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Chapter 1

Hamiltonian Mechanics

1.1 References

– R. Z. Sagdeev, D. A. Usikov, and G. M. Zaslavsky, Nonlinear Physics (Harwood, 1988)
A thorough treatment of nonlinear Hamiltonian particle and wave mechanics.

– E. Ott, Chaos in Dynamical Systems (Cambridge, 2002)
An excellent introductory text appropriate for graduate or advanced undergraduate students.

– W. Dittrich and M. Reuter, Classical and Quantum Dynamics (Springer, 2001)
More a handbook than a textbook, but reliably covers a large amount of useful material.

– G. M. Zaslavsky, Hamiltonian Chaos & Fractional Dynamics (Oxford, 2005)
An advanced text for graduate students and researchers.

– I. Percival and D. Richards, Introduction to Dynamics (Cambridge, 1994)
An excellent advanced undergraduate text.

– A. J. Lichenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer, 1983)
An advanced graduate level text. Excellent range of topics, but quite technical and often lacking physical
explanations.
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2 CHAPTER 1. HAMILTONIAN MECHANICS

1.2 The Hamiltonian

Recall that L = L(q, q̇, t), and

pσ =
∂L

∂q̇σ
. (1.1)

The Hamiltonian, H(q, p) is obtained by a Legendre transformation,

H(q, p) =

n∑

σ=1

pσ q̇σ − L . (1.2)

Note that

dH =

n∑

σ=1

(
pσ dq̇σ + q̇σ dpσ −

∂L

∂qσ
dqσ −

∂L

∂q̇σ
dq̇σ

)
− ∂L

∂t
dt

=

n∑

σ=1

(
q̇σ dpσ −

∂L

∂qσ
dqσ

)
− ∂L

∂t
dt .

(1.3)

Thus, we obtain Hamilton’s equations of motion,

∂H

∂pσ
= q̇σ ,

∂H

∂qσ
= − ∂L

∂qσ
= −ṗσ (1.4)

and
dH

dt
=
∂H

∂t
= −∂L

∂t
. (1.5)

Some remarks:

• As an example, consider a particle moving in three dimensions, described by spherical polar coordinates
(r, θ, φ). Then

L = 1
2m
(
ṙ2 + r2 θ̇2 + r2 sin2θ φ̇2

)
− U(r, θ, φ) . (1.6)

We have

pr =
∂L

∂ṙ
= mṙ , pθ =

∂L

∂θ̇
= mr2 θ̇ , pφ =

∂L

∂φ̇
= mr2 sin2θ φ̇ , (1.7)

and thus

H = pr ṙ + pθ θ̇ + pφ φ̇− L

=
p2r
2m

+
p2θ

2mr2
+

p2φ

2mr2 sin2θ
+ U(r, θ, φ) .

(1.8)

Note that H is time-independent, hence ∂H
∂t = dH

dt = 0, and therefore H is a constant of the motion.

• In order to obtain H(q, p) we must invert the relation pσ = ∂L
∂q̇σ

= pσ(q, q̇) to obtain q̇σ(q, p). This is possible

if the Hessian,
∂pα
∂q̇β

=
∂2L

∂q̇α ∂q̇β
(1.9)

is nonsingular. This is the content of the ‘inverse function theorem’ of multivariable calculus.
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• Define the rank 2n vector, ξ, by its components,

ξi =

{
qi if 1 ≤ i ≤ n
pi−n if n < i ≤ 2n .

(1.10)

Then we may write Hamilton’s equations compactly as

ξ̇i = Jij
∂H

∂ξj
, (1.11)

where

J =

(
On×n In×n

−In×n On×n

)
(1.12)

is a rank 2n matrix. Note that Jt = −J, i.e. J is antisymmetric, and that J2 = −I2n×2n. We shall utilize this
‘symplectic structure’ to Hamilton’s equations shortly.

1.2.1 Modified Hamilton’s principle

We have that

0 = δ

tb∫

ta

dt L = δ

tb∫

ta

dt
(
pσ q̇σ −H

)

=

tb∫

ta

dt

{
pσ δq̇σ + q̇σ δpσ −

∂H

∂qσ
δqσ −

∂H

∂pσ
δpσ

}

=

tb∫

ta

dt

{
−
(
ṗσ +

∂H

∂qσ

)
δqσ +

(
q̇σ −

∂H

∂pσ

)
δpσ

}
+
(
pσ δqσ

)∣∣∣
tb

ta
,

(1.13)

assuming δqσ(ta) = δqσ(tb) = 0. Setting the coefficients of δqσ and δpσ to zero, we recover Hamilton’s equations.

1.2.2 Phase flow is incompressible

A flow for which ∇ ·v = 0 is incompressible – we shall see why in a moment. Let’s check that the divergence of the
phase space velocity does indeed vanish:

∇ · ξ̇ =
n∑

σ=1

{
∂q̇σ
∂qσ

+
∂ṗσ
∂pσ

}

=

2n∑

i=1

∂ξ̇i
∂ξi

=
∑

i,j

Jij
∂2H

∂ξi ∂ξj
= 0 .

(1.14)

Now let ρ(ξ, t) be a distribution on phase space. Continuity implies

∂ρ

∂t
+∇ · (ρ ξ̇) = 0 . (1.15)
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Invoking ∇ · ξ̇ = 0, we have that
Dρ

Dt
=
∂ρ

∂t
+ ξ̇ ·∇ρ = 0 , (1.16)

where Dρ/Dt is sometimes called the convective derivative – it is the total derivative of the function ρ
(
ξ(t), t

)
,

evaluated at a point ξ(t) in phase space which moves according to the dynamics. This says that the density in the
“comoving frame” is locally constant.

1.2.3 Poincaré recurrence theorem

Let gτ be the ‘τ -advance mapping’ which evolves points in phase space according to Hamilton’s equations

q̇σ = +
∂H

∂pσ
, ṗσ = − ∂H

∂qσ
(1.17)

for a time interval ∆t = τ . Consider a region Ω in phase space. Define gnτΩ to be the nth image of Ω under the
mapping gτ . Clearly gτ is invertible; the inverse is obtained by integrating the equations of motion backward in
time. We denote the inverse of gτ by g−1

τ . By Liouville’s theorem, gτ is volume preserving when acting on regions
in phase space, since the evolution of any given point is Hamiltonian. This follows from the continuity equation
for the phase space density,

∂̺

∂t
+∇ · (u̺) = 0 (1.18)

where u = {q̇, ṗ} is the velocity vector in phase space, and Hamilton’s equations, which say that the phase flow
is incompressible, i.e. ∇ · u = 0:

∇ · u =

n∑

σ=1

{
∂q̇σ
∂qσ

+
∂ṗσ
∂pσ

}

=
n∑

σ=1

{
∂

∂qσ

(
∂H

∂pσ

)
+

∂

∂pσ

(
− ∂H

∂qσ

)}
= 0 . (1.19)

Thus, we have that the convective derivative vanishes, viz.

