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EXERCISE 6.2-2

Reflectance of a Conductive Medium. The equations for the reflection coefficients set forth
in (6.2-6) and (6.2-7) can be used to determine the intensity reflectance R at the boundary between a
dielectric medium and a conductive medium.

(a) Show that R = 1 if the conductivity of the conductive medium o is infinite.

(b) Show that at normal incidence, and for o > €,w, the relation R = 1 — 24/2¢,w/0, known as
the Hagen—Rubens relation, emerges. Use this relation to determine the reflectance of copper
at the wavelengths A\, = 1.06 pm and 10.6 pm. Assume that the conductivity of copper is
o = 0.58 x 10% (Q-m)~L.

(c) Show that if the conductive medium is described by the Drude model, (5.5-39), then R = 1 at
frequencies below the plasma frequency.

6.3 OPTICS OF ANISOTROPIC MEDIA

A dielectric medium is said to be anisotropic if its macroscopic optical properties
depend on direction. The macroscopic properties of a material are, of course, ultimately
governed by its microscopic properties: the shape and orientation of the individual
molecules and the organization of their centers in space. Optical materials have dif-
ferent kinds of positional and orientational types of order, which may be described as
follows (see Fig. 6.3-1):
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Figure 6.3-1 Positional and orientational order in different types of materials.

m If the molecules are located at totally random positions in space, and are them-
selves isotropic or oriented along random directions, the medium is isotropic.
Gases, liquids, and amorphous solids follow this prescription.

m If the structure takes the form of disjointed crystalline grains that are randomly
oriented with respect to each other, the material is said to be polycrystalline.
The individual grains are, in general, anisotropic, but their averaged macroscopic
behavior is isotropic.

m If the molecules are organized in space according to a regular periodic pattern and
they are oriented in the same direction, as in crystals, the medium is, in general,
anisotropic.
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m If the molecules are anisotropic and their orientations are not totally random, the
medium is anisotropic, even if their positions are totally random. This is the case
for liquid crystals, which have orientational order but lack complete positional
order.

A. Refractive Indexes

Permittivity Tensor

In a linear anisotropic dielectric medium (a crystal, for example), each component
of the electric flux density D is a linear combination of the three components of the
electric field,

D; = Z ei; E;. (6.3-1)
J

The indexes 7, j = 1, 2, 3 refer to the z, y, and z components, respectively, as described
in Sec. 5.2B. The dielectric properties of the medium are therefore characterized by a
3 x 3 array of nine coefficients, {¢;;}, that form the electric permittivity tensor e,
which is a tensor of second rank. The material equation (6.3-1) is usually written in
the symbolic form

D = €E. (6.3-2)

For most dielectric media, the electric permittivity tensor is symmetric, i.e., €;; =
€;;- This means that the relation between the vectors D and E is reciprocal, i.e., their
ratio remains the same if their directions are exchanged. This symmetry is obeyed
for dielectric nonmagnetic materials that do not exhibit optical activity, and in the
absence of an external magnetic field (see Sec. 6.4). With this symmetry, the medium
is characterized by only six independent numbers in an arbitrary coordinate system.
For crystals of certain symmetries, even fewer coefficients suffice since some vanish
and some are related.

Geometrical Representation of Vectors and Tensors

A vector, such as the electric field E, for example, describes a physical variable
with magnitude and direction. It is represented geometrically by an arrow pointing in
that particular direction, whose length is proportional to the magnitude of the vector
[Fig. 6.3-2(a)]. A vector, which is a tensor of first rank, is represented numerically
by three numbers: its projections on the three axes of a particular coordinate system.
Though these components depend on the choice of the coordinate system, the magni-
tude and direction of the vector in physical space are independent of the choice of the
coordinate system. A scalar, which is described by a single number, is a tensor of zero
rank.

Figure 6.3-2 Geometrical representation of (a)
a vector and (b) a symmetric second-rank tensor.

(@
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A second-rank tensor is a rule that relates two vectors. In a given coordinate system,
it is represented numerically by nine numbers. Changing the coordinate system yields
a different set of nine numbers, but the physical nature of the rule is unchanged. A
useful geometrical representation [Fig. 6.3-2(b)] of a symmetric second-rank tensor
(the dielectric tensor €, for example), is a quadratic surface (an ellipsoid) defined by

Z €ij Ly = 1, (63-3)

ij

which is known as the quadric representation. This surface is invariant to the choice
of the coordinate system; if the coordinate system is rotated, both z; and ¢;; are altered
but the ellipsoid remains intact in physical space. The ellipsoid has six degrees of
freedom and carries all information about the symmetric second-rank tensor. In the
principal coordinate system, ¢;; is diagonal and the ellipsoid assumes a particularly
simple form:

elwf + 6233% - 63:c§ =1. (6.3-4)

Its principal axes are those of the tensor, and its axes have half-lengths 1/, /€1, 1/, /€2,

and 1/, /€3.

