Lectures 15: Bootstrap Il.
error propagation for nonlinear functions of fit
parameters

with material from
The University of Texas at Austin, CS 395T, Spring 2010, Prof. William H. Press



from Lecture 14: Maximum Likelihood parameter errors?

How accurately are the fitted parameters determined?
As Bayesians, we would instead say, what is their posterior distribution?

Taylor series:

o . 1 %
—3X (b)) = =3 Xmin — 3(b —bo) {Ec’?b@b] (b —bo)

So, while exploring the x? surface to find its minimum, we must also
calculate the Hessian (2nd derivative) matrix at the minimum.

Then
P(b{y;}) o< exp [—%(b - bo)TZb_l(b - bo)] P(b)
with I

B2y2 ] -1~ covariance (or “standard error”) matrix
1~

3, = |2 of the fitted parameters
° [2abab

Notice that if (i) the Taylor series converges rapidly and (ii) the
prior is uniform, then the posterior distribution of the b’s is
multivariate Normal, a very useful CLT-ish result!



from Lecture 14:
multivariate normal distribution

Multivariate Normal Distributions

Generalizes Normal (Gaussian) to M-dimensions

Like 1-d Gaussian, completely defined by its mean and (co-)variance
Mean is a M-vector, covariance is a M x M matrix

NGl ) = (5 vs7m gorsy L3~ )75 e~ )

The mean and covariance of r.v.’s from this distribution are*
p=(x) T=((x-p)x-p’")

I o I In the one-dimensional case o is the standard deviation,
which can be visualized as “error bars” around the mean.

In more than one dimension X can be visualized as
an error ellipsoid around the mean in a similar way.

l=(x-—p)'Z7 (x—p)




from Lecture 14:

multivariate normal distribution

Question: What is the generalization of

2
L; — s
x2=z( “) i~ N(us,03)

, 0;
i

to the case where the x,'s are normal, but not independent?
l.e., x comes from a multivariate Normal distribution?

1

Nl ) = 5 5378 qoy (m)1/3 exp[—3(x — p) =7 (x — )]

The mean and covariance of r.v.’s from this distribution are*

p=(x) I=(x-p)x-p")

} . I In the one-dimensional case o is the standard deviation,

which can be visualized as “error bars” around the mean.

In more than one dimension X can be visualized as
an error ellipsoid around the mean in a similar way.

1=x-—p)!'S 7 (x—p)




from Lecture 14:

linear error propagation for arbitrary function of parameters
What is the uncertainty in quantities other than the fitted coefficients:

Method 1: Linearized propagation of errors

by is the MLE parameters estimate

b; = b — by is the RV as the parameters fluctuate

f=f(b)= f(bo) +Vfby+--
(f) = (f(bo)) + Vf (b1) = f(bo)
(£%) = (£)* = 2f (bo)(Vf {b1)) + ((Vf b1)?)
=Vf (bib] )VfT
=VfEVfT



from Lecture 14:

linear error propagation for arbitrary function of parameters

In our example, if we are interested in the area of the “hump”,

bfit =

1.1235 1.5210 0.6582 3.2654 1.4832
covar = s
0.1349 0.2224 0.0068 -0.0309 0.0135 1
0.2224 0.6918 0.0052 -0.1598 0.1585 “r L3
0.0068 0.0052 0.0049 0.0016 -0.0094 & : | 3 fy] &
-0.0309 -0.1598 0.0016 0.0746 -0.0444 °f . ‘J ™
0.0135 0.1585 -0.0094 -0.0444 0.0948 B T T T S S S R

f = bsbs
Vf — (0707b5707b3)

Vi EVFL = b2233 + 2b3bs Y35 + b2X55 = 0.0336
v/0.0336 = 0.18

——
gt +
= ey
K 2 SE=Rh

the one standard deviation

So b3b5 — 098 1 018 «— (1-c) error bar

A function of normals is not normal



from Lecture 14:
Sampling the posterior histogram

Method 2: Sample from the posterior distribution

1. Generate a large number of (vector) b’s
b ~ MVNormal(bg, >)

2. Compute your f(b) separately for each b

600

3. Histogram

-
g 3 i 10 12 14 16

Note again that b is typically (close to) m.v. normal because of the CLT, but
your (nonlinear) fmay not, in general, be anything even close to normal!



from Lecture 14:

Sampling the posterior histogram

Our example:

bees = mvnrnd(bfit,covar,10000);
humps = bees(:,3).*bees(:,5);

histChumps, 30);
std Chumps)
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Does it matter that | use the full covar, not
just the 2x2 piece for parameters 3 and 5?



from Lecture 14:
bootstrap sampling example 1

Let's try a simple example where we can see the “hidden” side of things, too.

