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Abstract

We present a new very fast tree-code which runs on massieeallel Graphical Processing
Units (GPU) with NVIDIA CUDA architecture. The tree-constition and calculation of mul-
tipole moments is carried out on the host CPU, while the fameulation which consists of
tree walks and evaluation of interaction list is carried @uthe GPU. In this way we achieve a
sustained performance of about 100GFI/©&nd data transfer rates of about 50&Bt takes
about a second to compute forces on a million particles witb@ening angle of ~ 0.5. The
code has a convenient user interface and is freely availablesé.
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1. Introduction

Direct force evaluation methods have always been populeaise of their simplicity and
unprecedented accuracy. Since the mid 1980’s, howeveamsppation methods like the hierar-
chical tree-code [1] have gained enormous popularity amesearchers, in particular for study-
ing astronomical self-gravitatiny-body systems [2] and for studying soft-matter molecular-
dynamics problems [3]. For these applications, directdaealuation algorithms strongly limit
the applicability, mainly due to th&(N?) time complexity of the problem.

Tree-codes, however, have always had a dramatic set bagkazethto direct methods, in the
sense that the latter benefits from the developments inalgroipose hardware, like the GRAPE
and MD-GRAPE family of computers [4, 5], which increase wsigtion performance by two to
three orders of magnitude. On the other hand, tree-codes atetter scaling of the compute
time with the number of processors on large parallel supepeters [6, 7] compared to direct
N-body methods [8, 9]. As a results, large scale tree-codalations are generally performed
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on Beowulf-type clusters or supercomputers, whereastdidmdy simulations are performed
on workstations with attached GRAPE hardware.

Tree-codes, due to their hierarchical and recursive naigdard to runféciently on dedi-
cated Single Instruction Multiple Data (SIMD) hardwareeli®@RAPE, though some benefit has
been demonstrated by using pseudo-particle methods te &mithe higher-order moments in
the calculation of multipole moments of the particle diattions in grid cells [10].

Recently, the popularity of computer games has led to theldpment of massively parallel
vector processors for rendering three-dimensional gcapithages. Graphical Processing Units
(or GPUSs) have evolved from fixed function hardware to gdipenaose parallel processors. The
theoretical peak speed of these processors increasestatfaster than Moores’ law [11], and
at the moment top roughly 200 GFLOP for a single card. The aotese cards is dramatically
reduced by the enormous volumes in which they are producadhlynfor gamers, whereas
GRAPE hardware remains relatively expensive.

The gravitationaN-body problem proved to be rather ideal to port to modern GRbd the
first successes in porting tiNebody problem to programmable GPUs were achieved by [12], bu
it was only after the introduction of the NVIDIA G80 architece that accurate force evaluation
algorithms could be implemented [13] and that the performadiecame comparable to special
purpose computers [14, 15].

Even in these implementations, the tree-code, though prededn [14], still hardly resulted
in a speed-up compared to general purpose processorss Ipabér we present a novel imple-
mentation of a tree-code on the NVIDIA GPU hardware using2td®A programming environ-
ment.

2. Implementation

In the classical implementation of the tree-code algoritiinthe work is done on the CPU,
since special purpose hardware was not available at that [tijp With the introduction of
GRAPE special purpose hardware [16, 17], it became conipuntly favourable to let the spe-
cial purpose hardware, instead of the CPU, calculate aetiElas. Construction of the inter-
action list in these implementations takes nearly as muoh #s calculating the accelerations.
Since the latest generation of GPUs allows more complexatipess, it becomes possible to
build the interaction list directly on the GPU. In this caias only necessary to transport the
tree-structure to the GPU. Since the bandwidth on the haspater is about an order of mag-
nitude lower than on the GPU, it is also desirable fiboad bandwidth intensive operations to
the GPU. The construction of the interaction list is such paration. The novel element in our
tree-code is construction of the interaction list on the GPle remaining parts of the tree-code
algorithm (tree-construction, calculation of node praigsrand time integration) are executed on
the host. The host is also responsible for the allocation@hory and the data transfer to and
from the GPU. In the next sections we will cover the detailthefhost and device steps.

