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Path integrals and quantum interference

A. O. Barut and S. Basri®

Physics Department, University of Colorado, Boulder, Colorado 80309

(Received 11 April 1991; accepted 10 April 1992)

The path integral treatment of the single and double-slit experiments, which illustrates the
particle nature of single events and the wave nature of the statistical average of repeated events,

is presented.

I. INTRODUCTION

Interference phenomenon is a simple but crucial univer-
sal behavior of light and other particles involving either a
beam of particles, or a large number of repeated events
collected at a screen. It is sufficient to consider the cele-
brated prototypes, namely the two-slit interference and
one-slit diffraction experiments. There are of course, innu-
merable discussions of these experiments. And the more
different ways one can describe the phenomena, the better
will be our understanding. The path integral approach!™
provides yet another useful insight and we are not aware of
a complete discussion of one- and two-slits experiments via
path integrals, although the method has now been applied
to a very large number of problems.’

The present work originated from recent discussions on
the impossibility of assigning definite values of observables
to individual events®® and the need of distinguishing
clearly between a theory of single events and a theory of
repeated events'® which alleviates the quantum paradoxes.
In the path integral formalism, we deal on the one hand
with individual trajectories but then form an average to
obtain the final quantum result. However, we shall empha-
size that these trajectories are not all “physical” and dis-
cuss the relation of these to the Huygens’ principle of wave
propagation. We also indicate the formulation of the no-
tion of “coherence” in the path integral formalism.

II. PATH INTEGRALS: SINGLE AND REPEATED
EVENTS

According to the path integral formalism, every quan-
tum system is described as a particle, and the probability
that it goes from position x, at time ¢, to a position x, at
time ¢, is given by

P(2,1)=|K(2,1)|?, (1

where the probability amplitude (propagator) K(2,1) is
calculated from

1
K(2,1)=Ny, > eXp(%Sa(tz,tl)), (2)
a
where N,; is a normalization constant,

t
S,y(tnt) = fz Litx (), %,(01dt, (3)
Ul

is the classical action for path a,L the classical Lagrangian,
and the sum is over all paths a from x;=(x;,t;) to x;
= (X,,1,). For relativistic problems, we may use instead of
t an invariant parameter 7 and take x to be the Minkowski
four vector. All formulas remain essentially the same.
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Among the paths with endpoints fixed in space and time,
there is only one for which the classical action S is an
extremum, and this is the unique classical trajectory. Clas-
sical mechanics corresponds to the dominance of the con-
tribution of this path to the sum in Eq. (2) when S >#
(Ref. 11).

The summation over all paths in Eq. (2) and the square
of the sum in Eq. (1) are the sources of the interference
terms that make the behavior of repeated events different
than in classical mechanics.

The different paths (alternatives) in Eq. (2) are not
assigned definite probabilities but complex-valued ampli-
tudes that are additive and lead, when squared, to the ob-
served probabilities in repeated experiments. However, one
can still continue to think of the behavior of a single par-
ticle, but at the expense of a probabilistic language. This
does not necessarily imply that a description of a single
event (when not repeated) is not possible.!> We shall con-
tinue to use in the following the standard notion of “par-
ticle” in quantum theory. Feynman states'® “I like to em-
phasize that light comes in this form-particles. It is very
important to know that light behaves like particles, espe-
cially for those of you who have gone to school, where you
were probably told something about light behaving like
waves. I'm telling you the way it does behave—like parti-
cles.” The same statement applies to electrons, nucleons,
and all other elementary quantum systems. This is con-
firmed experimentally by the fact that anytime a single
quantum particle is observed it is found to be highly local-
ized, and that wave properties are strictly associated with
the statistical behavior of particles. There is no way of
determining the wavelength of a particle characterizing an
interference pattern by the observation of a single event.

Any experimental determination of which alternative a
particle follows among several possible alternatives, will
destroy the interference between the alternatives. This fact
can14be taken to be the essence of the uncertainty princi-
ple.

If a path a from x; to x, consists of two successive
segments with an intermediate point x3, then it follows
from the definition (3) that

Sa(tZ’tl)=Sa(t2’t3)+sa(t3!tl)- (4)

This and (2) then imply'® that

K(2,1)=JK(2,3)K(3,1)dx3. (5)

For a free nonrelativistic particle of mass m, the propa-
gator (2) is calculated to be, as is well known,!
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Slits Screen

Fig. 1. Two paths through double slits at B, and B,.

m 32 im (x;—x;)? @
k2= (1h(t2 t)) (2ﬁﬂ—) Naue™
(6)

which is the Green’s function of the Schrodinger equation
also calculable by other methods. Similarly the propaga-
tors correspondmg to other wave equations can be evalu-
ated.!”