Principal Axes and Principal Refractive Indexes

The elements of the permittivity tensor depend on how the coordinate system is chosen
relative to the crystal structure. However, a coordinate system can always be found for
which the off-diagonal elements of €;; vanish, so that

Dy = €1 En, Dy = e Fs, D3 = e3F3, (6.3-5)

where €1 = €11, €2 = €99, and €3 = €33. According to (6.3-1), E and D are parallel
along these particular directions so that if, for example, E points in the z direction,
then so too must D. This coordinate system defines the principal axes and principal
planes of the crystal. Throughout the remainder of this chapter, the coordinate system
x, y, z, which is equivalently denoted z, z9, x3, is assumed to lie along the principal
axes of the crystal. This choice simplifies all analyses without loss of generality. The
permittivities €7, €2, and €3 correspond to refractive indexes

n1 = v/ €1/€o, ne = \/ €2/ €, n3 = v/ €3/€o, (6.3-6)

respectively, where ¢, is the permittivity of free space; these are known as the principal
refractive indexes.

Biaxial, Uniaxial, and Isotropic Crystals

Crystals in which the three principal refractive indexes are different are termed biaxial.
For crystals with certain symmetries, namely a single axis of threefold, fourfold, or
sixfold symmetry, two of the refractive indexes are equal (n; = ng) and the crystal
is called uniaxial. In this case, the indexes are usually denoted n; = ng = n, and
ng = ne, which are known as the ordinary and extraordinary indexes, respectively,
for reasons that will become clear shortly. The crystal is said to be positive uniaxial if
ne > Ny, and negative uniaxial if n, < n,. The z axis of a uniaxial crystal is called
the optic axis. In certain crystals with even greater symmetry (those with cubic unit
cells, for example), all three indexes are equal and the medium is optically isotropic.
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Impermeability Tensor

The relation D = €E can be inverted and written in the form E = € 1D, where €~
is the inverse of the tensor €. It is also useful to define the electric impermeability
tensor 1 = ¢,€~! (not to be confused with the impedance of the medium 7), so that
¢,E = nD. Since € is symmetric, so too is 1. Both tensors, € and 1, share the same
principal axes. In the princi;z)al coordinate system, 1 is diagonal with principal values
€0/€1 = 1/n2, €,/€2 = 1/n3, and €,/e3 = 1/n?. Either tensor, € or 1, fully describes
the optical properties of the crystal.

1

Index Ellipsoid
The index ellipsoid (also called the optical indicatrix) is the quadric representation
of the electric impermeability tensor n = e, € 1:

Z%‘ Tiz; = 1, i,j=1,2,3. (6.3-7)
ij

If the principal axes were to be used as the coordinate system, we would obtain

2 2 2
=T R (6.3-8)

2
N Nz N3 Index Ellipsoid

with principal values 1/n%, 1/n2, and 1/n2, and axes of half-lengths 7, n2, and ng.

The optical properties of the crystal (the directions of the principal axes and the
values of the principal refractive indexes) are therefore completely described by the
index ellipsoid (Fig. 6.3-3). For a uniaxial crystal, the index ellipsoid reduces to an
ellipsoid of revolution; for an isotropic medium it becomes a sphere.

Figure 6.3-3 The index ellipsoid. The coor-
dinates (z;,z2,3) are the principal axes while
(n1,n2,n3) are the principal refractive indexes of
the crystal.

B. Propagation Along a Principal Axis

The rules that govern the propagation of light in crystals under general conditions are
rather complex. However, they become relatively simple if the light is a plane wave
traveling along one of the principal axes of the crystal. We begin with this case.

Normal Modes

Let x—y—z be a coordinate system that coincides with the principal axes of a crystal.
A plane wave traveling in the z direction and linearly polarized along the z direction
[Fig. 6.3-4(a)] travels with phase velocity c¢,/n; (wavenumber £ = n;k,) without
changing its polarization. The reason for this is that the electric field has only one
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component, F; pointed along the z direction, so that D is also in the = direction with
D, = €; F; the wave equation derived from Maxwell’s equations therefore provides a
velocity of light given by 1/, /1061 = ¢,/n;. Similarly, a plane wave traveling in the z
direction and linearly polarized along the y direction [Fig. 6.3-4(b)] travels with phase
velocity ¢, /no, thereby experiencing a refractive index ns. Thus, the normal modes for
propagation in the z direction are linearly polarized waves in the = and y directions.
These waves are said to be normal modes because their velocities and polarizations
are maintained as they propagate (see Appendix C). Other cases in which the wave
propagates along one of the principal axes and is linearly polarized along another are
treated similarly [Fig. 6.3-4(c)].
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Figure 6.3-4 A wave traveling along a principal axis and polarized along another principal axis
has phase velocity ¢,/n1, ¢,/n2, or ¢,/n3, when the electric field vector points in the z, y, or 2
directions, respectively. (a) k = n1k,; (b) k = nok,; (¢) k = nzk,.