D̺

Dt
≡ ∂̺

∂t
+ u · ∇̺ = 0 , (1.20)

which guarantees that the density remains constant in a frame moving with the flow.

The proof of the recurrence theorem is simple. Assume that gτ is invertible and volume-preserving, as is the case
for Hamiltonian flow. Further assume that phase space volume is finite. Since the energy is preserved in the case
of time-independent Hamiltonians, we simply ask that the volume of phase space at fixed total energy E be finite,
i.e. ∫

dµ δ
(
E −H(q,p)

)
<∞ , (1.21)

where dµ =
∏
i dqi dpi is the phase space uniform integration measure.

Theorem: In any finite neighborhood Ω of phase space there exists a point ϕ0 which will return to Ω after n
applications of gτ , where n is finite.

Proof: Assume the theorem fails; we will show this assumption results in a contradiction. Consider the set Υ
formed from the union of all sets gmτ Ω for all m:

Υ =

∞⋃

m=0

gmτ Ω (1.22)
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We assume that the set {gmτ Ω |m ∈ Z ,m ≥ 0} is disjoint. The volume of a union of disjoint sets is the sum of the
individual volumes. Thus,

vol(Υ) =

∞∑

m=0

vol(gmτ Ω) = vol(Ω) ·
∞∑

m=1

1 =∞ , (1.23)

since vol(gmτ Ω) = vol(Ω) from volume preservation. But clearly Υ is a subset of the entire phase space, hence we
have a contradiction, because by assumption phase space is of finite volume.

Thus, the assumption that the set {gmτ Ω |m ∈ Z ,m ≥ 0} is disjoint fails. This means that there exists some pair of
integers k and l, with k 6= l, such that gkτ Ω∩ glτ Ω 6= ∅. Without loss of generality we may assume k > l. Apply the
inverse g−1

τ to this relation l times to get gk−lτ Ω ∩ Ω 6= ∅. Now choose any point ϕ ∈ gnτ Ω ∩ Ω, where n = k − l,
and define ϕ0 = g−nτ ϕ. Then by construction both ϕ0 and gnτ ϕ0 lie within Ω and the theorem is proven.

Each of the two central assumptions – invertibility and volume preservation – is crucial. Without either of them,
the proof fails. Consider, for example, a volume-preserving map which is not invertible. An example might be a
mapping f : R→ R which takes any real number to its fractional part. Thus, f(π) = 0.14159265 . . .. Let us restrict
our attention to intervals of width less than unity. Clearly f is then volume preserving. The action of f on the
interval [2, 3) is to map it to the interval [0, 1). But [0, 1) remains fixed under the action of f , so no point within the
interval [2, 3) will ever return under repeated iterations of f . Thus, f does not exhibit Poincaré recurrence.

Consider next the case of the damped harmonic oscillator. In this case, phase space volumes contract. For a one-
dimensional oscillator obeying ẍ+2βẋ+Ω2

0x = 0 one has∇·u = −2β < 0 (β > 0 for damping). Thus the convective

derivative is equal toDt̺ = −(∇·u)̺ = +2β̺which says that the density increases exponentially in the comoving
frame, as ̺(t) = e2βt ̺(0). Thus, phase space volumes collapse, and are not preserved by the dynamics. In this
case, it is possible for the set Υ to be of finite volume, even if it is the union of an infinite number of sets gnτ Ω,
because the volumes of these component sets themselves decrease exponentially, as vol(gnτ Ω) = e−2nβτ vol(Ω).

A damped pendulum, released from rest at some small angle θ0 , will not return arbitrarily close to these initial
conditions.

1.2.4 Poisson brackets

The time evolution of any function F (q,p) over phase space is given by

d

dt
F
(
q(t),p(t), t

)
=
∂F

∂t
+

n∑

σ=1

{
∂F

∂qσ
q̇σ +

∂F

∂pσ
ṗσ

}

≡ ∂F

∂t
+
{
F,H

}
,

(1.24)

where the Poisson bracket {· , ·} is given by

{
A,B

}
≡

n∑

σ=1

(
∂A

∂qσ

∂B

∂pσ
− ∂A

∂pσ

∂B

∂qσ

)

=

2n∑

i,j=1

Jij
∂A

∂ξi

∂B

∂ξj
.

(1.25)

Properties of the Poisson bracket:

• Antisymmetry: {
f, g
}
= −

{
g, f
}
. (1.26)
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• Bilinearity: if λ is a constant, and f , g, and h are functions on phase space, then
{
f + λ g, h

}
=
{
f, h
}
+ λ{g, h

}
. (1.27)

Linearity in the second argument follows from this and the antisymmetry condition.

• Associativity: {
fg, h

}
= f

{
g, h
}
+ g
{
f, h
}
. (1.28)

• Jacobi identity: {
f, {g, h}

}
+
{
g, {h, f}

}
+
{
h, {f, g}

}
= 0 . (1.29)

Some other useful properties:

◦ If {A,H} = 0 and ∂A
∂t = 0, then dA

dt = 0 , i.e. A(q, p) is a constant of the motion.

◦ If {A,H} = 0 and {B,H} = 0, then
{
{A,B}, H

}
= 0. If in addition A and B have no explicit time depen-

dence, we conclude that {A,B} is a constant of the motion.

◦ It is easily established that

{qα, qβ} = 0 , {pα, pβ} = 0 , {qα, pβ} = δαβ . (1.30)

1.3 Canonical Transformations

1.3.1 Point transformations in Lagrangian mechanics

In Lagrangian mechanics, we are free to redefine our generalized coordinates, viz.

Qσ = Qσ(q1, . . . , qn, t) . (1.31)

This is called a “point transformation.” The transformation is invertible if

det

(
∂Qα
∂qβ

)
6= 0 . (1.32)

The transformed Lagrangian, L̃, written as a function of the new coordinatesQ and velocities Q̇, is

L̃
(
Q, Q̇, t) = L

(
q(Q, t), q̇(Q, Q̇, t), t

)
+
d

dt
F
(
q(Q, t), t

)
, (1.33)

where F (q, t) is a function only of the coordinates qσ(Q, t) and time1. Finally, Hamilton’s principle,

δ

tb∫

t1

dt L̃(Q, Q̇, t) = 0 (1.34)

with δQσ(ta) = δQσ(tb) = 0, still holds, and the form of the Euler-Lagrange equations remains unchanged:

∂L̃

∂Qσ
− d

dt

(
∂L̃

∂Q̇σ

)
= 0 . (1.35)