2.1. Building the octree

We construct the octree in the same way as done in the oriBiatee-code. We define the
computational domain as a cube containing all particlehénslystem. This cube is recursively
divided into eight equal-size cubes called cells. The legthe resulting cells is half the length
of the parent cell. Each of these cells is further subdividedi| less tharNie,s particles are left.
We call these cells leaves, whereas cells containing maeNR,s particles are referred to as
nodes. The cell containing all particles is the root node.
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The resulting tree-structure is schemati-
cally shownin Fig. 1. From this tree-structure
o we construct groups for the tree walk (c.f.
1 1R section 2.2), which are the cells with the num-
{ -, Yo ber of particles less thaNgoups and com-

- ’ pute properties for each cell, such as bound-
ary, mass, centre of mass, and quadrupole mo-
ments, which are required to calculate accel-
erations [18].

In order to dficiently walk the octree on
the device, its structure requires some reor-
ganisation. In particular, we would like to
minimise the number of memory accesses
since they are relative expensive (up to 600
clock cycles). In Fig. 2, we show the tree-
structure as stored on the GPU. The upper ar-
Figure 1:lllustration of our tree-structure, shown inray in the figure is the link-list of the tree,
2D for clarity. Initially, the space is recursively subdiwhich we call the main tree-array. Each el-
vided into cubic cells until all cells contain less thakment in this array (separated by blue vertical
Niear particles (blue squares). All cells (including partines) stores four integers in a single 128-bit
ent cells) are st_ored ina t_ree-structure. Afte_rwar(_i\ﬁlm.dS (dashed vertical lines). This structure
we compute a tight bounding box for the particles i particularly favourable because the device

each cell (dotted rectangles) and cell’'s boundary. The

latter is a cube with a side length equal to the largest able to read a 128-bit word into four 32-

side length of the bounding box and the same cem?ét registers using one memory access Instrqc-
(green squares). tion. Two array-elements represent one cell in

the tree (green line) with indices to each of the
eight children in the main tree-array (indicated by thewag)p A grey filled element in this list
means that a child is a leaf (it has no children of its own), hedce it needs not to be refer-
enced. We also use auxiliary tree-arrays in the device mgmbich store properties of each
cell, such as its boundary, mass, centre of mass and muttipieents. The index of each cell
in the main tree-array is directly related to its index in thiliary tree-arrays by bitshift and
addition operations.

The device execution model is designed

in such a way that threads which execute the[ —F=
same operation are grouped in warps, where[ [ | I |
each warp consists of 32 threads. Therefore, |
all threads in a warp follow the same code [ [ T [ [ [ T T ]
path. If this condition is not fulfilled, the di- Figure 2: lllustration of the tree structure as stored
vergent code path is serialised, therefore neg-device memory.
atively impacting the performance [19]. To
minimise this, we rearrange groups in memory to make sutengtighbouring groups in space
are also neighbouring in memory. Combined with similar fpa¢hs that neighbouring groups
have, this will minimise data and code path divergence faghteouring threads, and therefore
further improves the performance.
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2.2. Construction of an interaction list

In the standard BH-tree algorithm, the interaction lises @snstructed for each particle, but
particles in the same groups have similar interaction.liéfe make use of this fact by building
the lists for groups instead of particles [20]. The par8dle each group, therefore, share the
same interaction list, which is typically longer than it vidinave been by determining it on a
particle basis. The advantage here is the reduction of thieuof tree walks biNgoup. The tree
walk is performed on the GPU in such a way that a single GPlhthigused per group. To take
advantage of the cached texture memory, we make sure thgthwriring threads correspond to
neighbouring groups.

Owing to the massively parallel architecture of the GPU, tnee walks are required to
construct interaction lists. In the first walk, each threathputes the size of the interaction list
for a group. This data is copied to the host, where we comatedtal size of the interaction
list, and memory addresses to which threads should wrigadighout intruding on other threads’
data. In the second tree walk, the threads write the interalists to the device memory.

List 1: A pseudo code for our non-recursive stack-based tree walk.

