Lectures 17: Jackknife sampling
error propagation for nonlinear functions of fit
parameters

with material from https://www.scss.tcd.ie/Rozenn.Dahyot/



Jackknife sampling

Introduction

The bootstrap method is not always the best one. One main reason is that
the bootstrap samples are generated from F and not from F. Can we find
samples/resamples exactly generated from F?

e |f we look for samples of size n, then the answer is no!

o If we look for samples of size m (m < n), then we can indeed find
(re)samples of size m exactly generated from F simply by looking at
different subsets of our original sample x!

Looking at different subsets of our original sample amounts to sampling
without replacement from observations xi, - - , x, to get (re)samples (now
called subsamples) of size m. This leads us to subsampling and the
jackknife.



Jackknife sampling

Jackknife

@ The jackknife has been proposed by Quenouille in mid 1950's.
@ In fact, the jackknife predates the bootstrap.

@ The jackknife (with m = n — 1) is less computer-intensive than the
bootstrap.

e Jackknife describes a swiss penknife, easy to carry around. By
analogy, Tukey (1958) coined the term in statistics as a general
approach for testing hypotheses and calculating confidence intervals.
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Jackknife samples

Definition
The Jackknife samples are computed by leaving out one observation x;
from x = (xq1, %, -+ ,x,) at a time:

X(j) = (X1, %2, s Xi—1,Xi415" "+ »Xn)

® The dimension of the jackknife sample x(;y is m=n—1
o n different Jackknife samples : {x(j)}i=1...n.
@ No sampling method needed to compute the n jackknife samples.

Available BOOTSTRAP MATLAB TOOLBOX, by Abdelhak M. Zoubir and D. Robert Iskander,
http://www.csp.curtin.edu.au /downloads /bootstrap_toolbox.html
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Jackknife replications

Definition
The ith jackknife replication 9(;) of the statistic 0 = s(x) is:

9(,) — S(X(,‘)), Vi= 1, R AL

Jackknife replication of the mean

S(X(i)) =nT11 i X
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Jackknife estimation of the standard error

@ Compute the n jackknife subsamples x(y), -+, x(5) from x.
© Evaluate the n jackknife replications é(,-) = s(x(i))-

© The jackknife estimate of the standard error is defined by:

- N 11/2

R n—1 A A

sejack — 2(9() — 9(,))2
=1 R

n

—

where é() = 1 Z?:l é(,)

n
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Jackknife estimation of the standard error of the mean

For § =X, it is easy to show that:

Therefore:

where o is the unbiased variance.
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Jackknife estimation of the standard error

o The factor 1 is much larger than 315 used in bootstrap.

@ Intuitively this inflation factor is needed because jackknife deviation
(é(,-) - 9(.))2 tend to be smaller than the bootstrap (6*(b) — 8*(-))?
(the jackknife sample is more similar to the original data x than the
bootstrap).

@ In fact, the factor ”;nl is derived by considering the special case 0 =x
(somewhat arbitrary convention).



Jackknife sampling

Comparison of Jackknife and Bootstrap on an example

Example A: § = x
F(x) = 0.2 N(u=1,0=2) + 0.8 N(p=6,0=1) ~» x = (X1, - , X100)-

@ Bootstrap standard error and bias w.r.t. the number B of bootstrap
samples:

B 10 20 50 100 500 1000 | 10000
Seg | 0.1386 | 0.2188 | 0.2245 | 0.2142 | 0.2248 | 0.2212 | 0.2187

—

Biasg | 0.0617 | -0.0419 | 0.0274 | -0.0087 | -0.0025 | 0.0064 | 0.0025

o Jackknife: §8;,c, = 0.2207 and Biasj,cx = 0

~

o Using textbook formulas: sep = \"ﬁ = 0.2196 (% = 0.2207).
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Jackknife estimation of the bias

@ Compute the n jackknife subsamples x(1), - -+ , X(5) from x.
© Evaluate the n jackknife replications 9(,-) = s(x(i))-

© The jackknife estimation of the bias is defined as:
I-é'izsjack — (n — 1)(§() - é\)

where é() — 1 E?:l é(,)

n
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Jackknife estimation of the bias

@ Note the inflation factor (n — 1) (compared to the bootstrap bias
estimate).

o O = x is unbiased so the correspondence is done considering the
Zln 1(xr_x)2

plug-in estimate of the variance 42

@ The jackknife estimate of the bias for the plug-in estimate of the
variance is then:
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Histogram of the replications