1We must have that the relation Qσ = Qσ(q, t) is invertible.
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The invariance of the equations of motion under a point transformation may be verified explicitly. We first evalu-
ate

d

dt

(
∂L̃

∂Q̇σ

)
=

d

dt

(
∂L

∂q̇α

∂q̇α

∂Q̇σ

)
=

d

dt

(
∂L

∂q̇α

∂qα
∂Qσ

)
, (1.36)

where the relation ∂q̇α/∂Q̇σ = ∂qα/∂Qσ follows from q̇α = ∂qα
∂Qσ

Q̇σ + ∂qα
∂t . We know that adding a total time

derivative of a function F̃ (Q, t) = F
(
q(Q, t), t

)
to the Lagrangian does not alter the equations of motion. Hence

we can set F = 0 and compute

∂L̃

∂Qσ
=

∂L

∂qα

∂qα
∂Qσ

+
∂L

∂q̇α

∂q̇α
∂Qσ

=
∂L

∂qα

∂qα
∂Qσ

+
∂L

∂q̇α

(
∂2qα

∂Qσ ∂Qσ′

Q̇σ′ +
∂2qα
∂Qσ ∂t

)

=
d

dt

(
∂L

∂q̇σ

)
∂qα
∂Qσ

+
∂L

∂q̇α

d

dt

(
∂qα
∂Qσ

)

=
d

dt

(
∂L

∂q̇σ

∂qα
∂Qσ

)
=

d

dt

(
∂L̃

∂Q̇σ

)
,

(1.37)

where the last equality is what we obtained earlier in eqn. 1.36.

1.3.2 Canonical transformations in Hamiltonian mechanics

In Hamiltonian mechanics, we will deal with a much broader class of transformations – ones which mix all the q’s
and p’s. The general form for a canonical transformation (CT) is

qσ = qσ
(
Q1, . . . , Qn ;P1, . . . , Pn; t

)

pσ = pσ
(
Q1, . . . , Qn ;P1, . . . , Pn; t

)
,

(1.38)

with σ ∈ {1, . . . , n}. We may also write

ξi = ξi
(
Ξ1, . . . , Ξ2n; t

)
, (1.39)

with i ∈ {1, . . . , 2n}. The transformed Hamiltonian is H̃(Q,P , t)., where, as we shall see below, H̃(Q,P , t) =
H(q,p, t) + ∂

∂tF (q,Q, t).

What sorts of transformations are allowed? Well, if Hamilton’s equations are to remain invariant, then

Q̇σ =
∂H̃

∂Pσ
, Ṗσ = − ∂H̃

∂Qσ
, (1.40)

which gives

∂Q̇σ
∂Qσ

+
∂Ṗσ
∂Pσ

= 0 =
∂Ξ̇i
∂Ξi

. (1.41)

I.e. the flow remains incompressible in the new (Q,P ) variables. We will also require that phase space volumes
are preserved by the transformation, i.e.

det

(
∂Ξi
∂ξj

)
=

∣∣∣∣

∣∣∣∣
∂(Q,P )

∂(q,p)

∣∣∣∣

∣∣∣∣ = 1 . (1.42)

Additional conditions will be discussed below.
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1.3.3 Hamiltonian evolution

Hamiltonian evolution itself defines a canonical transformation. Let ξi = ξi(t) and let ξ′i = ξi(t + dt). Then from

the dynamics ξ̇i = Jij ∂H/∂ξj , we have

ξi(t+ dt) = ξi(t) + Jij
∂H

∂ξj
dt+O

(
dt2
)
. (1.43)

Thus,

∂ξ′i
∂ξj

=
∂

∂ξj

(
ξi + Jik

∂H

∂ξk
dt+O

(
dt2
))

= δij + Jik

∂2H

∂ξj ∂ξk
dt+O

(
dt2
)
.

(1.44)

Now, using the result det
(
1 + ǫM

)
= 1 + ǫ Tr M +O(ǫ2) , we have

∣∣∣∣

∣∣∣∣
∂ξ′i
∂ξj

∣∣∣∣

∣∣∣∣ = 1 + Jjk

∂2H

∂ξj ∂ξk
dt+O

(
dt2
)
= 1 +O

(
dt2
)
. (1.45)

1.3.4 Symplectic structure

We have that

ξ̇i = Jij
∂H

∂ξj
. (1.46)

Suppose we make a time-independent canonical transformation to new phase space coordinates, Ξa = Ξa(ξ). We
then have

Ξ̇a =
∂Ξa
∂ξj

ξ̇j =
∂Ξa
∂ξj

Jjk

∂H

∂ξk
. (1.47)

But if the transformation is canonical, then the equations of motion are preserved, and we also have

Ξ̇a = Jab

∂H̃

∂Ξb
= Jab

∂H

∂ξk

∂ξk
∂Ξb

. (1.48)

Equating these two expressions, we have

Maj Jjk

∂H

∂ξk
= JabM

−1
kb

∂H

∂ξk
, (1.49)

where Maj ≡ ∂Ξa/∂ξj is the Jacobian of the transformation. Since the equality must hold for all ξ, we conclude

MJ = J
(
M t
)−1

=⇒ MJM t = J . (1.50)

A matrix M satisfying MM t = I is of course an orthogonal matrix. A matrix M satisfying MJM t = J is called
symplectic. We write M ∈ Sp(2n), i.e. M is an element of the group of symplectic matrices2 of rank 2n.

The symplectic property of M guarantees that the Poisson brackets are preserved under a canonical transforma-
tion:

{
A,B

}
ξ
= Jij

∂A

∂ξi

∂B

∂ξj
= Jij

∂A

∂Ξa

∂Ξa
∂ξi

∂B

∂Ξb

∂Ξb
∂ξj

=
(
Mai JijM

t
jb

) ∂A
∂Ξa

∂B

∂Ξb
= Jab

∂A

∂Ξa

∂B

∂Ξb
=
{
A,B

}
Ξ
.

(1.51)

2Note that the rank of a symplectic matrix is always even. Note also MJM t = J implies M tJM = J.
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1.3.5 Generating functions for canonical transformations

For a transformation to be canonical, we require

δ

tb∫

ta

dt
{
pσ q̇σ −H(q,p, t)

}
= 0 = δ

tb∫

ta

dt
{
Pσ Q̇σ − H̃(Q,P , t)

}
. (1.52)

This is satisfied provided

{
pσ q̇σ −H(q,p, t)

}
= λ

{
Pσ Q̇σ − H̃(Q,P , t) +

dF

dt

}
, (1.53)

where λ is a constant. For canonical transformations3, λ = 1. Thus,

H̃(Q,P, t) = H(q, p, t) + Pσ Q̇σ − pσ q̇σ +
∂F

∂qσ
q̇σ +

∂F

∂Qσ
Q̇σ

+
∂F

∂pσ
ṗσ +

∂F

∂Pσ
Ṗσ +

∂F

∂t
.