1 while (stack.non_empty) {
2 node = stack.pop ;5 get next node from the stack
3 one = fetch(children, node + 0) ;; cached fetch 1st four children
4 two = fetch(children, node + 1) ;3 cached fetch 2nd four children
5 test_cell<0...4>(node, one, stack) ;3 test sub-cell in octant one to four
6 test_cell<5...8>(node, two, stack) ;; test sub-cell in octant four to eight
7 }
List 2: Pseudo code fotest_cell subroutine.
1 [template<oct>test_cell(node, child, stack) {
2 child = fetch(cell_pos, 8%*node +oct) ;3 fetch data of the child
3 if (open_node(leaf_data, child)) { ;3 if the child has to be opened,
4 if (child != leaf) stack.push(child) ;; store it in stack if it is a node
5 else leaf += 1 HH otherwise increment the leaf counter
6 } else cell += 1 ;; else, increment the cell counter
7|}

We implemented the tree walk via a non-recursive stackeakgorithm (the pseudo code
is shown in List 1), because the current GPU architecture daé¢ support recursive function
calls. In short, every node of the tree, starting with thet raede, reads indices of its children
by fetching two consecutive 128-bit words (eight 32 bit gees) from texture memory. Each of
these eight children is tested against the node-openitagiard (the pseudo code for this step is
shown in List 2), and in the case of a positive result a chilst@sed in the stack (line 4 in the
listing), otherwise it is considered to be a part of the iattion list. In the latter case, we check
whether the child is a leaf, and if so, we increment a courttettfe leaf-interaction list (line 5),
otherwise a counter for the node-interaction list (line Bhis division of the interaction lists is
motivated by the dferent methods used to compute the accelerations from naddsaves (c.f.
section 2.3). In the second tree walk, we store the indexeot#ll in the appropriate interaction
list instead of counting the nodes and leafs.

2.3. Calculating accelerations from the interaction list
In the previous step, we have obtained two interaction It for nodes and one for leaves.

The former is used to compute accelerations due to nodesthenidtter due to leaves. The
pseudo-code for a particle-node interaction is shown ih 3 &nd the memory access pattern is
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Figure 3:Memory access pattern in a body-node (left) and body-léglfifrinteraction.

demonstrated in the left panel of Fig. 3. This algorithm maikir to the one used in theirin
andsapporo libraries for directN-body simulations [14, 15]. In short, we use a block of theead
per group, such that a thread in a block is assigned to a |geirti@ group; these particles share
the same interaction list. Each thread loads a fractionehthdes from the node-interaction list
into shared memory (blue threads in the figure, lines 2 andtBdristing). To ensure that all
the data is loaded into shared memory, we put a barrier fahedads (line 4), and afterwards
each thread computes gravitational acceleration froméldesin shared memory (line 5). Prior
loading a new set of nodes into the shared memory (greerdhneshe figure), we ensure that all
the threads have completed their calculations (line 6). &geat this cycle until the interaction
list is exhausted.

List 3: Body-node interaction

~NOoO U WNBRE

A WNPE

for (i = 0; i < list_len; i += block_size) {
cellldx = cell_interact_lst[i + thread_id]
shared_cells[threadIdx] = cells_lst[cellIdx] ;; read nodes to the shared memory
__syncthreads () ;; thread barrier
interact(body_in_a_thread, shared_cell) ;; evaluate accelerations
__syncthreads () ;; thread barrier
}
List 4: Body-leaf interaction
for (i = 0; i < list_len; i += block_size) {
leaf = leaf_interaction_list[i + threads_id]
shared_leaves[threadIdx] = cells_list[leaf] ;; read leaves to the shared memory
__syncthreads ()
for (j = 0; j < block_size; j++) { ;3 process each leaf
shared_bodies[thread_id] = bodies[shared_leaves[j].first + thread_id]
__syncthreads();
interact(body_in_a_thread, shared_bodies, shared_leaves[j].len);
__syncthreads();
}
}

