ne’r, then,
we deduce that the high temperature resistivity should be linear in temperature due to
phonon scattering: p(T) o T. Of course, when the mean free path ¢ = vp7 becomes as
small as the Fermi wavelength Ay, the entire notion of coherent quasiparticle transport
becomes problematic, and rather than continuing to grow we expect that the resistivity
should saturate: p(T — oo) =~ h/kge?, known as the Ioffe-Regel limit. For ky = 10%cm™}
this takes the value 260 {2 cm.

1.9.2 Electron-Phonon Interaction

Let R, = R) + §R; denote the position of the i*" ion, and let U(r) = —Ze? exp(—r/App) /T
be the electron-ion interaction. Expanding in terms of the ionic displacements § R;,

Helion = »_U(r —R)) =Y R, VU(r—RY), (1.229)

where i runs from 1 to Nion'*. The deviation 6 R; may be expanded in terms of the vibra-
tional normal modes of the lattice, i.e. the phonons, as

1/2

1 h PO

SRS = & (q) e (a,, +al ). (1.230)
Nion %: <2w/\(q)> 1 1

4We assume a Bravais lattice, for simplicity.
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Figure 1.14: Transverse and longitudinal phonon polarizations. Transverse phonons do
not result in charge accumulation. Longitudinal phonons create local charge buildup and
therefore couple to electronic excitations via the Coulomb interaction.

The phonon polarization vectors satisfy €, (q) = €3(—q) as well as the generalized orthonor-
mality relations

Z q)&%(—q) = M1y, (1.231)

Ze/\ q) e>\ —q) :M_15a6 , (1.232)
A

where M is the ionic mass. The number of unit cells in the crystal is Njo, = V/Q, where
Q is the Wigner-Seitz cell volume. Again, we approximate Bloch states by plane waves
¢r(r) = exp(ik - 7)/v/V, in which case

i e wgo AnZe? (k— K
U ith—k')RY ATZe” ( )

(K'|VU(r-R))|k)=—— o (1.233)
4 (k—K')* + Arp
The sum over lattice sites gives
Nion
> RO RE — N G et g mmod G (1.234)
i=1
so that
%el ph \/7 ZgA k k q)\+a’ )wlto' wk’a 5k’,k+q+G (1235)
kK o
qQ\G
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with

1/2
h A
Gk k+qg+G)=—1i — (g + G) - é5(q) . 1.236
Al ) (29w)\(q)> (@G22 ( )-éx(q) ( )

In an isotropic solid'® (‘jellium’), the phonon polarization at wavevector q either is parallel
to g (longitudinal waves), or perpendicular to g (transverse waves). We see that only
longitudinal waves couple to the electrons. This is because transverse waves do not result
in any local accumulation of charge density, and it is to the charge density that electrons
couple, via the Coulomb interaction.

Restricting our attention to the longitudinal phonon, we have é;(q) = ¢/v M and hence,
for small ¢ = k' — k,

BO\Y? anze?
> c 1/2 q1/2 :

— i 1.2
g.(k.k+q) Z(QMQ Z2 (1.237)

where ¢; is the longitudinal phonon velocity. Thus, for small ¢ we that the electron-
longitudinal phonon coupling g, (k, k + q) = gq satisfies

’gq‘Q = )\elfph : ) (1238)

where g(ep) is the electronic density of states, and where the dimensionless electron-phonon
coupling constant is

2
Z? 27 m* Ep
Aeloph = ———— = — , 1.239
S e g 3 M <k395> (1.239)

with Og = hepkp/k,. Table 1.3 lists O, the Debye temperature Oy, and the electron-phonon
coupling Aej_pn for various metals.

EXERCISE: Derive eqn. (1.239).

[ Metal | O [ Op [ Aa—pn || Metal [ ©5 | ©Op [ Aai—pn ||

Na 220 | 150 0.47 || Au 310 | 170 0.08
K 150 | 100 0.25 || Be 1940 | 1000 0.59
Cu 490 | 315 0.16 || Al 910 | 394 0.90
Ag 340 | 215 0.12 || In 300 | 129 1.05

Table 1.3: Electron-phonon interaction parameters for some metals. Temperatures are in
Kelvins.

5The jellium model ignores G' # 0 Umklapp processes.
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1.9.3 Boltzmann Equation for Electron-Phonon Scattering

Earlier we had quoted the result for the electron-phonon collision integral,

Telfinh = o0 S ok KDL= fo) fio (14 mg ) ek + hisgs — <)
KA

+(1 = fi) frr n—gr6(ex — hw_gx — exr)
—fre (1= frr) (L +1n_gp) (e — hw_gx — €pr)
—fre (1 = frr) ngr 6(ek + gy — 6k/)}5q,kuk mod G -
(1.240)

The four terms inside the curly brackets correspond, respectively, to cases (a) through (d)
in fig. 1.1. The (1 + n) factors in the phonon emission terms arise from both spontaneous
as well as stimulated emission processes. There is no spontaneous absorption.