Polarization Along an Arbitrary Direction

We now consider a wave traveling along one principal axis (the z axis, for example)
that is linearly polarized along an arbitrary direction in the x—y plane. This case is
addressed by analyzing the wave as a sum of the normal modes, namely the linearly
polarized waves in the z and y directions. These two components travel with different
phase velocities, ¢, /n1 and ¢, /ns, respectively. They therefore undergo different phase
shifts, ¢, = ni1k,d and ¢, = nqk,d, respectively, after propagating a distance d.
Their phase retardation is thus ¢ = ¢, — ¢, = (n2 — n1)k,d. Recombination of
the two components yields an elliptically polarized wave, as explained in Sec. 6.1 and
illustrated in Fig. 6.3-5. Such a crystal can therefore serve as a wave retarder, a device
in which two orthogonal polarizations travel at different phase velocities so that one is
retarded with respect to the other (see Fig. 6.1-8).
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Figure 6.3-5 A linearly polarized wave at 45° in the z = 0 plane (a) is analyzed as a superposition
of two linearly polarized components in the z and y directions (normal modes), which travel at
velocities ¢,/n; and ¢,/n2 [(b) and (c), respectively]. As a result of phase retardation, the wave is
converted from plane polarization to elliptical polarization (a). It is therefore clear that the initial
linearly polarized wave is not a normal mode of the system.
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C. Propagation in an Arbitrary Direction

We now consider the general case of a plane wave traveling in an anisotropic crystal
in an arbitrary direction defined by the unit vector u. We demonstrate that the two
normal modes are linearly polarized waves. The refractive indexes n, and n;, and the
directions of polarization of these modes, may be determined by use of a procedure
based on the index ellipsoid:

Index-Ellipsoid Construction for Determining Normal Modes

Figure 6.3-6 illustrates a geometrical construction for determining the polariza-
tions and refractive indexes n, and 7, of the normal modes of a wave traveling in
the direction of the unit vector U in an anisotropic material characterized by the
index ellipsoid:

2 2 2
X3 A L1 L2 L3 T
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ellipse

Index

dex Figure 6.3-6 Determination of the normal
ellipsoid

modes from the index ellipsoid.

® Draw a plane passing through the origin of the index ellipsoid, normal to u.
The intersection of the plane with the ellipsoid is an ellipse called the index
ellipse.

m The half-lengths of the major and minor axes of the index ellipse are the
refractive indexes n,-and ny of the two normal modes.

m The directions of the major and minor axes of the index ellipse are the
directions of the vectors D, and D, for the normal modes. These directions
are orthogonal.

m The vectors E, and E; may be determined from D, and D, with the help of
(6.3-5).

[J Proof of the Index-Ellipsoid Construction for Determining the Normal Modes. To determine
the normal modes (see Sec. 6.1B) for a plane wave traveling in the direction U, we cast Maxwell’s
equations (5.3-2)—(5.3-5), and the material equation D = €E given in (6.3-2), as an eigenvalue
problem. Since all fields are assumed to vary with the position r as exp(—jk - r), where k = ku,
Maxwell’s equations (5.4-3) and (5.4-4) reduce to

kxH=-wD (6.3-9)
kxE=wuH (6.3-10)
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Substituting (6.3-10) into (6.3-9) leads to
k x (k x B) = —w?u,D. (6.3-11)
Using E = € 1D, we obtain
k x (k x e 'D) = —w?u,D. (6.3-12)

This is an eigenvalue equation that D must satisfy. Working with D is convenient since we know that
it lies in a plane normal to the wave direction u.
We now simplify (6.3-12) by using 1 = €,€ !, k = ki, n = k/k,, and k2 = w?p,¢, to obtain

1
—ux(uxnD)= 2 D. (6.3-13)

The operation —u X (U x nD) may be interpreted as a projection of the vector nD onto a plane
normal to U. We may therefore rewrite (6.3-13) in the form

1
P.nD = =D, (6.3-14)
n

where P, is an operator representing projection. Equation (6.3-14) is an eigenvalue equation for the
operator P, 1, with eigenvalue 1/n? and eigenvector D. The two eigenvalues, 1/n2 and 1/n?, and
two corresponding eigenvectors, D, and Dy, represent the two normal modes.