(1.54)

Thus, we require

∂F

∂qσ
= pσ ,

∂F

∂Qσ
= −Pσ ,

∂F

∂pσ
= 0 ,

∂F

∂Pσ
= 0 , (1.55)

which says that F = F (q,Q, t) is only a function of (q,Q, t) and not a function of the momentum variables p and
P . The transformed Hamiltonian is then

H̃(Q,P , t) = H(q,p, t) +
∂F (q,Q, t)

∂t
. (1.56)

There are four possibilities, corresponding to the freedom to make Legendre transformations with respect to the
coordinate arguments of F (q,Q, t) :

F (q,Q, t) =






F1(q,Q, t) ; pσ = +∂F1

∂qσ
, Pσ = − ∂F1

∂Qσ
(type I)

F2(q,P , t)− Pσ Qσ ; pσ = +∂F2

∂qσ
, Qσ = + ∂F2

∂Pσ
(type II)

F3(p,Q, t) + pσ qσ ; qσ = −∂F3

∂pσ
, Pσ = − ∂F3

∂Qσ
(type III)

F4(p,P , t) + pσ qσ − Pσ Qσ ; qσ = −∂F4

∂pσ
, Qσ = + ∂F4

∂Pσ
(type IV)

In each case (γ = 1, 2, 3, 4), we have

H̃(Q,P , t) = H(q,p, t) +
∂Fγ
∂t

. (1.57)

Let’s work out some examples:

• Consider the type-II transformation generated by

F2(q,P ) = Aσ(q)Pσ , (1.58)

3Solutions of eqn. 1.53 with λ 6= 1 are known as extended canonical transformations. We can always rescale coordinates and/or momenta
to achieve λ = 1.
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where Aσ(q) is an arbitrary function of the {qσ}. We then have

Qσ =
∂F2

∂Pσ
= Aσ(q) , pσ =

∂F2

∂qσ
=
∂Aα
∂qσ

Pα . (1.59)

Thus,

Qσ = Aσ(q) , Pσ =
∂qα
∂Qσ

pα . (1.60)

This is a general point transformation of the kind discussed in eqn. 1.31. For a general linear point transfor-

mation, Qα = Mαβ qβ , we have Pα = pβM
−1
βα , i.e. Q = Mq, P = pM−1. If Mαβ = δαβ , this is the identity

transformation. F2 = q1P3 + q3P1 interchanges labels 1 and 3, etc.

• Consider the type-I transformation generated by

F1(q,Q) = Aσ(q)Qσ . (1.61)

We then have

pσ =
∂F1

∂qσ
=
∂Aα
∂qσ

Qα

Pσ = − ∂F1

∂Qσ
= −Aσ(q) .

(1.62)

Note that Aσ(q) = qσ generates the transformation

(
q

p

)
−→

(
−P
+Q

)
. (1.63)

• A mixed transformation is also permitted. For example,

F (q,Q) = q1Q1 + (q3 −Q2)P2 + (q2 −Q3)P3 (1.64)

is of type-I with respect to index σ = 1 and type-II with respect to indices σ = 2, 3. The transformation
effected is

Q1 = p1 , Q2 = q3 , Q3 = q2 , P1 = −q1 , P2 = p3 , P3 = p2 . (1.65)

• Consider the n = 1 harmonic oscillator,

H(q, p) =
p2

2m
+ 1

2kq
2 . (1.66)

If we could find a time-independent canonical transformation such that

p =
√
2mf(P ) cosQ , q =

√
2 f(P )

k
sinQ , (1.67)

where f(P ) is some function of P , then we’d have H̃(Q,P ) = f(P ), which is cyclic in Q. To find this
transformation, we take the ratio of p and q to obtain

p =
√
mk q ctnQ , (1.68)

which suggests the type-I transformation

F1(q,Q) = 1
2

√
mk q2 ctnQ . (1.69)



1.4. HAMILTON-JACOBI THEORY 11

This leads to

p =
∂F1

∂q
=
√
mk q ctnQ , P = −∂F1

∂Q
=

√
mk q2

2 sin2Q
. (1.70)

Thus,

q =

√
2P

4
√
mk

sinQ =⇒ f(P ) =

√
k

m
P = ωP , (1.71)

where ω =
√
k/m is the oscillation frequency. We therefore have H̃(Q,P ) = ωP , whence P = E/ω. The

equations of motion are

Ṗ = −∂H̃
∂Q

= 0 , Q̇ =
∂H̃

∂P
= ω , (1.72)

which yields

Q(t) = ωt+ ϕ0 , q(t) =

√
2E

mω2
sin
(
ωt+ ϕ0

)
. (1.73)

1.4 Hamilton-Jacobi Theory

We’ve stressed the great freedom involved in making canonical transformations. Coordinates and momenta,
for example, may be interchanged – the distinction between them is purely a matter of convention! We now
ask: is there any specially preferred canonical transformation? In this regard, one obvious goal is to make the

Hamiltonian H̃(Q,P , t) and the corresponding equations of motion as simple as possible.

Recall the general form of the canonical transformation:

H̃(Q,P , t) = H(q,p, t) +
∂F (q,Q, t)

∂t
, (1.74)

with

∂F

∂qσ
= pσ ,

∂F

∂pσ
= 0 ,

∂F

∂Qσ
= −Pσ ,

∂F

∂Pσ
= 0 . (1.75)

We now demand that this transformation result in the simplest Hamiltonian possible, that is, H̃(Q,P , t) = 0. This
requires we find a function F such that

∂F

∂t
= −H ,

∂F

∂qσ
= pσ . (1.76)

The remaining functional dependence may be taken to be either onQ (type I) or on P (type II). As it turns out, the
generating function F we seek is in fact the action, S, which is the integral of L with respect to time, expressed as
a function of its endpoint values.

1.4.1 The action as a function of coordinates and time

We have seen how the action S[η(τ)] is a functional of the path η(τ) and a function of the endpoint values {qa, ta}
and {qb, tb}. Let us define the action function S(q, t) as

S(q, t) =

t∫

ta

dτ L
(
η, η̇, τ) , (1.77)
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Figure 1.1: The paths η(τ) and η̃(τ).

where η(τ) starts at (qa, ta) and ends at (q, t). We also require that η(τ) satisfy the Euler-Lagrange equations,

∂L

∂ησ
− d

dτ

(
∂L

∂η̇σ

)
= 0 (1.78)

Let us now consider a new path, η̃(τ), also starting at (qa, ta), but ending at (q+ dq, t+ dt), and also satisfying the
equations of motion. The differential of S is

dS = S
[
η̃(τ)

]
− S

[
η(τ)

]
=

t+dt∫

ta

dτ L(η̃, ˙̃η, τ)−
t∫

ta

dτ L
(
η, η̇, τ)

=

t∫

ta

dτ

{
∂L

∂ησ

[
η̃σ(τ)− ησ(τ)

]
+
∂L

∂η̇σ

[
˙̃ησ(τ)− η̇σ(τ)

]}
+ L

(
η̃(t), ˙̃η(t), t

)
dt

=

t∫

ta

dτ

{
∂L

∂ησ
− d

dτ

(
∂L

∂η̇σ

)}[
η̃σ(τ)− ησ(τ)

]
+
∂L

∂η̇σ

∣∣∣∣
t

[
η̃σ(t)− ησ(t)

]
+ L

(
η̃(t), ˙̃η(t), t

)
dt

= 0 + πσ(t) δησ(t) + L
(
η(t), η̇(t), t

)
dt+O(δq dt) , (1.79)

where we have defined πσ = ∂L/∂η̇σ , and δησ(τ) ≡ η̃σ(τ) − ησ(τ) .