EXERCISE: Verify that in equilibrium Zx{f°,n°} = 0.

In principle we should also write down a Boltzmann equation for the phonon distribution
Nga and solve the two coupled sets of equations. The electronic contribution to the phonon
collision integral is written as Jy\{f,n}, with

on 4
Tottny= (F2) = lapl S {0 furg 0= 50

ke

~ A fr 1= fk—‘,—q)} X 6(5k+q — e — hwgy) - (1.241)

Phonon equilibrium can be achieved via a number of mechanisms we have not considered
here, such as impurity or lattice defect scattering, anharmonic effects (i.e. phonon-phonon
scattering), or grain boundary scattering. At low temperatures,

Aw? impurity scattering
m =<{ Bw?T? anharmonic phonon scattering (1.242)
C/L boundary scattering (L = grain size)

where A, B, and C' are constants.

Of course phonons and electrons scatter from each other — this is the process we are studying
— and in principle we should write f, = fp + Ofy and ngy = ng)\ + dngy, and linearize the
two Boltzmann equations for the electron and phonon distributions in order to study how
each species comes to equilibrium. To compute the phonon lifetime due to electron-phonon
scattering, we adopt the simplifying assumption that the electrons are in equilibrium at
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T = 0 and linearize in 5nq y- This gives a phonon scattering rate of

1 d4n 1
7_7 = ? |gq)\|2 ’ V Z (fI(c)Jrq - f]g) 5(6k+q — €k — hwq/\)
L kcQ
47 A3k hq®> hk-q
=3 |qu|2/(27T)3 [@(kp —lk+q|) -O(k - kF)}5<qu T > (1.243)

Q

4
= h772r |gq)\‘2 S(q7wq)\) )

where we assume a spherical Fermi surface and isotropic effective mass m*. Here, S(q,w)
is the dynamic structure factor of the filled Fermi sphere — we will compute this in detail
in chapter three. For now, all we need to know is that

S(q,w) = g(ep) ——

for w< qu(1 - i) . (1.244)
2vpq

2y

We then obtain, for longitudinal acoustic phonons,

b 212\ i 1.24
= 4T Aelph — 4 (1.245)
TL:q UF

where ¢, is the acoustic phonon velocity. Thus, 7, '(w) = 27r2)\elfph (¢, /vp)w.

To compute the electron lifetime due to electron-phonon scattering, we first make the sim-
plifying assumption that the phonons are in equilibrium, i.e. Mgy = ng)\. We then write

fr = f,g + 0f,, and linearize Zp{f}, to obtain
2w 2 0 0 0 0
Lof = n Z }qu‘ [(1 — i+ nqA)éfk+q - (fk+q + nq}\)dfk] 5(€k+q — ek — hwgy)
qA

- [(1 - f18+q + ngq)\)(sfk —(fe+ ngq)\)(sfk—i-q} 5(5k+q —&k T hwq/\)} : (1.246)
This integral operator must be inverted in order to solve for Jfy in

Lif=cv-E (-%f) . (1.247)

Unfortunately, the inversion is analytically intractable — there is no simple solution of the
form Ofy, = eryv, - £ (0f°/0e) as there was in the case of isotropic impurity scattering.
However, we can still identify the coefficient of —dfy in L£Jf as the scattering rate 7, 1 As

before, 7, in fact is a function of the energy e(k):

r 1 , |gk’7k‘2 0/ 0 ’
T(e)  4Am2h? /ds/dSE/ vk | { I o] O =2 = B )

F L4 ) +nd ] O — e+ mk_k,)} (1.248)
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In an isotropic system, 7(¢(k)) is independent of k. This means we can take k = \/2m*e/h2 2
in performing the above integral.

It is convenient to define the dimensionless function

1 98—l
2 — k'—k
a’F(w) = 372 /d5’€/ o S(w—wp_p) - (1.249)

For parabolic bands, one obtains

1 Ael—ph lw m* N R
2F(w) = ol-ph kQ/dk’é — kel — 2
(W) = vk /7R R T (w — cLkelk' — 2|)
m 2
- )\elfph <k®> @(2kB®S —FLOJ) . (1250)
BYS

The scattering rate is given in terms of a?F(w) as
27 /dw ?F(w) {fo(e + hw) — fO(e — hw) 4+ 2n°(w) + 1} . (1.251)
0

L
(e)

At T = 0 we have f0(¢) = O(ey — ¢) and n’(w) = 0, whence
oo

7(15) = 27r/dwa2F(w) {@(EF —e—hw) —O(ep — e+ hw) —|—1}

0

Aelfph 27 |€7€F|3 3
5 e if |e — ep| < 2k;05

B (1.252)
Pelooh 20 (1 ©,) it |e — eg| > 2k, O -

Note that 7(ep) = 00, unlike the case of impurity scattering. This is because at 7" = 0 there
are no phonons! For T # 0, the divergence is cut off, and one obtains