The eigenvalue problem (6.3-14) has a simple geometrical interpretation. The tensor 7 is
represented geometrically by its quadric representation, the index ellipsoid. The operator P,n
represents projection onto a plane normal to U. Solving the eigenvalue problem in (6.3-14) is thus
equivalent to finding the principal axes of the ellipse formed by the intersection of the plane normal
to U with the index ellipsoid. This is precisely the construction set forth in Fig. 6.3-6 for determining
the normal modes. ]

Special Case: Uniaxial Crystals

In uniaxial crystals (n; = ng = n, and ng = n.) the index ellipsoid of Fig. 6.3-6 is an
ellipsoid of revolution. For a wave whose direction of travel U forms an angle 6 with
the optic axis, the index ellipse has half-lengths n, and n(6), where

1 cos?f sin?6
209 = 7 + 5 (6.3-15)
L ( ) e e Refractive Index
of Extraordinary Wave

so that the normal modes have refractive indexes n, = n, and n, = n(6). The first
mode, called the ordinary wave, has a refractive index n,, regardless of 8. In accor-
dance with the ellipse shown in Fig. 6.3-7, the second mode, called the extraordinary
wave, has a refractive index n(#) that varies from n, when § = 0°, to n, when 6 = 90°.
The vector D of the ordinary wave is normal to the plane defined by the optic axis (2
axis) and the direction of wave propagation k, and the vectors E and D are parallel.
The extraordinary wave, on the other hand, has a vector D that is normal to k and lies
in the k—z plane, and E is not parallel to D, as shown in Fig. 6.3-7.

D. Dispersion Relation, Rays, Wavefronts, and Energy Transport

We now examine other properties of waves in anisotropic media including the disper-
sion relation (the relation between w and k).
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Figure 6.3-7 Variation of the refractive index n(8) of the extraordinary wave with 6 (the angle
between the direction of propagation and the optic axis) in a uniaxial crystal, and directions of the
electromagnetic fields of the ordinary (o) and extraordinary (e) waves. The circle with a dot at the
center located at the origin signifies that the direction of the vector is out of the plane of the paper,
toward the reader.

The optical wave is characterized by the wavevector k, the field vectors E, D, H,
and B, and the complex Poynting vector S = %E x H* (direction of power flow).
These vectors are related by (6.3-9) and (6.3-10). It follows from (6.3-9) that D is
normal to both k and H. Equation (6.3-10) similarly indicates that H is normal to both
k and E. These geometrical conditions are illustrated in Fig. 6.3-8, which also shows
the complex Poynting vector S, which is orthogonal to both E and H. Thus, D, E, k,
and S lie in one plane to which H and B are normal. In this plane D | kand S | E;
but D is not necessarily parallel to E, and S is not necessarily parallel to k.
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Figure 6.3-8 The vectors D, E, k, and S
all lie in one plane to which H and B are
normal. D L kand E 1 S.

\\\\igfg?__jsi(____;tifx

Using the relation D = €eE in (6.3-11), we obtain
k x (k x E) + w?1.eE = 0. (6.3-16)
This vector equation, which E must satisfy, translates to three linear homogeneous

equations for the components E;, Es, and E3 along the principal axes, written in the
matrix form

n%kg - k% - k% klkg klkg El 0
kgk‘l ngkg - k% - k‘% k2k3 Eg = |0 3 (6.3-17)

k’3k‘1 kgk‘z ’I’L%k‘g — k% — k% E3 0
where (kj, ko, k3) are the components of k, k, = w/c,, and (ny,n9,n3) are the

principal refractive indexes given by (6.3-6). The condition for these equations to
have a nontrivial solution is obtained by setting the determinant of the matrix to zero.
The result is an equation that relates w to kj, k2, and k3 and that takes the form
w = w(ky, ko, k3), where w(k1, k2, k3) is a nonlinear function. This relation, known
as the dispersion relation, is the equation of a surface in the ki, k2, k3 space, known
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as the normal surface or the k surface. The intersection of the direction u with the k
surface determines the vector k whose magnitude & = nw/c, provides the refractive
index n. There are two intersections corresponding to the two normal modes associated
with each direction.

The k surface is a centrosymmetric surface comprising two sheets, each correspond-
ing to a solution (a normal mode). It can be shown that the k surface intersects each
of the principal planes in an ellipse and a circle, as illustrated in Fig. 6.3-9. For biaxial
crystals (n; < ng < ng), the two sheets meet at four points, defining two optic axes.
In the uniaxial case (n1 = ny = n,, N3 = n.), the two sheets become a sphere and an
ellipsoid of revolution that meet at only two points, thereby defining a single optic axis
(the z axis). In the isotropic case (n; = ny = ng = n), the two sheets degenerate into
a single sphere.

Kk,

n
ki/k,
(a) Biaxial (b) Uniaxial (c) Isotropic

Figure 6.3-9 One octant of the k surface for (a) a biaxial crystal (n; < ny < ng); (b) a uniaxial
crystal (n; = ng = n,, n3 = n.); and (c) an isotropic crystal (n; = ny = ng = n).