Visible side (sample): Hidden side (population):

no
(&2

These happen to be s
drawn from a
Gamma distribution.  socof

P
4000 +
0 : A L
1 2 3 4 5 S 7 8 {

0 2]

—_

Statistic we are interested in happens to be (it could be anything):

mean of distribution
median of distribution

sammedian = median(sample) themedian = median(bigsample)
sammean = mean(sample) themean = mean(bigsample)
samstatistic = sammean/sammedian thestatistic = themean/themedian
sammedian = themedian =

2.6505 2.6730
sammean = L themean =

2.9112 How accurate is this? 2.9997
samstatistigk;///// thestatistics =

1.0984 1.1222



from Lecture 14:
bootstrap sampling example

Gamma distribution:

X ~ Gamma(x, B). a>0, >0

o
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plx) =

Mean{Gamma(x. p)} = «/p
Var{Gamma(c. B)} = «/B?

When « > 1 there 1s a single mode at x

probability density p(x)
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from Lecture 14:
bootstrap sampling example 1

To estimate the accuracy of our statistic, we bootstrap

ndata = 100; new sample of integers in ndata = 100;

nboot = 100000; 1:ndata, with rep|acement nboot = 100000;

vals = zeros(nboot,1); vals = zeros(nboot,1);

for j=1:nboot, for j=1:nboot,
choose = randsample(ndata,ndata,true); sam = randg(3, [ndata 1]);
vals(j) = mean(sample(choose)) vals(j) = mean(sam)/median(sam);

/median(sample(choose)); end
end hist(vals,100)

hist(vals,100)
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Things to notice:
The mean of resamplings does not improve the original estimate! (Same data!)

The distribution around the mean is not identical to that of the population. But it is
close and would become identical asymptotically for large ndata (not nboot!).




bootstrap sampling example 2

GPA

The bootstrap procedure involves choosing random

samples with replacement from a data set and analyzing each sample

the same way. Sampling with replacement means that each observation

is selected separately at random from the original dataset. So a particular
data point from the original data set could appear multiple times

in a given bootstrap sample. The number of elements in each bootstrap
sample equals the number of elements in the original data set. The

range of sample estimates you obtain enables you to establish the
uncertainty of the quantity you are estimating.

0P o 0P o oP P oP P of P

This example from Efron and Tibshirani compares Law School Admission Test
(LSAT) scores and subsequent law school grade point average (GPA) for a

s sample of 15 law schools.

load lawdata

plot(lsat,gpa, '+"')
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Lsline

as GPA as a function of LSAT
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83r * 1 % provides some intuition, but nothing quantitative.
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The least-squares fit line indicates that higher LSAT scores go with
higher law school GPAs. But how certain is this conclusion? The plot
P



Correlation Coefficient

The correlation coefficient of two random variables is a measure of their linear dependence. If each variable has N
scalar observations, then the Pearson correlation coefficient is defined as

N
p(A,B)z#Z(Ai—/-‘A)(Bi—ﬂB),

N —-15 04 Op

where i, and o, are the mean and standard deviation of A, respectively, and u; and o; are the mean and

standard deviation of B. Alternatively, you can define the correlation coefficient in terms of the covariance of A and
B:

,D(A, B) — COV(A, B) .
O40p

The correlation coefficient matrix of two random variables is the matrix of correlation coefficients for each pairwise
variable combination,

R= (p(A, A) p(A,B))
p(B, A) p(B,B))

Since A and B are always directly correlated to themselves, the diagonal entries are just 1, that is,

R=( 1 p(A,B)).
p(B, A) 1



bootstrap sampling example 2

The bootstrap procedure involves choosing random

samples with replacement from a data set and analyzing each sample

the same way. Sampling with replacement means that each observation

is selected separately at random from the original dataset. So a particular
data point from the original data set could appear multiple times

in a given bootstrap sample. The number of elements in each bootstrap
sample equals the number of elements in the original data set. The

range of sample estimates you obtain enables you to establish the
uncertainty of the quantity you are estimating.

o o 0P o 9P P 0P P oP QP

%%

% This example from Efron and Tibshirani compares Law School Admission Test
% (LSAT) scores and subsequent law school grade point average (GPA) for a
% sample of 15 law schools.

load lawdata

display([lsat gpal)

rho =
0.776374491289407

Cl =
0.452682100239149
0.961268268870509

figure(1000) 1000
hold on
box on 900 -
plot(lsat,gpa, '+') a0 |
lsline

700 -

o
"0

% >, 600 -
% Using the |bootstrp| function you can resample the |lsat| and |gpa| 2
% vectors as many times as you like and consider the variation in the 9 500 -
% resulting correlation coefficients. 3
rng default % For reproducibility = 400 F
rhos10000 = bootstrp(10000, 'corr',lsat,gpa);