ITII. THE TWO-SLIT EXPERIMENT

Consider a source (4) of particles of momentum p,
which can be photons, electrons, nucleon, etc. (Fig. 1). Let
A be symmetrically placed behind the two slits (B,B,) and
the particles be detected by microdetectors (D) placed on
the other side of the slits. Then, according to Eq. (5) and
choosing an intermediate time at the slits corresponding to
the assumption of the dominance of the classical trajectory,

K(D,A)=K(D,B|)K(B,,4) +K(D,B;)K(By,4). . (7)

By symmetry, At and Ax are the same for paths B;4 and
ByA, and hence

K(B,4) =K (Bp4) =K, (8)

For a free particle, the normalization constant N in Eq.
(2) is a function of the mass of the particle and the time
interval (t,—1,) [see Eq. (6)]. Thus for the two paths from
B, and B, to D, we have

N1=NZEN,

because the total time interval in K(D,4) is fixed and
t(A,B,) =t(A4,B,) in Eq. (8). Consequently,

i i
K(D,4)=NK,| X, exv(gsna)+ > CXP(;,Sz,)]
=NKy(e®1 +¢2). 9
If we let
| NKy| =12, (10)
then according to Eq. (1),
P(D,4)=|K(D,A) |*=2I(1+cos 6), (1)
where
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If the interference term cos 8 were zero, then P(D,4) =21,
and thus 7 can be interpreted to be the intensity from each
individual slit. The maxima and minima of the total inten-
sity are

P(D,A)=4I at cos0=1,
and
P(DA)=0 at cosf=-—1,
According to Eqgs. (6) and (12),

= (A=A =3 22

0=0,27,4m,..., (13)

0=m,3m,5m,....

4
1—?'2) =% Ar, . (14)

where r=(1/2)(r, +r2) is the mean distance, u=7/7 is the
speed, and p=mu is the momentum. For the first maxi-
mum, 0=2m, Ar=r,—r,=A, and we obtain from Eqgs.
(14) and (13),

A=h/p. (15)

The assumption that 7 is the same for both paths, although
the path lengths are different, is the path integral formula-
tion of complete coherence. This is true only for stationary
monochromatic beams, and agrees with Huygens’ principle
for stationary propagation, and stationary scattering the-
ory which in turn means that the events are repeated uni-
formly.

What is truly remarkable is that Eq. (15) holds experi-
mentally for any type of incident particle of momentum p,
whether it is a photon, electron, nucleon, etc., in spite of
the fact that the interactions of the different particles with
the slit system may be very different.

Theoretically, the derivation of Eq. (15) by means of
path integrals for photons, relativistic masswe particles,
and particles with nonzero spin is complicated.'® However,
in the Schrodinger picture of quantum mechanics, Eq.
(15) is usually derived as follows: The state of the particles
leaving each slit is essentially that of a momentum eigen-
state modulated by the diffraction effect of the slit.

Yi(rpt) =fi(r)expli(wr— k-l)],

r=r—d/2, r;=r+d/2, (16)
where

The wavefunction at the screen is then, for stationary
states,

Y=+, =€ (fle~* 14 fre=n), (18)

which is again the Huygens’ principle. The intensity is
given by

|41 =1A11*+ | f2*+ 21 fufalcos[k(ri—r) 1. (19)
For d<L, fi~f,~f, and

[912=2|f |*(14cos 6), (20)
where

O=k(ri—r)=2m(r,—r)/A. (21)

The first maximum occurs at §=2m, or (r,—r,)=A=h/p,
in agreement with Eq. (15).

As the intensity of the source gets weaker and weaker,
the intensity (20) at the screen does not maintain its spatial
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Fig. 2. A typical path in a single slit diffraction.

distribution with weaker intensity. Instead, a point is
reached where single localized pulses are detected on the
screen, indicating that only one particle at a time is arriv-
ing. The statistical distribution of the pulses accumulated
over a period of time is what is described by Eq. (20). In
this situation, if detectors are placed immediately behind
the slits, it is found that when one detector is triggered, the
other is not; implying that a particle is not some kind of
wave that overlaps both slits. Moreover, if it is determined
experimentally through which slit a particle goes through,
then the intensity at the screen is not given by Eq. (20),
but rather by

[917=1%1*+ ¥ =2| |

(i.e., by a superposition of the intensities of the individual
slits, and the interference effect is destroyed). All this il-
lustrates the remarks made at the end of Sec. 1.