The intersection of the direction U = (u1, usg, u3) with the k surface corresponds to
a wavenumber k that satisfies

2 1.2
- Y k2 =1 (6.3-18)
§=1,2,3 k€ —njks

This is a fourth-order equation in k (or second order in k2). It has four solutions, +k,
and +kp, of which only the two positive values are meaningful, since the negative
values represent a reversed direction of propagation. The problem is therefore solved:
the wavenumbers of the normal modes are &k, and k; and the refractive indexes are
. — keofle and 1. = Fn ke

Toq = g [ o ailQ 7ip = Rp/ Ro-

To determine the directions of polarization of the two normal modes, we determine
the components (ky, k2, k3) = (kuy, kug, kug) and the elements of the matrix in (6.3-
17) for each of the two wavenumbers k£ = k, and k£ = k;. We then solve two of the
three equations in (6.3-17) to determine the ratios F1/F3 and Es/FEj3, from which we
determine the direction of the corresponding electric field E.

The nature of waves in anisotropic media is best explained by examining the k
surface w = w(ky, k2, k3) obtained by equating the determinant of the matrix in (6.3-
17) to zero, as illustrated in Fig. 6.3-9. The variation of the phase velocity ¢ = w/k
with the direction U can be determined from the k surface: the distance from the origin
to the k surface in the direction of U is inversely proportional to the phase velocity.

The group velocity may also be determined from the k surface. In analogy with the
group velocity v = dw/dk that governs the propagation of light pulses (wavepack-
ets), as discussed in Sec. 5.6, the group velocity for rays (localized beams or spatial
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wavepackets) is the vector v = Vjw(k), the gradient of w with respect to k. Since
the k surface is the surface w(ki, k2, k3) = constant, v must be normal to the k
surface. Thus, rays travel along directions normal to the k surface. The wavefronts are
perpendicular to the wavevector k since the phase of the wave is k - r. The wavefront
normals are therefore parallel to the wavevector k.

The complex Poynting vector S = 2 E x H* is also normal to the k surface. This can
be demonstrated by choosing a value tzor w and considering two vectors k and k + Ak
that lie on the k surface. By taking the differential of (6.3-9) and (6.3-10), and using
certain vector identities, it can be shown that Ak - S = 0, so that S is normal to the k
surface. Consequently, S is also parallel to the group velocity vector v.

If the k surface is a sphere, as it is for isotropic media, the vectors v, S, and k are
all paralle], indicating that rays are parallel to the wavevector k and energy flows in
the same direction, as illustrated in Fig. 6.3-10(a). On the other hand, if the k surface
is not normal to the wavevector k, as illustrated in Fig. 6.3-10(b), the rays and the
direction of energy transport are not orthogonal to the wavefronts. Rays then have the
“extraordinary” property of traveling at an oblique angle to their wavefronts [Fig. 6.3-

10(b)].
Ray
Ray Wavefronts
k surface .
\ Wavefronts ¢ ’

k surface S

(a) Ordinary (b) Extraordinary
Figure 6.3-10 Rays and wavefronts for (a) a spherical k surface, and (b) a nonspherical k surface.

Special Case: Uniaxial Crystals

In uniaxial crystals (ny = ne = n, and ng = n,), the equation of the k surface
w = w(ky, k2, k3) simplifies to

2 2 2
(k* — n2k2) ( i + ks _ kﬁ) = 0. (6.3-19)

2 2
ne nO

This equation has two solutions: a sphere, corresponding to the leftmost factor being
Zero:

k = noko, (6.3-20)

and an ellipsoid of revolution, corresponding to the rightmost factor being zero:

S 2 3B 2 (6.3-21)

o

Because of symmetry about the z axis (optic axis), there is no loss of generality in
assuming that the vector k lies in the y—z plane. Its direction is then characterized by
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Figure 6.3-11 Intersection of the k
surfaces with the y—z plane for a positive
uniaxial crystal (n. > n,).

the angle 6 it makes with the optic axis. It is thus convenient to draw the k-surfaces
only in the y—z plane, as a circle and an ellipse, as shown in Fig. 6.3-11.

Given the direction U of the vector k, the wavenumber k is determined by finding
the intersection with the k surfaces. The two solutions define the two normal modes,
the ordinary and extraordinary waves. The ordinary wave has wavenumber k = n,k,
regardless of the direction of U, whereas the extraordinary wave has wavenumber
n(0)k,, where n(6) is given by (6.3-15), thereby confirming earlier results obtained
from the index-ellipsoid geometrical construction. The directions of the rays, wave-
fronts, energy flow, and field vectors E and D for the ordinary and extraordinary waves
in a uniaxial crystal are illustrated in Fig. 6.3-12.