Example A
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Figure: Histograms of the bootstrap replications {9*(b)}be{1,... B=1000} (left),
and the jackknife replications {é(i)};e{l,... =100} (right).
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Histogram of the replications

Example A

0
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Figure: Histograms of the bootstrap replications {@*(b)}be{l,... .B=1000} (left),
and the inflated jackknife replications {1/n — 1(9(;) — 9(.)) + 9(.)},-6{1,... .n=100}
(right).
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Relationship between jackknife and bootstrap

@ When n is small, it is easier (faster) to compute the n jackknife
replications.

e However the jackknife uses less information (less samples) than the
bootstrap.

e In fact, the jackknife is an approximation to the bootstrap!
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Relationship between jackknife and bootstrap

@ Considering a linear statistic :
0 =s(x)=p+ ;>0 alx)

Mean § = x

The mean is linear p =0 and a(x;) = a; = x;, Vi€ {1,-,n}.

@ There is no loss of information in using the jackknife to compute the
standard error (compared to the bootstrap) for a linear statistic.
Indeed the knowledge of the n jackknife replications {6;)}, gives the

value of  for any bootstrap data set.

@ For non-linear statistics, the jackknife makes a linear approximation to
the bootstrap for the standard error.
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Relationship between jackknife and bootstrap

@ Considering a quadratic statistic

i — s(x) = pu+ % Z?=1 a(x;) + #,B(X,',Xj)

Variance 6 = &2

62 = 135" (x —x)? is a quadratic statistic.

@ Again the knowledge of the n jackknife replications {s(é(;))}, gives

the value of  for any bootstrap data set. The jackknife and
bootstrap estimates of the bias agree for quadratic statistics.
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Relationship between jackknife and bootstrap

The Law school example: 8 = corz(x, y).
The correlation is a non linear statistic.
@ From B=3200 bootstrap replications, seg_3590 = 0.132.

@ From n = 15 jackknife replications, sejzcx = 0.1425.

o Textbook formula: sep = (1 — cort?)/+/n — 3 = 0.1147
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Delete-d Jackknife samples

Definition
The delete-d Jackknife subsamples are computed by leaving out d
observations from x at a time.

@ The dimension of the subsample is n — d.

@ The number of possible subsamples now rises ( Z ) = d!(:id)!.

@ Choice: v/n<d<n-—1
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Delete-d jackknife

n

@ Compute all ( o

) d-jackknife subsamples x(1), - -+ , X(5) from x.
© Evaluate the jackknife replications 9(,-) = s(x(y)-

© Estimation of the standard error (when n = r - d):

1/2

S€d—jack = ( ; ) X;:(é(i) - 00))’

140 .

2
n
d

where 4(.) =
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Summary

@ Bias and standard error estimates have been introduced using
jackknife replications.

e The Jackknife standard error estimate is a linear approximation of the
bootstrap standard error.

e The Jackknife bias estimate is a quadratic approximation of the
bootstrap bias.

@ Using smaller subsamples (delete-d jackknife) can improve for
non-smooth statistics such as the median.



Jackknife sampling Matlab code

%% Jackknife Resampling
%

% Copyright 2015 The MathWorks, Inc.

%%
% Similar to the bootstrap is the jackknife, which uses resampling to

% estimate the bias of a sample statistic. Sometimes it is also used to

% estimate standard error of the sample statistic. The jackknife is

% implemented by the Statistics and Machine Learning Toolbox(TM) function
% |jackknife].

%%

% The jackknife resamples systematically, rather than at random as the

% bootstrap does. For a sample with |[n| points, the jackknife computes

% sample statistics on |n| separate samples of size |n|-1. Each sample is
% the original data with a single observation omitted.

%%

% In the bootstrap example, you measured the uncertainty in estimating the
% correlation coefficient. You can use the jackknife to estimate the bias,
% which is the tendency of the sample correlation to over—-estimate or

% under-estimate the true, unknown correlation. First compute the sample
% correlation on the data.

load lawdata

rhohat = corr(lsat,gpa)

%
Next compute the correlations for jackknife samples, and compute their
mean.
rng default; % For reproducibility
jackrho = jackknife(@corr, lsat,gpa);
meanrho = mean(jackrho)

o® of oP

%%

% Now compute an estimate of the bias.
n = length(lsat);

biasrho = (n-1) * (meanrho-rhohat)

%%
% The sample correlation probably underestimates the true correlation by
% about this amount.