Note that the differential dqσ is given by

dqσ = η̃σ(t+ dt)− ησ(t)
= η̃σ(t+ dt)− η̃σ(t) + η̃σ(t)− ησ(t)
= ˙̃ησ(t) dt+ δησ(t) = q̇σ(t) dt+ δησ(t) +O(δq dt) .

(1.80)
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Thus, with πσ(t) ≡ pσ, we have

dS = pσ dqσ +
(
L− pσ q̇σ

)
dt

= pσ dqσ −H dt .
(1.81)

We therefore obtain
∂S

∂qσ
= pσ ,

∂S

∂t
= −H ,

dS

dt
= L . (1.82)

What about the lower limit at ta? Clearly there aren+1 constants associated with this limit:
{
q1(ta), . . . , qn(ta); ta

}
.

Thus, we may write

S = S(q1, . . . , qn;Λ1, . . . , Λn, t) + Λn+1 , (1.83)

where our n + 1 constants are {Λ1, . . . , Λn+1}. If we regard S as a mixed generator, which is type-I in some
variables and type-II in others, then each Λσ for 1 ≤ σ ≤ n may be chosen to be either Qσ or Pσ . We will define

Γσ =
∂S

∂Λσ
=

{
+Qσ if Λσ = Pσ
−Pσ if Λσ = Qσ

(1.84)

For each σ, the two possibilities Λσ = Qσ or Λσ = Pσ are of course rendered equivalent by a canonical transfor-
mation (Qσ, Pσ)→ (Pσ ,−Qσ).

1.4.2 The Hamilton-Jacobi equation

Since the action S(q,Λ, t) has been shown to generate a canonical transformation for which H̃(Q,P ) = 0. This
requirement may be written as

H
(
q1, . . . , qn,

∂S

∂q1
, . . . ,

∂S

∂qn
, t
)
+
∂S

∂t
= 0 . (1.85)

This is the Hamilton-Jacobi equation (HJE). It is a first order partial differential equation in n + 1 variables, and in

general is nonlinear (since kinetic energy is generally a quadratic function of momenta). Since H̃(Q,P , t) = 0, the
equations of motion are trivial, and

Qσ(t) = const. , Pσ(t) = const. (1.86)

Once the HJE is solved, one must invert the relations Γσ = ∂S(q, Λ, t)/∂Λσ to obtain q(Q,P, t). This is possible
only if

det

(
∂2S

∂qα ∂Λβ

)
6= 0 , (1.87)

which is known as the Hessian condition.

It is worth noting that the HJE may have several solutions. For example, consider the case of the free particle in
one dimension, with H(q, p) = p2/2m. The HJE is

1

2m

(
∂S

∂q

)2
+
∂S

∂t
= 0 . (1.88)

One solution of the HJE is

S(q, Λ, t) =
m (q − Λ)2

2t
. (1.89)
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For this we find

Γ =
∂S

∂Λ
= −m

t
(q − Λ) ⇒ q(t) = Λ− Γ

m
t . (1.90)

Here Λ = q(0) is the initial value of q, and Γ = −p is minus the momentum.

Another equally valid solution to the HJE is

S(q, Λ, t) = q
√
2mΛ − Λ t . (1.91)

This yields

Γ =
∂S

∂Λ
= q

√
2m

Λ
− t ⇒ q(t) =

√
Λ

2m
(t+ Γ ) . (1.92)

For this solution, Λ is the energy and Γ may be related to the initial value of q(t) = Γ
√
Λ/2m.

1.4.3 Time-independent Hamiltonians

When H has no explicit time dependence, we may reduce the order of the HJE by one, writing

S(q,Λ, t) =W (q,Λ) + T (Λ, t) . (1.93)

The HJE becomes

H

(
q ,

∂W

∂q

)
= −∂T

∂t
. (1.94)

Note that the LHS of the above equation is independent of t, and the RHS is independent of q. Therefore, each
side must only depend on the constants Λ, which is to say that each side must be a constant, which, without loss

of generality, we take to be Λ1. Therefore

S(q,Λ, t) =W (q,Λ)− Λ1t . (1.95)

The function W (q,Λ) is called Hamilton’s characteristic function. The HJE now takes the form

H

(
q1, . . . , qn ,

∂W

∂q1
, . . . ,

∂W

∂qn

)
= Λ1 . (1.96)

Note that adding an arbitrary constant C to S generates the same equation, and simply shifts the last constant

Λn+1 → Λn+1 + C. According to Eqn. 1.95, this is equivalent to replacing t by t − t0 with t0 = C/Λ1, i.e. it just
redefines the zero of the time variable.

1.4.4 Example: one-dimensional motion

As an example of the method, consider the one-dimensional system,

H(q, p) =
p2

2m
+ U(q) . (1.97)

The HJE is

1

2m

(
∂S

∂q

)2
+ U(q) = Λ . (1.98)
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which may be recast as
∂S

∂q
=
√
2m
[
Λ− U(q)

]
, (1.99)

with solution

S(q, Λ, t) =
√
2m

q∫
dq′
√
Λ− U(q′)− Λ t . (1.100)

We now have

p =
∂S

∂q
=
√
2m
[
Λ− U(q)

]
, (1.101)

as well as

Γ =
∂S

∂Λ
=

√
m

2

q(t)∫
dq′√

Λ− U(q′)
− t . (1.102)

Thus, the motion q(t) is given by quadrature:

Γ + t =

√
m

2

q(t)∫
dq′√

Λ− U(q′)
, (1.103)

where Λ and Γ are constants. The lower limit on the integral is arbitrary and merely shifts t by another constant.
Note that Λ is the total energy.

1.4.5 Separation of variables

It is convenient to first work an example before discussing the general theory. Consider the following Hamiltonian,
written in spherical polar coordinates:

H =
1

2m

(
p2r +

p2θ
r2

+
p2φ

r2 sin2θ

)
+

potential U(r,θ,φ)︷ ︸︸ ︷
A(r) +

B(θ)

r2
+

C(φ)

r2 sin2θ
. (1.104)

We seek a characteristic function of the form W (r, θ, φ) =Wr(r) +Wθ(θ) +Wφ(φ) . The HJE is then

1

2m

(
∂Wr

∂r

)2
+

1

2mr2

(
∂Wθ

∂θ

)2
+

1

2mr2 sin2θ

(
∂Wφ

∂φ

)2

+A(r) +
B(θ)

r2
+

C(φ)

r2 sin2θ
= Λ1 = E .