(a) Ordinary (b) Extraordinary

Figure 6.3-12 The normal modes for a plane wave traveling in a direction k that makes an angle
0 with the optic axis z of a uniaxial crystal are: (¢) An ordinary wave of refractive index n, polarized
in a direction normal to the k—z plane. (b) An extraordinary wave of refractive index n(#) [given by
(6.3-15)] polarized in the k—z plane along a direction tangential to the ellipse (the k surface) at the
point of its intersection with k. This wave is “extraordinary” in the following ways: D is not parallel
to E but both lie in the k—z plane and S is not parallel to k so that power does not flow along the
direction of k; the rays are therefore not normal to the wavefronts so that the wave travels “sideways.”

E. Double Refraction

Refraction of Plane Waves

We now examine the refraction of a plane wave at the boundary between an isotropic
medium (say air, » = 1) and an anisotropic medium (a crystal). The key principle
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that governs the refraction of waves for this configuration is that the wavefronts of the
incident and refracted waves must be matched at the boundary. Because the anisotropic
medium supports two modes with distinctly different phase velocities, and therefore
different indexes of refraction, an incident wave gives rise to two refracted waves
with different directions and different polarizations. The effect is known as double
refraction or birefringence.

The phase-matching condition requires that Snell’s law be obeyed, i.e.,

kosinf, = ksin0, (6.3-22)

where 6; and 6 are the angles of incidence and refraction, respectively. In an anisotropic
medium, however, the wavenumber k& = n(0)k, is itself a function of 6, so that

sinf; = n(f, + ) siné, (6.3-23)

where 6, is the angle between the optic axis and the normal to the surface, so that 6,46
is the angle the refracted ray makes with the optic axis. Equation (6.3-23) is a modified
version of Snell’s law. To solve (6.3-22), we draw the intersection of the k surface with
the plane of incidence and search for an angle # for which (6.3-22) is satisfied. Two
solutions, corresponding to the two normal modes, are expected. The polarization state
of the incident light governs the distribution of energy among the two refracted waves.

Take, for example, a uniaxial crystal and a plane of incidence parallel to the optic
axis. The k surfaces intersect the plane of incidence in a circle and an ellipse (Fig. 6.3-
13). The two refracted waves that satisfy the phase-matching condition are determined
by satisfying (6.3-23):

® An ordinary wave of orthogonal polarization (TE) at an angle 6 = 6, for which
sinf, = nysin b, ; (6.3-24)
® An extraordinary wave of parallel polarization (TM) at an angle 6 = 6., for which
sin 6y = n(f, + 6¢) sin b, , (6.3-25)
where n(6) is given by (6.3-15).
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Figure 6.3-13 Determination of the angles of refraction by matching projections of the k vectors
in air and in a uniaxial crystal.

If the incident wave carries the two polarizations, the two refracted waves will emerge,
as shown in Fig. 6.3-13.
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Refraction of Rays

The analysis immediately above dealt with the refraction of plane waves. The refraction
of rays is different in an anisotropic medium, since rays do not necessarily travel in
directions normal to the wavefronts. In air, before entering the crystal, the wavefronts
are normal to the rays. The refracted wave must have a wavevector that satisfies the
phase-matching condition, so that Snell’s law (6.3-23) is applicable, with the angle of
refraction 6 determining the direction of k. However, since the direction of k is not the
direction of the ray, Snell’s law is not applicable to rays in anisotropic media.

Ordinary

k surface 3 Ly
Extraordinary\ ¢
ray )

Crystal

Air

Figure 6.3-14 Double refraction at normal incidence.

An example that dramatizes the deviation from Snell’s law is that of normal in-
cidence into a uniaxial crystal whose optic axis is neither parallel nor perpendicular
to the crystal boundary. The incident wave has a k vector normal to the boundary.
To ensure phase matching, the refracted waves must also have wavevectors in the same
direction. Intersections with the k surface yield two points corresponding to two waves.
The ordinary ray is parallel to k. But the extraordinary ray points in the direction of
the normal to the k surface, at an angle 6, with the normal to the crystal boundary,
as illustrated in Fig. 6.3-14. Thus, normal incidence creates oblique refraction. The
principle of phase matching is maintained, however: wavefronts of both refracted rays
are parallel to the crystal boundary and to the wavefront of the incident ray.

When light rays are transmitted through a plate of anisotropic material as described
above, the two rays refracted at the first surface refract again at the second surface,
creating two laterally separated rays with orthogonal polarizations, as illustrated in
Fig. 6.3-15.

Extraordinary ray

V
4%; :

;t.,
- (_)Xﬁc aMS / Ordinary ray

Figure 6.3-15 Double refraction through an anisotropic plate. The plate serves as a polarizing
beamsplitter.
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6.4 OPTICAL ACTIVITY AND MAGNETO-OPTICS

A. Optical Activity

Certain materials act as natural polarization rotators, a property known as optical ac-
tivity. Their normal modes are waves that are circularly, rather than linearly polarized;
waves with right- and left-circular polarizations travel at different phase velocities.