IV. DIFFRACTION BY A SINGLE SLIT

Consider the diffraction of a nonrelativistic particle of
mass m by a slit of width d (Fig. 2). Again, all trajectories
are assumed to have the same time intervals 7 and ¢ al-
though the path lengths are different. According to Egs.
(5) and (6) and again under the property of the domi-
nance of the classical trajectory corresponding to interme-
diate time at the slit,

K(y,0+70,0)= f K(y,0+7m,0)K(9,0;0,0)dy

=K(y)
d/2 imP ims*
=N0Nbf—d/2 exp( 267 )exp(zﬁa)d
(22)
where
S=a*+n?, P=b+(y—1n)>
Thus
m (& P
Zh( += ) —A(—10)+B,
where
mo+rt or
2% :; ’ TI°=0+T£’ (23)
and
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B_m 02

Substituting Eq. (23) into Eq. (22), we obtain

B+y o )ﬁ)

T o+117)

o (Y2 s
K(y)=NANbe’Bf et gy, (24)

Let

172
A(n—n)=—izt, z.=[2) (22 25
1] 170 —21 ) + = P 2 770 ’ ( )

’ ¢
E(g)sfo exp(igzz)dZ=C(§)+iS(§), (26)
¢
C(g)Efo cos(gzz)dl,
¢
S(§)Ef0 sin(gzz)dz, (27)

where the integrals in Eq. (27) are the Fresnel integrals.
Then,

K(y)= NaNbe'”( )[E(Z Y+E(Z,)], (28)

and the Fresnel diffraction intensity is given by |K(y)|%
For Fraunhofer diffraction,

Ss®, O—ow, A-(m/2#7), Ny-). (29)
If we assume that
n<d/2<y, (30)
then
A(n—mno)*— 2," (n—p)? =5z P —2m), (31)
and Eq. (24) gives
K()=I"%(sin a)/a, (32)
where (see Fig. 2), for d<y,
myd mr md
%72—”" P —sin 0= 1rdh sin 9=71— sin 9, (33)
m (a* b2+ m b +y*
e ooy (2H) B2
(35)

The intensity |K(y) |2 agrees with the usual expression.
Note that u=r/7 is the speed, p=mu=mr/7 is the mo-
mentum, and A=h/p is the wavelength.

This completes our discussion of the single and double-
slit interference phenomena from the point of view of path
integration.

V. SUMMARY

In the Schrodinger method one obtains the quintessen-
tial quantum phenomena of interference and diffraction as
a purely wave properties, i.e., solution of the wave equation
for the given boundary conditions. In the path integral
method, a complex probability amplitude is assigned to
each path between the source and detector and then these
amplitudes are summed. This procedure is reminiscent but
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different from considering single events on the screen and
then taking the average over repeated events. The present
work, we hope, clarifies some of the points related to quan-
tum interference, path integrals and single versus repeated
events relationships.

*Professor Emeritus, Colorado State University, Fort Collins, Colorado,
500 Manhattan Drive, B4, Boulder, CO 80303
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Solutions of Maxwell’s equations for electric and magnetic fields
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Solutions of Maxwell’s equations for fields in arbitrary media are derived in terms of charge
density p, current density J, polarization P, and magnetization M. The solutions express E, D,
H, and B as integrals of retarded p, J, P, M, and their spatial and temporal derivatives.

L. INTRODUCTION

Most of the previously reported solutions of Maxwell’s
equations as integrals of retarded charge and current den-
sities were limited, according to their authors, to a vacuum
or to media of constant permittivity and permeability oc-
cupying all space.'”® Griffiths and Heald, who discussed
such solutions and provided their own derivations,* stated
in their footnote 22 that the solutions could be extended to
-fields in dielectric and magnetic media, if “one interprets J
to include JP/dt and VXM in addition to the free current
density Jg.. and p to include — V<P in addition to the free
charge density pg...” However, they did not actually pro-
vide or discuss the extended solutions.

The purpose of this paper is to present detailed deriva-
tions of the solutions of Maxwell’s equations for fields in
arbitrary media and to demonstrate their possible applica-
tions. Two sets of solutions are obtained. The first set ex-
presses the fields E, D, H, and B in terms of retarded
charge density p, retarded current density J, retarded po-
larization P, retarded magnetization M and retarded spa-
tial and temporal derivatives of p, J, P, and M. The second
set contains no spatial derivatives.

The solutions are general and impose no restrictions on
any of the quantities involved except that E, D, H, and B
are assumed to be regular at infinity and that p, J, P, and
M are assumed to be confined to a finite region of space.
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Since these requirements are implicit in Maxwell’s equa-
tions, the solutions are equivalent to Maxwell’s equations.

I1. BASIC EQUATIONS AND DEFINITIONS

The equations to be solved are the four Maxwell’s equa-
tions:

V:D=p, (1)
V-B=0, (2)
VSE JB

VxH=J i

In order to solve these equations we also need equations
correlating D with E and B with H. The most general
equations of this type are those making use of the polar-
ization P and magnetization M. They are

P=D—¢.E, (5)
M=B—pH. (6)

[If P and M are independently defined (as dipole moment
densities, for example), then these equations constitute def-
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