(1.105)

Multiply through by r2 sin2θ to obtain

1

2m

(
∂Wφ

∂φ

)2
+ C(φ) = − sin2θ

{
1

2m

(
∂Wθ

∂θ

)2
+B(θ)

}

− r2 sin2θ
{

1

2m

(
∂Wr

∂r

)2
+A(r) − Λ1

}
.

(1.106)
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The LHS is independent of (r, θ), and the RHS is independent of φ. Therefore, we may set

1

2m

(
∂Wφ

∂φ

)2
+ C(φ) = Λ2 . (1.107)

Proceeding, we replace the LHS in eqn. 1.106 with Λ2, arriving at

1

2m

(
∂Wθ

∂θ

)2
+B(θ) +

Λ2

sin2θ
= −r2

{
1

2m

(
∂Wr

∂r

)2
+A(r) − Λ1

}
. (1.108)

The LHS of this equation is independent of r, and the RHS is independent of θ. Therefore,

1

2m

(
∂Wθ

∂θ

)2
+B(θ) +

Λ2

sin2θ
= Λ3 . (1.109)

We’re left with
1

2m

(
∂Wr

∂r

)2
+A(r) +

Λ3

r2
= Λ1 . (1.110)

The full solution is therefore

S(q,Λ, t) =
√
2m

r∫
dr′
√
Λ1 −A(r′)−

Λ3

r′2
+
√
2m

θ∫
dθ′
√
Λ3 −B(θ′)− Λ2

sin2θ′

+
√
2m

φ∫
dφ′

√
Λ2 − C(φ′)− Λ1t .

(1.111)

We then have

Γ1 =
∂S

∂Λ1
=
√

m
2

r(t)∫
dr′√

Λ1 −A(r′)− Λ3 r
′−2
− t

Γ2 =
∂S

∂Λ2
= −

√
m
2

θ(t)∫
dθ′

sin2θ′
√
Λ3 − B(θ′)− Λ2 csc

2θ′
+
√

m
2

φ(t)∫
dφ′√

Λ2 − C(φ′)
(1.112)

Γ3 =
∂S

∂Λ3
= −

√
m
2

r(t)∫
dr′

r′2
√
Λ1 −A(r′)− Λ3 r

′−2
+
√

m
2

θ(t)∫
dθ′√

Λ3 −B(θ′)− Λ2 csc
2θ′

.

The game plan here is as follows. The first of the above trio of equations is inverted to yield r(t) in terms of t and
constants. This solution is then invoked in the last equation (the upper limit on the first integral on the RHS) in
order to obtain an implicit equation for θ(t), which is invoked in the second equation to yield an implicit equation

for φ(t). The net result is the motion of the system in terms of time t and the six constants (Λ1, Λ2, Λ3, Γ1, Γ2, Γ3).
A seventh constant, associated with an overall shift of the zero of t, arises due to the arbitrary lower limits of the
integrals.

In general, the separation of variables method begins with4

W (q,Λ) =

n∑

σ=1

Wσ(qσ ,Λ) . (1.113)

4Here we assume complete separability. A given system may only be partially separable.
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Each Wσ(qσ,Λ) may be regarded as a function of the single variable qσ , and is obtained by satisfying an ODE of
the form5

Hσ

(
qσ,

dWσ

dqσ

)
= Λσ . (1.114)

We then have

pσ =
∂Wσ

∂qσ
, Γσ =

∂W

∂Λσ
+ δσ,1 t . (1.115)

Note that while each Wσ depends on only a single qσ , it may depend on several of the Λσ.

1.5 Action-Angle Variables

1.5.1 Circular Phase Orbits: Librations and Rotations

In a completely integrable system, the Hamilton-Jacobi equation may be solved by separation of variables. Each
momentum pσ is a function of only its corresponding coordinate qσ plus constants – no other coordinates enter:

pσ =
∂Wσ

∂qσ
= pσ(qσ,Λ) . (1.116)

The motion satisfies Hσ(qσ, pσ) = Λσ . The level sets of Hσ are curves Cσ. In general, these curves each depend
on all of the constants Λ, so we write Cσ = Cσ(Λ). The curves Cσ are the projections of the full motion onto the
(qσ, pσ) plane. In general we will assume the motion, and hence the curves Cσ, is bounded. In this case, two types of
projected motion are possible: librations and rotations. Librations are periodic oscillations about an equilibrium
position. Rotations involve the advancement of an angular variable by 2π during a cycle. This is most conveniently
illustrated in the case of the simple pendulum, for which

H(pφ, φ) =
p2φ
2I

+ 1
2Iω

2
(
1− cosφ

)
. (1.117)

• When E < I ω2, the momentum pφ vanishes at φ = ± cos−1(2E/Iω2). The system executes librations
between these extreme values of the angle φ.

• When E > I ω2, the kinetic energy is always positive, and the angle advances monotonically, executing
rotations.

In a completely integrable system, each Cσ is either a libration or a rotation6. Both librations and rotations are
closed curves. Thus, each Cσ is in general homotopic to (= “can be continuously distorted to yield”) a circle, S1.
For n freedoms, the motion is therefore confined to an n-torus, Tn:

T
n =

n times︷ ︸︸ ︷
S
1 × S

1 × · · · × S
1 . (1.118)

These are called invariant tori (or invariant manifolds). There are many such tori, as there are many Cσ curves in
each of the n two-dimensional submanifolds.

Invariant tori never intersect! This is ruled out by the uniqueness of the solution to the dynamical system, expressed
as a set of coupled ordinary differential equations.

5Note that Hσ(qσ , pσ) may itself depend on several of the constants Λα . For example, Eqn. 1.110 is of the form Hr

(
r, ∂rWr, Λ3

)
= Λ

1
.

6Cσ may correspond to a separatrix, but this is a nongeneric state of affairs.
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Figure 1.2: Phase curves for the simple pendulum, showing librations (in blue), rotations (in green), and the
separatrix (in red). This phase flow is most correctly viewed as taking place on a cylinder, obtained from the
above sketch by identifying the lines φ = π and φ = −π.

Note also that phase space is of dimension 2n, while the invariant tori are of dimension n. Phase space is ‘covered’
by the invariant tori, but it is in general difficult to conceive of how this happens. Perhaps the most accessible
analogy is the n = 1 case, where the ‘1-tori’ are just circles. Two-dimensional phase space is covered noninteracting
circular orbits. (The orbits are topologically equivalent to circles, although geometrically they may be distorted.) It
is challenging to think about the n = 2 case, where a four-dimensional phase space is filled by nonintersecting
2-tori.