We demonstrate below that an optically active medium with right- and left-circular-
polarization phase velocities c¢,/n and c¢,/n_ acts as a polarization rotator with an
angle of rotation w(n_ — ny)d /A, that is proportional to the thickness of the medium
d. The rotatory power (rotation angle per unit length) of the optically active medium
is therefore

™

" (n- —ny). (6.4-1)

Rotatory Power

p

The direction in which the polarization plane rotates is the same as that of the circularly
polarized component with the greater phase velocity (smaller refractive index). If n, <
n_, p is positive and the rotation is in the same direction as the electric field vector of
the right circularly polarized wave [clockwise when viewed from the direction toward
which the wave is approaching, as illustrated in Fig. 6.4-1(a)]. Such materials are said
to be dextrorotatory, whereas those for which n, > n_ are termed levorotatory.

[0  Derivation of the Rotatory Power. Equation (6.4-1) may be derived by decomposing the
incident linearly polarized wave into a sum of right and left circularly polarized components of equal
amplitudes (see Exercise 6.1B),

[:ﬁ?g] e [;] + Le® [_IJ] : (6.4-2)

where 6 is the initial angle of the plane of polarization. After propagating a distance d through the
medium, the phase shifts encountered by the right and left circularly polarized waves are ¢, =

2mnyd/X, and ¢ = 2wn_d/),, respectively, resulting in a Jones vector
o o | cos (8 — /2
%6—106—344 [1] + %eweﬁ&p— [_1] — e 1w¥o ) ( ) , (6.4-3)
J J sin (0 — ¢/2)

where @, = 2(p4+ +¢-_) and p = p_ — ¢ = 2m(n_ — ny)d /A,. This Jones vector represents a
linearly polarized wave with the plane of polarization rotated by an angle ¢/2 = w(n_ — ny.)d /X,
as provided in (6.4-1). |

Optical activity occurs in materials with an intrinsically helical structure. Examples
include selenium, tellurium, tellurium oxide (TeO;), quartz (a-SiO3), and cinnabar
(HgS). Optically active liquids consist of so-called chiral molecules, which come in
distinct left- and right-handed mirror-image forms. Many organic compounds, such as
amino acids and sugars, exhibit optical activity. Almost all amino acids are levorota-
tory, whereas common sugars come in both forms: dextrose (d-glucose) and levulose
(fructose) are dextrorotatory and levorotatory, respectively, as their names imply. The
rotatory power and sense of rotation for solutions of such substances are therefore
sensitive to both the concentration and structure of the solute. A saccharimeter is used
to determine the optical activity of sugar solutions, from which the sugar concentration
is calculated.
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(a) Forward wave (b) Backward wave

Figure 6.4-1 (a) The rotation of the plane of polarization by an optically active medium results
from the difference in the velocities for the two circular polarizations. In this illustration, the right
circularly polarized wave (R) is faster than the left circularly polarized wave (L), i.e., ny < n_, so
that p is positive and the material is dextrorotatory. (b) If the wave in (a) is reflected after traversing
the medium, the plane of polarization rotates in the opposite direction so that the wave retraces itself.

Material Equations

A time-varying magnetic flux density B applied to an optically active structure induces
a circulating current, by virtue of its helical character, that sets up an electric dipole
moment (and hence a polarization) proportional to jwB = —V x E. The optically
active medium is therefore spatially dispersive; i.e., the relation between D(r) and
E(r) is not local. D(r) at position r is determined not only by E(r), but also by
E(r’) at points r’ in the immediate vicinity of r, since it is dependent on the spatial
derivatives contained in V x E(r). For a plane wave, we have E(r) = E exp(—jk - r)
and V x E = —jk x E, so that the dielectric permittivity tensor is dependent on the
wavevector k. Spatial dispersiveness is analogous to temporal dispersiveness, which
has its origin in the noninstantaneous response of the medium (see Sec. 5.2). While the
permittivity of a medium exhibiting temporal dispersion depends on the frequency w,
that of a medium exhibiting spatial dispersion depends on the wavevector k.
An optically active medium is described by the k-dependent material equation

D =€¢E + je, €k X E| (6.4-4)

where £ is a quantity (called a pseudoscalar) that changes sign depending on the
handedness of the coordinate system. This relation is a first-order approximation of
the k dependence of the permittivity tensor, under appropriate symmetry conditions.
The first term represents the response of an isotropic dielectric medium whereas the
second term accounts for the optical activity, as will be shown subsequently. This D-E
relation is often written in the form

3 n

N_ . T 1i3vh
1J = €1 T jEoa i V]

N (A A_KN
X (0.9-3)

)

where G = £k is known as the gyration vector. In such media the vector D is clearly
not parallel to E since the vector G x E in (6.4-5) is perpendicular to E.