1 2mde—pn kT (26
i 5 o2 G T (1.253)
y N T¢B) ify=o0
x
G(y) = /dx Ssinhe (1.254)
0 %y ify<1,

and so ,
e e N if T < O,

= (1.255)
2% kBT )\elfph if T> 6

This calculation predicts that 7 oc 773 at low temperatures. This is correct if 7 is the
thermal lifetime. However, a more sophisticated calculation shows that the transport lifetime
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behaves as 7, o< T~5 at low T. The origin of the discrepancy is our neglect of the (1 —cos )
factor present in the average of the momentum relaxation time. At low T, there is only
small angle scattering from the phonons, and (9?) oc (g?/k2) < T?. The Wiedemann-Franz
law, 7, = 74, is valid for k;T 2 hc kp, as well as at low T in isotropic systems, where
impurity scattering is the dominant mechanism. It fails at intermediate temperatures.

1.10 Stuff You Should Know About Phonons

Crystalline solids support propagating waves called phonons, which are quantized vibrations
of the lattice. Recall that the quantum mechanical Hamiltonian for a single harmonic
oscillator, H = % + %mw%qQ, may be written as H = hwg(a'a + %), where @ and a' are
‘ladder operators’ satisfying commutation relations [a , aT] =1.

1.10.1 One-dimensional chain

Consider the linear chain of masses and springs depicted in fig. 1.15. We assume that our
system consists of N mass points on a large ring of circumference L. In equilibrium, the
masses are spaced evenly by a distance b = L/N. That is, 20 = nb is the equilibrium
position of particle n. We define u,, = x,, — 2 to be the difference between the position of

mass n and The Hamiltonian is then

_Z[+ 3K n+1—xn—a)2]
_Z[+ 5k n+1—un)z]+§Nﬁ;(b—a)27

where qa is the unstretched length of each spring, m is the mass of each mass point, k is the
force constant of each spring, and N is the total number of mass points. If b # a the springs
are under tension in equilibrium, but as we see this only leads to an additive constant in
the Hamiltonian, and hence does not enter the equations of motion.

(1.256)

The classical equations of motion are

. Pn
=_—_—— == 1.257
i = G = L (1.257)
0H
P, = o =N (Upyq + Up_q —2u,) . (1.258)

Taking the time derivative of the first equation and substituting into the second yields
. K
i = (Upy1 + Up_g — 2u,) . (1.259)

We now write

u, = \ﬁz etkna (1.260)
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n-2 n-1 n n+1 n+2

Figure 1.15: A linear chain of masses and springs. The black circles represent the equilibrium
positions of the masses. The displacement of mass n relative to its equilibrium value is u,,.

where periodicity uy ., = u, requires that the k values are quantized so that ethNa — 1,
i.e. k =2mj/Na where j € {0,1,..., N—1}. The inverse of this discrete Fourier transform

1S
- 1 ik
gy = —= Y u,e (1.261)
N n

Note that @, is in general complex, but that u; = %_,. In terms of the 1, the equations
of motion take the form

= (1 — cos(ka)) @y, = —wj @y, - (1.262)

Thus, each @, is a normal mode, and the normal mode frequencies are

wp =2/ [sin (Yka)| . (1.263)

The density of states for this band of phonon excitations is

w/a

9©) = [ o ole — )

27
—7/a
= i(J2 - 52)71/2 O()O(J —¢),

Ta

(1.264)

where J = 2hy/k/m is the phonon bandwidth. The step functions require 0 < & < J;
outside this range there are no phonon energy levels and the density of states accordingly
vanishes.

The entire theory can be quantized, taking [pn ,un,] = —1ho,,,. We then define
1 ~ _ikna = 1 —ikna
= — e , = — e , 1.265
Pn =" Ek P b= En Pn (1.265)

in which case [ﬁk ,ﬂk,] = —ihd,,;,. Note that ﬂL = u_,; and ;52 = p_;. We then define the

ladder operator
1 1/2 1/2
- 5, —i %) g (1.266)
%= 2mhw, ) P*T "\ 2n ) ‘
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and its Hermitean conjugate az, in terms of which the Hamiltonian is
H=>" hw, (ala, +3) , (1.267)
k

which is a sum over independent harmonic oscillator modes. Note that the sum over £ is

restricted to an interval of width 2m, e.g. k € [—g, g], which is the first Brillouin zone for
the one-dimensional chain structure. The state at wavevector k + %” is identical to that at

k, as we see from eqn. 1.261.