300 |-
%%
% This resamples the |lsat| and |gpa| vectors 10000 times and computes the 200 -
% |corr| function on each sample. You can then plot the result in a
% histogram. 100 -

histogram of bootstrapped rho

0.2 0.4 0!6 0.8
bootstrapped rho

1.2



bootstrap sampling example 3

ndata = 20;
nboot 1000;
vals = zeros(nboot,1);
ymodel = @(x,b) b(1)*exp(-b(2)*x)+b(3)*exp(-(1/2)*((x-b(4))/b(5)).A2);
for j=1:nboot,
samp = randsample(ndata,ndata,true); new sample of integersin 1:ndata, with replaceme
xX = X(samp);
yy = y(samp);
ssig = sig(samp);
chisgfun = @(b) sum(((ymodel(xx,b)-yy)./ssig).A2);

bguess = [1 2 .7 3.14 1.5]; here is the embedded “whole
options = optimset('MaxFuntvals',10000, '"MaxIter', statistical analysis of a data set”
10000, 'TolFun’,0.001); _ ‘//////inﬂdethetxxﬁsvaploop
[b fval flag] = fminsearch(chisqfun,bguess,options);
if (flag == 1), vals(j) = b(3)*b(5); 120
else vals(j) = 100; end
end
hist(vals(vals < 2),30); 100

std(vals(vals < 2))

0.2924 =

So we get the peak around

1, as before, but a much ol

broader distribution. Jalues

fscale (up
271)
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bootstrap sampling example 3

Can you guess what the extreme bootstrap
cases look like, compared to the full data?
1 | here, or
: | wol
: — here
s T bgbs | |
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frequentist is concerned about error estimate



bootstrap sampling example 3

We previously compared bootstrap-from-sample to bootstrap-from-population.
More relevant, let’s compare boostrap-from-sample to sample-the-posterior:

1400 120

bootstrap

sample the posterior
1200 F
100 +

1000+
80 r
800+

60
600

400+ a0t

200+

0 02 0.4 06 8 1 1.2 1.4 1.6 18 0
3b5 0 02 04 086 bOBb 1 1.2 1.4 1.6

 We could increase number of samples of posterior, and of bootstrap, to make both
curves very smooth.

— the histograms would not converge to each other!

 We could increase the size of the underlying data sample
— from 20 (x,y) values to infinity (x,y) values
— the histograms would converge to each other (modulo technical assumptions)

* For finite size samples, each technique is a valid answer to a different question

— Frequentist: Imagining repetitions of the experiment, what would be the range of values
obtained?

* And. conservatively, | shouldn’t expect my experiment to be better than that, should 1?

— Bayesian: For exactly the data that | see, what is the probability distribution of the
parameters?

Because maybe | got lucky and my data set really nails the parameters!



bootstrap sampling

Note that sampling the posterior “honors” the stated measurement errors.
Bootstrap doesn’t. That can be good!

Suppose (very toy example) the “statistic” is
sample posterior
S =TI+ T9

then the posterior probability is

(s —x1 — T9)?

‘P(S) X eXp _5 0.]? + 0.% 2x4 X1+ 2x;

Note that this depends on the ¢’s!

The bootstrap (here noticeably discrete) doesn’t depend on the ¢’s. In
some sense it estimates them, too.

So, if the errors were badly underestimated, sampling the posterior would give
too small an uncertainty, while bootstrap would still give a valid estimate.

If the errors are right, both estimates are valid. Notice
that the model need not be correct. Both procedures
give estimates of the statistical uncertainty of
parameters of even a wrong (badly fitting) model. But

for a wrong model, your interpretation of the
parameters may not mean anything!



bootstrap sampling

Compare and contrast bootstrap resampling and sampling from the posterior

Both have same goal:

Bootstrap is frequentist in outlook
— draw from “the population”

— even if we have only an estimate of it (the
data set)

Easy to code but computationally intensive
— great for getting your bearings

— must repeat your basic fitting calculation over
all the data100 or 1000 times

Applies to both model fitting and descriptive
statistics
Fails completely for some statistics

— e.g. (extreme example) “harmonic mean of
distance between consecutive points”

— how can you be sure that your statistic is OK
(without proving theorems)?

Doesn’t generalize much
— take it or leave it!

It is not always obvious what you should
resample over

— things that are independent draws from a
population

Estimate the accuracy of fitted parameters.

Sampling from the posterior is Bayesian in
outlook

— there is only one data set and it is never
varied

— what varies from sample to sample is the
goodness of fit of the parameters

— we don't just sit on the (frequentist’'s) MLE, we
explore around

In general harder to implement

— we haven't learned how yet, except in the
simple case of an assumed multivariate
normal posterior

— will come back to this later, when we do
Markov Chain Monte Carlo (MCMC)

— may or may not be computationally intensive
(depending on whether there are shortcuts
possible in computing the posterior)

Rich set of variations and generalizations
are possible