1.5.2 Action-Angle Variables

For a completely integrable system, one can transform canonically from (q,p) to new coordinates (φ,J) which
specify a particular n-torus Tn as well as the location on the torus, which is specified by n angle variables. The
{Jσ} are ‘momentum’ variables which specify the torus itself; they are constants of the motion since the tori are

invariant. They are called action variables. Since J̇σ = 0, we must have

J̇σ = − ∂H
∂φσ

= 0 =⇒ H = H(J) . (1.119)

The {φσ} are the angle variables.

The coordinate φσ describes the projected motion along Cσ , and is normalized by
∮

Cσ

dφσ = 2π (once around Cσ) . (1.120)

The dynamics of the angle variables are given by

φ̇σ =
∂H

∂Jσ
≡ νσ(J) . (1.121)

Thus, the motion is given by
φσ(t) = φσ(0) + νσ(J) t . (1.122)

The
{
νσ(J)

}
are frequencies describing the rate at which the Cσ are traversed, and the period is Tσ(J) = 2π/νσ(J).
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1.5.3 Canonical Transformation to Action-Angle Variables

The {Jσ} determine the {Cσ}; each qσ determines a point on Cσ. This suggests a type-II transformation, with

generator F2(q,J):

pσ =
∂F2

∂qσ
, φσ =

∂F2

∂Jσ
. (1.123)

Note that7

2π =

∮

Cσ

dφσ =

∮

Cσ

d

(
∂F2

∂Jσ

)
=

∮

Cσ

∂2F2

∂Jσ ∂qσ
dqσ =

∂

∂Jσ

∮

Cσ

pσ dqσ , (1.124)

which suggests the definition

Jσ =
1

2π

∮

Cσ

pσ dqσ . (1.125)

I.e. Jσ is (2π)−1 times the area enclosed by Cσ.

If, separating variables,

W (q, Λ) =
∑

σ

Wσ(qσ,Λ) (1.126)

is Hamilton’s characteristic function for the transformation (q,p)→ (Q,P ), then

Jσ =
1

2π

∮

Cσ

∂Wσ

∂qσ
dqσ = Jσ(Λ) (1.127)

is a function only of the {Λα} and not the {Γα}. We then invert this relation to obtain Λ(J), to finally obtain

F2(q,J) =W
(
q,Λ(J)

)
=
∑

σ

Wσ

(
qσ,Λ(J)

)
. (1.128)

Thus, the recipe for canonically transforming to action-angle variable is as follows:

(1) Separate and solve the Hamilton-Jacobi equation for W (q,Λ) =
∑

σWσ(qσ,Λ).

(2) Find the orbits Cσ , i.e. the level sets satisfying Hσ(qσ, pσ) = Λσ.

(3) Invert the relation Jσ(Λ) =
1
2π

∮
Cσ

∂Wσ

∂qσ
dqσ to obtain Λ(J).

(4) F2(q,J) =
∑

σWσ

(
qσ,Λ(J)

)
is the desired type-II generator8.

1.5.4 Example : Harmonic Oscillator

The Hamiltonian is

H =
p2

2m
+ 1

2mω
2
0 q

2 , (1.129)

7In general, we should write d
( ∂F2
∂Jσ

)
= ∂2F2

∂Jσ ∂qα
dqα with a sum over α. However, in eqn. 1.124 all coordinates and momenta other than

qσ and pσ are held fixed. Thus, α = σ is the only term in the sum which contributes.
8Note that F

2
(q,J) is time-independent. I.e. we are not transforming to H̃ = 0, but rather to H̃ = H̃(J).
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hence the Hamilton-Jacobi equation is

(
dW

dq

)2
+m2ω2

0 q
2 = 2mΛ . (1.130)

Thus,

p =
dW

dq
= ±

√
2mΛ−m2ω2

0q
2 . (1.131)

We now define

q ≡
√

2Λ

mω2
0

sin θ ⇒ p =
√
2mΛ cos θ , (1.132)

in which case

J =
1

2π

∮
p dq =

1

2π
· 2Λ
ω0
·

2π∫

0

dθ cos2θ =
Λ

ω0
. (1.133)

Solving the HJE, we write
dW

dθ
=
∂q

∂θ
· dW
dq

= 2J cos2θ . (1.134)

Integrating, we obtain

W = Jθ + 1
2J sin 2θ , (1.135)

up to an irrelevant constant. We then have

φ =
∂W

∂J

∣∣∣∣
q

= θ + 1
2 sin 2θ + J

(
1 + cos 2θ

) ∂θ
∂J

∣∣∣∣
q

. (1.136)

To find (∂θ/∂J)q , we differentiate q =
√
2J/mω0 sin θ:

dq =
sin θ√
2mω0J

dJ +

√
2J

mω0
cos θ dθ ⇒ ∂θ

∂J

∣∣∣∣
q

= − 1

2J
tan θ . (1.137)

Plugging this result into eqn. 1.136, we obtain φ = θ. Thus, the full transformation is

q =

(
2J

mω0

)1/2
sinφ , p =

√
2mω0J cosφ . (1.138)

The Hamiltonian is

H = ω0 J , (1.139)

hence φ̇ = ∂H
∂J = ω0 and J̇ = −∂H∂φ = 0, with solution φ(t) = φ(0) + ω0 t and J(t) = J(0).

1.5.5 Example : Particle in a Box

Consider a particle in an open box of dimensions Lx × Ly moving under the influence of gravity. The bottom of
the box lies at z = 0. The Hamiltonian is

H =
p2x
2m

+
p2y
2m

+
p2z
2m

+mgz . (1.140)
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Figure 1.3: The librations Cz and Cx. Not shown is Cy , which is of the same shape as Cx.

Step one is to solve the Hamilton-Jacobi equation via separation of variables. The Hamilton-Jacobi equation is
written

1

2m

(
∂Wx

∂x

)2
+

1

2m

(
∂Wy

∂y

)2
+

1

2m

(
∂Wz

∂z

)2
+mgz = E ≡ Λz . (1.141)

We can solve for Wx,y by inspection:

Wx(x) =
√
2mΛx x , Wy(y) =

√
2mΛy y . (1.142)

We then have9

W ′
z(z) = −

√
2m
(
Λz − Λx − Λy −mgz

)

Wz(z) =
2
√
2

3
√
mg

(
Λz − Λx − Λy −mgz

)3/2
.

(1.143)

Step two is to find the Cσ . Clearly px,y =
√
2mΛx,y. For fixed px, the x motion proceeds from x = 0 to x = Lx and

back, with corresponding motion for y. For x, we have

pz(z) =W ′
z(z) =

√
2m
(
Λz − Λx − Λy −mgz

)
, (1.144)

and thus Cz is a truncated parabola, with z
max

= (Λz − Λx − Λy)/mg.