1.10.2 General theory of lattice vibrations

The most general model of a harmonic solid is described by a Hamiltonian of the form

2
- pl(R) 1 B N By
H_R, 20V +ZZ§1§/U?(R)(I)M (R— R)u}(R) , (1.268)
v 2y a, gl

where the dynamical matriz is

02U
oug (R) 0ul (R!)

af AN
o’(R-R) = (1.269)

where U is the potential energy of interaction among all the atoms. Here we have simply
expanded the potential to second order in the local displacements u®*(R). The lattice sites R
are elements of a Bravais lattice. The indices 7 and j specify basis elements with respect to
this lattice, and the indices @ and 3 range over {1, ...,d}, the number of possible directions
in space. The subject of crystallography is beyond the scope of these notes, but, very briefly,
a Bravais lattice in d dimensions is specified by a set of d linearly independent primitive
direct lattice vectors a;, such that any point in the Bravais lattice may be written as a sum
over the primitive vectors with integer coefficients: R = 2?;1 n;a;. The set of all such
vectors { R} is called the direct lattice. The direct lattice is closed under the operation of
vector addition: if R and R’ are points in a Bravais lattice, then so is R+ R/.

A crystal is a periodic arrangement of lattice sites. The fundamental repeating unit is called
the unit cell. Not every crystal is a Bravais lattice, however. Indeed, Bravais lattices are
special crystals in which there is only one atom per unit cell. Consider, for example, the
structure in fig. 1.16. The blue dots form a square Bravais lattice with primitive direct
lattice vectors a; = a and a, = ay, where a is the lattice constant, which is the distance
between any neighboring pair of blue dots. The red squares and green triangles, along with
the blue dots, form a basis for the crystal structure which label each sublattice. Our crystal
in fig. 1.16 is formally classified as a square Bravais lattice with a three element basis. To
specify an arbitrary site in the crystal, we must specify both a direct lattice vector R as
well as a basis index j € {1,...,7}, so that the location is R+mn;. The vectors {n,} are the
basis vectors for our crystal structure. We see that a general crystal structure consists of a
repeating unit, known as a unit cell. The centers (or corners, if one prefers) of the unit cells
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Figure 1.16: A crystal structure with an underlying square Bravais lattice and a three
element basis.

form a Bravais lattice. Within a given unit cell, the individual sublattice sites are located
at positions 7, with respect to the unit cell position R.

Upon diagonalization, the Hamiltonian of eqn. 1.268 takes the form

=3 I, (k) (A} (k) A, (k) + 5) (1.270)
k,a
where
[A, (), Al(K')] = 04 Ot - (1.271)
The eigenfrequencies are solutions to the eigenvalue equation
ST 0 (k) el (k) = M; w2 (k) el (k) (1.272)
7.8
where ) ‘
(k) = @ (R)e R (1.273)
R

Here, k lies within the first Brillouin zone, which is the unit cell of the reciprocal lattice
of points G satisfying e’ ® = 1 for all G and R. The reciprocal lattice is also a Bravais
lattice, with primitive reciprocal lattice vectors b;, such that any point on the reciprocal
lattice may be written G = 27:1 m,; b;. One also has that a; - b, = 27d;,. The index a

ranges from 1 to d-r and labels the mode of oscillation at wavevector k. The vector el(-g)(k)
is the polarization vector for the a™® phonon branch. In solids of high symmetry, phonon
modes can be classified as longitudinal or transverse excitations.
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1.10.3 Example: phonons in the HCP structure

The HCP structure is represented as an underlying simple hexagonal lattice with a two-
element basis:

a,=ax a2:%a§:+§aﬁ , a3:\/§aﬁ. (1.274)

Bravais lattice sites are of the form R = la, + ma, + nas. The A sublattice occupies the
sites { R }, while the B sublattice occupies the sites {R + d }, where

5:%ai+r\l/§aﬁ+\/ga2. (1.275)
The nearest neighbor separation is |a,| = |ay| = |d| = a. Note that R can be used to label

the unit cells, i.e. each unit cell is labeled by the coordinates of its constituent A sublattice
site.

Classical energy
The classical energy for the system is the potential energy of the fixed lattice, given by

% =3 [o(R) (1~ Go) +u(R +5)] . (1.276)
R

where v(r) is the interatomic potential.

Dynamical matrix

When phonon fluctuations are included, the positions of the A and B sublattice sites are
written

(1.277)
R+J— R+0+ug(R).
Then the potential energy is
U=tat 3 (wa(R) - FA(R) + ug(R) - Fy(R))
(1.278)
+1 Z ZZ@W R- R)u$(R)u$ (R) + O0(W?)
R,R' j,j a,o
where )
/ o°U
207 (R—R') = (1.279)

ouf(R) ﬁujo.‘,' (R)

Here {a, o’} are spatial indices (x,y, z), and {7, j'} are sublattice indices (A, B).
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It is convenient to Fourier transform, with

sz

>
J>Q

(1.280)

amw

¥ 2
1k (R+9)
;

where N is the total number of unit cells. Then
U=Up+ Y. > (k) - Fj(—k)+ 1> Y > 0% (k) ag (k) a5 (—k) + O(u?) , (1.281)
k J k 7,5 a,
where the dynamical matrix is
o O (k) D957 (K)
jj/ (k) == R , ) ) . (1282)
o7 (k) 27 (k)
where

0*v(R)

aRaaRﬁ +Za d5v(R + 6)

837 (k) =S (1~ cosk - R)
R (1.283)

2
saf ) _ N gik(Res) OV(R A O)
P2 (k) = %: ‘ OR* ORP
Note that @glﬁ(k) = [@‘fg(k)} *. Note also that if v(R) = v(R) is a central potential, then

0%v(R)

af o DS (R)
OR* ORP (6 - R°R ) R

+ RYRPV'(R) (1.284)

where R* = R*/|R|.