Normal Modes of the Optically Active Medium

We proceed to show that the two normal modes of the medium described by (6.4-5) are
circularly polarized waves, and we determine the velocities ¢,/n+ and c¢,/n_ in terms
of the constant G = £k.

t See, for example, L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media,
Pergamon, 2nd revised ed. 1984, Chapter 12.
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We assume that the wave propagates in the z direction, so that k = (0,0, k) and
thus G = (0,0, G). Equation (6.4-5) may then be written in matrix form as

D, n’ —jG 0 ||E
D2 = €o _]G 772 0 E2 3 (64-6)
Dy 0 0 n?||E3

where n? = €/e,. The diagonal elements in (6.4-6) correspond to propagation in an
isotropic medium with refractive index r, whereas the off-diagonal elements, propor-
tional to G, represent the optical activity.

To prove that the normal modes are circularly polarized, consider the two circularly
polarized waves with electric-field vectors E = (Ey, +jEp,0). The + and — signs
correspond to right and left circularly polarized waves, respectively. Substitution in
(6.4-6) yields D = (Dy, +3jDy,0), where Dy = €,(n? + G)Ey. It follows that D =
eoniE, where

ny = \Vn2+G. (6.4-7)

Hence, for either of the two circularly polarized waves the vector D is parallel to
the vector E. Equation (6.3-11) is satisfied if the wavenumber £ = nk,. Thus, the
right and left circularly polarized waves propagate without changing their state of
polarization, with refractive indexes n, and n_, respectively. They are therefore the
normal modes for this medium.

EXERCISE 6.4-1

Rotatory Power of an Optically Active Medium. Show that if G < n, the rotatory power of
an optically active medium (rotation of the polarization plane per unit length) is approximately given

by

(6.4-8)

The rotatory power is strongly dependent on the wavelength. Since G is proportional
to k, as indicated by (6.4-5), it is inversely proportional to the wavelength A,. Thus,
the rotatory power in (6.4-8) is inversely proportional to \2. Moreover, the refractive
index n is itself wavelength dependent. By way of example, the rotatory power p of
quartz is =~ 31 deg/mm at A\, = 500 nm and =~ 22 deg/mm at A\, = 600 nm; for silver
thiogallate (AgGaS,), p is &~ 700 deg/mm at 490 nm and = 500 deg/mm at 500 nm.

B. Magneto-Optics: The Faraday Effect

Many materials act as polarization rotators in the presence of a static magnetic field,
a property known as the Faraday effect. The angle of rotation is then proportional to
the thickness of the material, and the rotatory power p (rotation angle per unit length)
is proportional to the component of the magnetic flux density B in the direction of the
wave propagation,

p = VB, (6.4-9)
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where U is called the Verdet constant.

The sense of rotation is governed by the direction of the magnetic field: for U > 0,
the rotation is in the direction of a right-handed screw pointing in the direction of
the magnetic field [Fig. 6.4-2(a)]. In contrast to optical activity, however, the sense of
rotation does not reverse with the reversal of the direction of propagation of the wave.
Thus, when a wave travels through a Faraday rotator and then reflects back onto itself,
traveling once more through the rotator in the opposite direction, it undergoes twice
the rotation [Fig. 6.4-2(b)]. Materials that exhibit the Faraday effect include glasses, yt-

(a) Forward wave (b) Backward wave

Figure 6.4-2 (a) Polarization rotation in a medium exhibiting the Faraday effect. (b) The sense of
rotation is invariant to the direction of travel of the wave.

trium iron garnet (YIG), terbium gallium garnet (TGG), and terbium aluminum garnet
(TbAIG). The Verdet constant of TbAIG is ¥ =~ —1.16 min/Oe-cm at A, = 500 nm.
Thin films of these ferrimagnetic materials are used to make compact devices.

Material Equations

In magneto-optic materials, the electric permittivity tensor € is altered by the appli-
cation of a static magnetic field H, so that € = e(H). This effect originates from the
interaction of the static magnetic field with the motion of the electrons in the material in
response to an optical electric field E. For the Faraday effect, in particular, the material
equation is

D =€E + je,G X E (6.4-10)
with
G =1B. (6.4-11)

Here, B = pH is the static magnetic flux density, and + is a constant of the medium
known as the magnetogyration coefficient.

Equation (6.4-10) is identical to (6.4-5) so that the vector G = B in Faraday
rotators plays the role of the gyration vector G = &k in optically active media. For
the Faraday effect, however, G does not depend on k, so that reversing the direction
of propagation does not reverse the sense of rotation of the plane of polarization. This
property is useful for constructing optical isolators, as explained in Sec. 6.6C.

With this analogy, and using (6.4-8), we conclude that the rotatory power of the
Faraday medium is p ~ —7nG/A\,n = —7wyB/A,n, from which the Verdet constant
(rotatory power per unit magnetic flux density) is seen to be

B L (6.4-12)
AoT

The Verdet constant is clearly a function of the wavelength ).