P OWOWOoW~NO O,

Calculations of gravitational acceleration due to the dsadifers in several ways. The
pseudo-code of this algorithm is presented in List 4, andrtbmory access pattern is displayed
in the right panel of Fig. 3. First, each thread fetches leapprties, such as index of the first
body and the number of bodies in the leaf, from texture merimdao/shared memory (red lines
in the figure, lines 2 and 3 in the listing). This data is usediemtify bodies from which the
accelerations have to be computed (black lines). Findllgads read these bodies into shared
memory (blue and green lines, line 6) in order to calculatekrations (line 8). This process is
repeated until the leaf-interaction list is exhausted.
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Figure 4:Each panel displays a fraction of particles having relaiveeleration error (vertical axis) greater
than a given value (horizontal axis). In each panel, we shogrgfor various opening angles frafn= 0.2
(the leftmost curve in each panel)3004, 0.5, 0.6 and 07 (the rightmost curve). The number of particles
are 3- 10%, 10°, 1 for panels from left to right respectively. The dotted horital lines show 50%, 10%
and 1% of the error distribution.

3. Results

In this section we study the accuracy and performance ofégecbde. First we quantify the
errors in acceleration produced by the code and then wetsgseiformance. For this purpose
we use a model of the Milky Way galaxy [21]. We model the galaiih N = 10, 3-10% 10°, 3-
10°,10°, 3 - 10° and 10 particles, such that the mass ratio of bulge, disk and hattices is
1:1:4. We then proceed with the measurements of the coderpehce. In all test we use
Niear = 64 andNgup = 64 which we find produce the best performance on both/G8R and
GT200 architecture. The GPU used in all the tests is a GefB&@eUltra.

3.1. Accuracy of approximation

We quantify the error in acceleration in the following waia/a = |ayee — adirect/|8direct,
whereayee andagirect are accelerations calculated by the tree and direct summagspectively.
The latter was carried out on the same GPU as the tree-code.allbwed us to asses errors
on systems as large as 10 million partiélek Fig. 4 we show error distributions forfeierent
numbers of particles and forftierent opening angles. In each panel, we show which fraction o
particles (vertical-axis) has a relative error in acceleralarger than a given value (horizontal
axis). The horizontal lines show 50th, 10th and 1st perteenficumulative distribution. This
data shows that acceleration errors in this tree-code arsistent with the errors produced by
existing tree-codes with quadrupole corrections [22, 23, 2

We show dependence of errors on both opening angle and nwhparticles in Fig. 5. In
the leftmost panel of the figure, we plot the median and thegescentile of the relative force
error distribution as a function of the opening angfer various number of particled = 3-10*

(the lowest blue dotted and red dashed lines)1@® and 3- 10° (the upper blue dotted and red
dashed lines). As expected, the error increases as a formftié with the following scaling
from the least-squared fiha/a « 6*. However, the errors increase with the number of particles:
the error doubles when the number of particles is increagadid orders of magnitude. This
increase of the error is caused by the large number of pestial a leaf, which in our case is

2We used the NVIDIA 8800Ultra GPU for this paper, and it takd®) GPU hours to compute the exact force on a
system with 10 million particles with double precision eatidn [15]
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Figure 5:The median and the first percentile of the relative accetararror distribution as a function of
the opening angle and the number of particles. In the leftpasel we show lines for 310* (the bottom
dotted and dashed lines) and B0° (the top dotted and dashed lines) particles. The middle laadight
panels display the error fér= 0.2 (the bottom lines), @, 0.4,0.5,0.6 and 07 (the upper lines).
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Figure 6: Wall-clock timing results as function of the opening angfel mumber of particles. In each
panel, the solid line shows the time spent on the GPU. Thedltitie on the top panel shows the time spent

on the host, and the total wall-clock time is shown with thetdal line.

64, to obtain the best performance. We conducted a testNth = 8, and indeed observed
the expected decrease of the error when the number of gariidreases; this error, however, is
twice as large compared Mear = 64 forN ~ 10°.

3.2. Timing

In Fig. 6 we present the timing data as a functio® @ind for varioudN. The Tyes; (dotted
line in the figure) is independent é6f which demonstrates that construction of the octree only
depends on the number of particles in the system, Wit « NlogN. This time becomes
comparable to the time spend on the GPU calculating actielessfor N > 10° and6 > 0.5.
This is caused by the empirically measured near-lineairgralf time spend on GPU with.
As the number of particles increases, the GPU part of the pederms more &iciently, and
therefore the scaling drops frollog N to near-linear (Fig. 7). We therefore conclude, that the
optimal opening angle for our codedsv 0.5.