Lennard-Jones potential

The Lennard-Jones potential is given by

u(r) = de, [(i)ﬂ - (:)6] (1.285)

g0 =10.22K | o =2556A. (1.286)

where
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Figure 1.17: Classical lattice energy for hep “He as a function of nearest neighbor separation
a for the Lennard-Jones potential (red) and the Aziz potential (blue).

Aziz potential

The Aziz potential is given by

B\ H\S b\L0
v(r) =g {Ae_o”"/b — |G <T> + CS(r) + Clo<r> F(T)} ; (1.287)
where
(20" i< Db
F(r) = = (1.288)
1 if r> Db,
with

e=108K , b=29763A , A=5448504 x10° , o =13.353384 (1.289)
and
Cs =1.37732412 | Cg=0.4253785 , (), =0.171800 , D =1.231314. (1.290)

The mass of the helium-4 atom is m = 6.65 x 10~%*g.

1.10.4 Phonon density of states

For a crystalline lattice with an r-element basis, there are then d - r phonon modes for each
wavevector k lying in the first Brillouin zone. If we impose periodic boundary conditions,
then the k points within the first Brillouin zone are themselves quantized, as in the d = 1
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Figure 1.18: Phonon dispersions along high-symmetry directions in the Brillouin zone for
hep “He at molar volume vg = 12 cm?® /mol, using the Lennard-Jones potential.

case where we found k = 27mn/N. There are N distinct k points in the first Brillouin zone —
one for every direct lattice site. The total number of modes is than d-r- IV, which is the total
number of translational degrees of freedom in our system: rN total atoms (/N unit cells each
with an r atom basis) each free to vibrate in d dimensions. Of the d - r branches of phonon
excitations, d of them will be acoustic modes whose frequency vanishes as k — 0. The
remaining d(r — 1) branches are optical modes and oscillate at finite frequencies. Basically,
in an acoustic mode, for k close to the (Brillouin) zone center k = 0, all the atoms in each
unit cell move together in the same direction at any moment of time. In an optical mode,
the different basis atoms move in different directions.

There is no number conservation law for phonons — they may be freely created or destroyed
in anharmonic processes, where two photons with wavevectors k and g can combine into a
single phonon with wavevector k + g, and vice versa. Therefore the chemical potential for
phonons is 4 = 0. We define the density of states g,(w) for the a™ phonon mode as

d;
gu(w) = %Zé(w—wa(k)) :vg/(;f)d 5(w — wy(k)) | (1.291)
k

BZ

where N is the number of unit cells, V), is the unit cell volume of the direct lattice, and the
k sum and integral are over the first Brillouin zone only. Note that w here has dimensions
of frequency. The functions g,(w) is normalized to unity:

[e.9]

/dw golw)=1. (1.292)

0



56 CHAPTER 1. BOLTZMANN TRANSPORT

J

=N Wb D Wd

-
i

cy (THz

Frequen

r 100 X W X 110 I 111 L *

Frequency (THz)

L L L L L L DL L L L L |

Figure 1.19: Upper panel: phonon spectrum in elemental rhodium (Rh) at 7' = 297 K mea-
sured by high precision inelastic neutron scattering (INS) by A. Eichler et al., Phys. Rev. B
57, 324 (1998). Note the three acoustic branches and no optical branches, corresponding to
d =3 and r = 1. Lower panel: phonon spectrum in gallium arsenide (GaAs) at T'= 12K,
comparing theoretical lattice-dynamical calculations with INS results of D. Strauch and B.
Dorner, J. Phys.: Condens. Matter 2, 1457 (1990). Note the three acoustic branches and
three optical branches, corresponding to d = 3 and r = 2. The Greek letters along the
z-axis indicate points of high symmetry in the Brillouin zone.

The total phonon density of states per unit cell is given by!'6

dr
9w) =3 guw) - (1.203)
a=1

Note the dimensions of g(w) are (frequency)™'. By contrast, the dimensions of g(¢) in eqn. ?? are
(energy) ™! - (volume)~*. The difference lies in the a factor of V, - h, where V, is the unit cell volume.
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The grand potential for the phonon gas is

Q(T’ V) - _kBT IDH Z e_ﬁma(k) (na(k)+%)
k,a na(k)zo

=k, In [2 sinh <h§;§§)>

k,a

(1.294)

= Nk:BT/dw g(w) In [2 sinh <2k‘BT>
0

Note that V = NV, since there are N unit cells, each of volume V,,. The entropy is given

by S = —(g—%)v and thus the heat capacity is
9% r hw Fiw
Oy =T —— = Nk, [d h? 1.295
v oT? B/ wg(w) (QkBT) o <2kBT) (1.295)
0
Note that as T'— oo we have csch(%) — 2’;2T, and therefore
Tlim Cy(T) = Nk, /dw g(w) =rdNk; . (1.296)
—00
0

This is the classical Dulong-Petit limit of %k‘B per quadratic degree of freedom; there are
rN atoms moving in d dimensions, hence d-rN positions and an equal number of momenta,
resulting in a high temperature limit of C, = rdNk;.

1.10.5 Einstein and Debye models

HIstorically, two models of lattice vibrations have received wide attention. First is the so-
called Einstein model, in which there is no dispersion to the individual phonon modes. We
approximate g,(w) ~ §(w — w,), in which case

2
Cy(T) = Nky > <27Z“’“ > csch2<27:ua > . (1.297)
a B B

At low temperatures, the contribution from each branch vanishes exponentially, since csch? (QZ“’“T)
B

4e~wa/ksT 5 (. Real solids don’t behave this way.

~

A more realistic model. due to Debye, accounts for the low-lying acoustic phonon branches.
Since the acoustic phonon dispersion vanishes linearly with |k| as kK — 0, there is no
temperature at which the acoustic phonons ‘freeze out’ exponentially, as in the case of
Einstein phonons. Indeed, the Einstein model is appropriate in describing the d(r—1)
optical phonon branches, though it fails miserably for the acoustic branches.
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In the vicinity of the zone center k = 0 (also called I' in crystallographic notation) the d
acoustic modes obey a linear dispersion, with w,(k) = ¢, (k) k. This results in an acoustic
phonon density of states in d = 3 dimensions of

- Vow
N Z/47? (k) (wp = w)

3V,
= 27r2(c13 w?O(wy —w)

where ¢ is an average acoustic phonon velocity (i.e. speed of sound) defined by

63 Z/M F10) (1.299)

and wy is a cutoff known as the Debye frequency. The cutoff is necessary because the
phonon branch does not extend forever, but only to the boundaries of the Brillouin zone.
Thus, wy, should roughly be equal to the energy of a zone boundary phonon. Alternatively,
we can define w;, by the normalization condition

(1.298)

/dw Jw)=3 = w,= (6772/120)1/36 . (1.300)
0
This allows us to write §(w) = (9w?/wd) O(wp — w).

The specific heat due to the acoustic phonons is then

wp
INE hw \ hiw
C(T) = B dw w? h?
vl =—5 /““" <2kBT> SN\ ok,
0

(1.301)
2T
= 9Nk, < > $(0,/2T) ,
©p
where O, = hwy, /ky is the Debye temperature and
x %1'3 z—0
o(x) :/dt t* csch?t = (1.302)
0 g—é T — 00 .
Therefore,
3
22 Nk, (&) T <0y
Cy(T) = (1.303)

3Nk, T> 0,

Thus, the heat capacity due to acoustic phonons obeys the Dulong-Petit rule in that
Cy (T — o0) = 3Nky, corresponding to the three acoustic degrees of freedom per unit
cell. The remaining contribution of 3(r — 1)Nky to the high temperature heat capacity
comes from the optical modes not considered in the Debye model. The low temperature
T3 behavior of the heat capacity of crystalline solids is a generic feature, and its detailed
description is a triumph of the Debye model.
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Element Ag | Al | Au C Cd | Cr Cu Fe Mn
0, (K) 227 | 433 | 162 | 2250 | 210 | 606 | 347 | 477 | 409
Tert (K) || 962 | 660 | 1064 | 3500 | 321 | 1857 | 1083 | 1535 | 1245

Element Ni Pb Pt Si Sn Ta Ti W 7Zn
0, (K) 477 | 105 | 237 | 645 | 199 | 246 | 420 | 383 329
Tiers (K) || 1453 | 327 | 1772 | 1410 | 232 | 2996 | 1660 | 3410 | 420

Table 1.4: Debye temperatures (at 7' = 0) and melting points for some common elements
(carbon is assumed to be diamond and not graphite). (Source: the internet!)

1.10.6 Phenomenological theory of melting

Atomic fluctuations in a crystal

For the one-dimensional chain, eqn. 1.266 gives

i, = z( h )1/2(% —a',) . (1.304)

Qmwk

Therefore the RMS fluctuations at each site are given by

(1.305)

+3)

=] -
s‘m

where n(k,T) = [exp(hw,/k,T) — 1] ~! is the Bose occupancy function.