In the leftmost panel of Fig. 7 we shoW dependence of the time spent on the host and the
device for various opening angles. In particuldgpy scaling falls betweemM log(N) and N,
which we explained by the increasedi@ency of the GPU part of our code with larger number
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Figure 7:Timing results as a function of particle number. The lefttqmnel displays time spent on the
GPU (black dash-dotted lines) and host CPU (blue dottedl fiagts as a function of the number of particles.
The expected scaliniy log(N) is shown in the red solid line. The ration of the time spenG#?U to the

total wall-clock time is given in the middle panel. The spegdcompared to direct summation is shown in
the rightmost panel. The expected scaliglog(N) is shown with a red line.

of particles. This plot also shows that the host calculatiore is a small fraction of the GPU
calculation time, except fok > 10° and# > 0.5. The middle panel of the figure shows the
ratio of the time spent on the device to the total time. Findfle rightmost panel shows the ratio
between the time required to compute forces by direct suiomand the time required by the
tree-code. As we expected, the scaling is consistentMAftiN log(N)) = N/log(N).

3.3. Device utilisation

We quantify the #iciency of our code to utilise the GPU resources by measuottgibstruc-
tion and data throughput, and then compare the results théloeetical peak values provided by
the device manufacturer. In Fig. 8 we show both bandwidthamputational performance as
function of6 for three diferentN. We see that the calculation of accelerations operatesoat ab
100GFLOP3. This is comparable to the peak performance of the GRAPEp6aial-purpose
hardware, but this utilises only 30% of the computational power of the G®This occurs
because the average number of bodies in a group is a factopo#3maller than th&g.oup,
which we set to 64 in our tests. On average, therefore, ordyia®0% of the threads in a block
are active.

The novelty of this code is the GPU-based tree walk. Sinceetisdittle arithmetic intensity
in these operations, the code is, therefore, limited by tediwvidth of the device. We show
in Fig. 8 that our code achieves respectable bandwidth: aess<of 50GB during the first
tree walk, in which only (cached) scatter memory reads aeswed. The second tree walk,
which constructs the interaction list, is notably slowecdngse there data is written to memory—
an operation which is significantly slower compared to rdeat® texture memory. We observe
that the bandwidth decreases witlin both tree walks, which is due to increasingly divergent
tree-paths between neighbouring groups, and an increabe efrite to read ratio in memory
operations.

3We count 38 and 70 FLOPs for each body-leaf and body-nodeaiiten respectively.

4Our tests were carried out on a NVIDIA 8800Ultra GPU, whicls 28 streaming processors each operating at
clock speed of 1.5Ghz. Given that the GPU is able to perfornougo floating point operation per clock cycle, the
theoretical peak performance ix2128 = 384GFLORs.
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show the performance of the calculation of the accelerationthe node interaction list (solid line) and the

leaf interaction list (dotted line) in GFLQ®

4, Discussion and Conclusions

We present a fast gravitational tree-code which is execateGraphics Processing Units
(GPU) supporting the NVIDIA CUDA architecture. The novettithis code is the GPU-based
tree-walk which, combined with the GPU-based calculatiecoelerations, shows good scaling
for various particle numbers andfidirent opening angles The hereby produced energy error
is comparable to existing CPU based tree-codes with quatirgorrections. The code makes
optimal use of the available device resources and showdlentecaling to new architectures.
Tests indicate that the NVIDIA GT200 architecture, whicts maughly twice the resources as
the used G80 architecture, performs the integration twsdast.

As it generally occurs with other algorithms, the introdostof a massively parallel acceler-
ator usually makes the host calculations and non-parsalelie parts of the code, as small as they
may be, the bottleneck. In our case, we used optimised deeide and for the host code we
used general tree-construction and tree-walk recursijaighms. It is possible to improve these
algorithms to increase the performance of the host partit lisifikely to remain a bottleneck.
Even with the use of modern quad-core processors this phaardto optimize since its largely
a sequential operation.
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