Let us now generalize this expression to the case of a d-dimensional solid. The appropriate
expression for the RMS position fluctuations of the i*" basis atom in each unit cell is

u?( =¥ ZZ 7 D (nq(k) +3) . (1.306)

k:all

Here we sum over all wavevectors k in the first Brilliouin zone, and over all normal modes
a. There are dr normal modes per unit cell i.e. d branches of the phonon dispersion w, (k).
(For the one-dimensional chain with d = 1 and r = 1 there was only one such branch to
consider). Note also the quantity M,,(k), which has units of mass and is defined in terms

of the polarization vectors egi)(k) as

d
Z el (k (1.307)

a
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—-1/2

The dimensions of the polarization vector are [mass] , since the generalized orthonor-

mality condition on the normal modes is

> Myl (k) el (k) = 5 (1.308)
i
where M; is the mass of the atom of species ¢ within the unit cell (¢ € {1,...,7}). For our

purposes we can replace M, (k) by an appropriately averaged quantity which we call M; ;
this ‘effective mass’ is then independent of the mode index a as well as the wavevector k.

We may then write
T h 1 1
2\ . —
(u?) ~ /dw g(w) M. o {eﬁw/kBT — 2} , (1.309)

0

where we have dropped the site label R since translational invariance guarantees that the

fluctuations are the same from one unit cell to the next Note that the fluctuations (u?)

can be divided into a temperature-dependent part (u )th and a temperature-independent

quantum contribution (u? )qu » Where
h T g(w 1
‘0
h T g(w
d 1.311
() = g [ (1.311)

0

Let’s evaluate these contributions within the Debye model, where we replace g(w) by

B d2 wd—l
Jw)=—7—6(w, ~w) . (1.312)
wD
We then find
&h (k7Y
(W = 1 (hi > Fy(hwy [k, T) (1.313)
1D D
d? h
2
j = : 1.314
(wlan = 57 v (1.314)
where
xd72
[ gd2 =2 z—0
Fy(z) = /ds pryus e . (1.315)
0 (d—=1) z— o0

We can now extract from these expressions several important conclusions:

1) The T = 0 contribution to the the fluctuations, (u? )qu»> diverges in d = 1 dimensions.

Therefore there are no one-dimensional quantum solids.
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2) The thermal contribution to the fluctuations, (u?),, , diverges for any T > 0 whenever
d < 2. This is because the integrand of F,(x) goes as 5973 as s — 0. Therefore, there
are no two-dimensional classical solids.

3) Both the above conclusions are valid in the thermodynamic limit. Finite size imposes a
cutoff on the frequency integrals, because there is a smallest wavevector k,;, ~ 27/L,
where L is the (finite) linear dimension of the system. This leads to a low frequency
cutoff w, ;, = 2m¢/L, where ¢ is the appropriately averaged acoustic phonon velocity
from eqn. 1.299, which mitigates any divergences.

Lindemann melting criterion

An old phenomenological theory of melting due to Lindemann says that a crystalline solid
melts when the RMS fluctuations in the atomic positions exceeds a certain fraction n of the
lattice constant a. We therefore define the ratios

P 2 d—1
o _(ui)y o h T
Tow =y =d (MNZ kB> o F(6y/T) (1.316)
2 2 2
) u 1
T qu = Wi & (D L (1.317)
a 2 2d-1) \Miak,) O,

- - [n2 2 _ 2
with @; = /27 4 + 27 = /(4 >/a.

Let’s now work through an example of a three-dimensional solid. We’ll assume a single
element basis (r = 1). We have that

9h? /4k,

P 109K . (1.318)

According to table 1.4, the melting temperature always exceeds the Debye temperature,
and often by a great amount. We therefore assume 7" > ©,, which puts us in the small z
limit of F;(x). We then find

(O ©* 4T < 4T> Gk
2 2
Ty = — , Ty =~ , x = 1+ —)—. (1.319)
o0, "e, 6 O/ 6p
where e
0 = 5 - (1.320)
M [amu] - (a[A])
The total position fluctuation is of course the sum z? = a:?’th + xaqu. Consider for example

the case of copper, with M = 56 amu and a = 2.87 A. The Debye temperature is O, = 347K.
From this we find z,, = 0.026, which says that at 7" = 0 the RMS fluctuations of the
atomic positions are not quite three percent of the lattice spacing (i.e. the distance between
neighboring copper atoms). At room temperature, 7' = 293 K, one finds x,;, = 0.048, which
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is about twice as large as the quantum contribution. How big are the atomic position
fluctuations at the melting point? According to our table, T} ;. = 1083 K for copper, and
from our formulae we obtain z = 0.096. The Lindemann criterion says that solids melt
when z(T") = 0.1.

melt

We were very lucky to hit the magic number x_ ,, = 0.1 with copper. Let’s try another
example. Lead has M = 208 amu and a = 4.95 A. The Debye temperature is O, = 106K
(‘soft phonons’), and the melting point is 7, ,, = 327K. From these data we obtain

my

(T =0) =0.014, (293 K) = 0.050 and (T = 327K) = 0.053. Same ballpark.

We can turn the analysis around and predict a melting temperature based on the Lindemann
criterion (T ,.) = n, where n =~ 0.1. We obtain

melt
2
T, = (77 O _ 1) O (1.321)

o* 4

We call T} the Lindemann temperature. Most treatments of the Lindemann criterion ignore
the quantum correction, which gives the —1 contribution inside the above parentheses. But
if we are more careful and include it, we see that it may be possible to have T}, < 0. This
occurs for any crystal where ©, < ©*/n?.

Consider for example the case of *He, which at atmospheric pressure condenses into a
liquid at T, = 4.2K and remains in the liquid state down to absolute zero. At p = 1atm,
it never solidifies! Why? The number density of liquid “He at p = latm and T' = 0K
is 2.2 x 10%2cm™3. Let’s say the Helium atoms want to form a crystalline lattice. We
don’t know a priori what the lattice structure will be, so let’s for the sake of simplicity
assume a simple cubic lattice. From the number density we obtain a lattice spacing of
a = 3.57 A. OK now what do we take for the Debye temperature? Theoretically this should
depend on the microscopic force constants which enter the small oscillations problem (i.e.
the spring constants between pairs of helium atoms in equilibrium). We’ll use the expression
we derived for the Debye frequency, w, = (672/ Vo)l/ 3¢, where V), is the unit cell volume.
We'll take ¢ = 238 m/s, which is the speed of sound in liquid helium at 7" = 0. This gives
0, = 19.8K. We find ©* = 2.13K, and if we take n = 0.1 this gives ©*/n? = 213 K, which
significantly exceeds ©,. Thus, the solid should melt because the RMS fluctuations in the
atomic positions at absolute zero are huge: z, = (6*/ 0,)%? = 0.33. By applying pressure,
one can get *He to crystallize above p, = 25atm (at absolute zero). Under pressure, the
unit cell volume V), decreases and the phonon velocity ¢ increases, so the Debye temperature
itself increases.

It is important to recognize that the Lindemann criterion does not provide us with a theory
of melting per se. Rather it provides us with a heuristic which allows us to predict roughly
when a solid should melt.

1.10.7 Goldstone bosons

The vanishing of the acoustic phonon dispersion at k = 0 is a consequence of Goldstone’s
theorem which says that associated with every broken generator of a continuous symmetry
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there is an associated bosonic gapless excitation (i.e. one whose frequency w vanishes in the
long wavelength limit). In the case of phonons, the ‘broken generators’ are the symmetries
under spatial translation in the x, y, and z directions. The crystal selects a particular
location for its center-of-mass, which breaks this symmetry. There are, accordingly, three
gapless acoustic phonons.

Magnetic materials support another branch of elementary excitations known as spin waves,
or magnons. In isotropic magnets, there is a global symmetry associated with rotations in
internal spin space, described by the group SU(2). If the system spontaneously magnetizes,
meaning there is long-ranged ferromagnetic order (111 ---), or long-ranged antiferromag-
netic order (TJ1] ---), then global spin rotation symmetry is broken. Typically a particular
direction is chosen for the magnetic moment (or staggered moment, in the case of an an-
tiferromagnet). Symmetry under rotations about this axis is then preserved, but rotations
which do not preserve the selected axis are ‘broken’. In the most straightforward case,
that of the antiferromagnet, there are two such rotations for SU(2), and concomitantly two
gapless magnon branches, with linearly vanishing dispersions w, (k). The situation is more
subtle in the case of ferromagnets, because the total magnetization is conserved by the dy-
namics (unlike the total staggered magnetization in the case of antiferromagnets). Another
wrinkle arises if there are long-ranged interactions present.

For our purposes, we can safely ignore the deep physical reasons underlying the gaplessness
of Goldstone bosons and simply posit a gapless dispersion relation of the form w(k) = A |k|°.
The density of states for this excitation branch is then

g(w) = Cw 10w, —w) , (1.322)

where C is a constant and w, is the cutoff, which is the bandwidth for this excitation
branch.!” Normalizing the density of states for this branch results in the identification
w, = (d/aC)7/,

The heat capacity is then found to be

We

d4_q hw 2 hw
Cy :NkBC/dww" <kBT) CSCh2(2kBT>
0

(1.323)
d 27 \"/°
_ UNkB<9> 6(0/27) ,
where © = fw,/ky and
z %wd/” x—0
o(x) = / dtto " esch?t = (1.324)
0 27U (2+2)¢(2+4) 200,

which is a generalization of our earlier results. Once again, we recover Dulong-Petit for
kyT > hw,, with C, (T > hw,/ky) = Nk;.

d
2

_4a
If w(k) = Ak®, then C=2"%71 207" A ° g /I'(d/2).
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In an isotropic ferromagnet, i.e.a ferromagnetic material where there is full SU(2) symmetry
in internal ‘spin’ space, the magnons have a k? dispersion. Thus, a bulk three-dimensional
isotropic ferromagnet will exhibit a heat capacity due to spin waves which behaves as T3/2
at low temperatures. For sufficiently low temperatures this will overwhelm the phonon
contribution, which behaves as 73.