Step three is to compute J(Λ) and invert to obtain Λ(J). We have

Jx =
1

2π

∮

Cx

px dx =
1

π

Lx∫

0

dx
√

2mΛx =
Lx
π

√
2mΛx

Jy =
1

2π

∮

Cy

py dy =
1

π

Ly∫

0

dy
√
2mΛy =

Ly
π

√
2mΛy

(1.145)

9Our choice of signs in taking the square roots for W ′

x, W ′

y , and W ′

z is discussed below.
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and

Jz =
1

2π

∮

Cz

pz dz =
1

π

zmax∫

0

dz
√
2m
(
Λz − Λx − Λy −mgz

)

=
2
√
2

3π
√
mg

(
Λz − Λx − Λy

)3/2
.

(1.146)

We now invert to obtain

Λx =
π2

2mL2
x

J2
x , Λy =

π2

2mL2
y

J2
y

Λz =

(
3π
√
mg

2
√
2

)2/3

J2/3
z +

π2

2mL2
x

J2
x +

π2

2mL2
y

J2
y .

(1.147)

F2

(
x, y, z, Jx, Jy, Jz

)
=
πx

Lx
Jx +

πy

Ly
Jy + π

(
J2/3
z − 2m2/3g1/3z

(3π)
2/3

)3/2
. (1.148)

We now find

φx =
∂F2

∂Jx
=
πx

Lx
, φy =

∂F2

∂Jy
=
πy

Ly
(1.149)

and

φz =
∂F2

∂Jz
= π

√
1− 2m2/3g1/3z

(3πJz)
2/3

= π

√
1− z

zmax

, (1.150)

where z
max

(Jz) = (3πJz/m)2/3
/
2g1/3. The momenta are

px =
∂F2

∂x
=
πJx
Lx

, py =
∂F2

∂y
=
πJy
Ly

(1.151)

and

pz =
∂F2

∂z
= −
√
2m

((
3π
√
mg

2
√
2

)2/3

J2/3
z −mgz

)1/2
. (1.152)

We note that the angle variables φx,y,z seem to be restricted to the range [0, π], which seems to be at odds with eqn.

1.124. Similarly, the momenta px,y,z all seem to be positive, whereas we know the momenta reverse sign when
the particle bounces off a wall. The origin of the apparent discrepancy is that when we solved for the functions
Wx,y,z , we had to take a square root in each case, and we chose a particular branch of the square root. So rather

than Wx(x) =
√
2mΛx x, we should have taken

Wx(x) =

{√
2mΛx x if px > 0√
2mΛx (2Lx − x) if px < 0 .

(1.153)

The relation Jx = (Lx/π)
√
2mΛx is unchanged, hence

Wx(x) =

{
(πx/Lx)Jx if px > 0

2πJx − (πx/Lx)Jx if px < 0 .
(1.154)

and

φx =

{
πx/Lx if px > 0

π(2Lx − x)/Lx if px < 0 .
(1.155)

Now the angle variable φx advances by 2π during the cycle Cx. Similar considerations apply to the y and z sectors.
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1.6 Integrability and Motion on Invariant Tori

1.6.1 Librations and rotations

As discussed above, a completely integrable Hamiltonian system is solvable by separation of variables. The angle
variables evolve as

φσ(t) = νσ(J) t + φσ(0) . (1.156)

Thus, they wind around the invariant torus, specified by {Jσ} at constant rates. In general, while each φσ executes
periodic motion around a circle, the motion of the system as a whole is not periodic, since the frequencies νσ(J)
are not, in general, commensurate. In order for the motion to be periodic, there must exist a set of integers, {lσ},
such that

n∑

σ=1

lσ νσ(J) = 0 . (1.157)

This means that the ratio of any two frequencies νσ/νσ′ must be a rational number. On a given torus, there are
several possible orbits, depending on initial conditions φ(0). However, since the frequencies are determined by
the action variables, which specify the tori, on a given torus either all orbits are periodic, or none are.

In terms of the original coordinates q, there are two possibilities:

qσ(t) =

∞∑

ℓ1=−∞

· · ·
∞∑

ℓn=−∞

A
(σ)
ℓ1ℓ2···ℓn

eiℓ1φ1(t) · · · eiℓnφn(t)

≡
∑

ℓ

Aσℓ e
iℓ·φ(t) (libration)

(1.158)

or
qσ(t) = q◦σ φσ(t) +

∑

ℓ

Bσℓ e
iℓ·φ(t) (rotation) . (1.159)

For rotations, the variable qσ(t) increased by ∆qσ = 2π q◦σ .

1.6.2 Liouville-Arnol’d theorem

Another statement of complete integrability is the content of the Liouville-Arnol’d theorem, which says the follow-
ing. Suppose that a time-independent Hamiltonian H(q, p) has n first integrals Ik(q, p) with k ∈ {1, . . . , n}. This
means that (see Eqn. 1.24)

0 =
d

dt
Ik(q, p) =

n∑

σ=1

(
∂Ik
∂qσ

q̇σ +
∂Ik
∂pσ

ṗσ

)
=
{
Ik , H

}
. (1.160)

If the {Ik} are independent functions, meaning that the phase space gradients {∇Ik} constitute a set of n linearly
independent vectors at every point (q, p) ∈M in phase space, and the different first integrals commute with respect
to the Poisson bracket, i.e. {Ik, Il} = 0, then the set of Hamilton’s equations of motion is completely solvable10.
The theorem establishes that11

(i) The spaceMI =
{
(q,p) ∈ M : Ik(p, q) = Ck

}
is diffeomorphic to an n-torus T n ≡ S1 × S1 × · · · S1, on

which one can introduce action-angle variables (J ,φ) on patches, where the angle variables are coordinates
onMI and the action variables Jk(I1, . . . , In) are first integrals.

10Two first integrals I
k

and I
l

whose Poisson bracket {I
k
, I

l
} = 0 vanishes are said to be in involution.

11See chapter 1 of http://www.damtp.cam.ac.uk/user/md327/ISlecture notes 2012.pdf for a proof.
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(ii) The equations of motion are İk = 0 and φ̇k = ωk(I1, . . . , In).

Note that the Liouville-Arnol’d theorem does not require that H is separable, i.e. that H̃(I) =
∑
k H̃

(k)(Ik).
Complete separability is to be regarded as a trivial state of affairs.

1.7 Canonical Perturbation Theory

1.7.1 Canonical transformations and perturbation theory

Suppose we have a Hamiltonian

H(ξ, t) = H0(ξ, t) + ǫH1(ξ, t) , (1.161)

where ǫ is a small dimensionless parameter. Let’s implement a type-II transformation, generated by S(q,P , t):12

H̃(Q,P , t) = H(q,p, t) +
∂

∂t
S(q,P , t) . (1.162)

Let’s expand everything in powers of ǫ:

qσ = Qσ + ǫ q1,σ + ǫ2 q2,σ + . . .

pσ = Pσ + ǫ p1,σ + ǫ2 p2,σ + . . .

H̃ = H̃0 + ǫH̃1 + ǫ2H̃2 + . . .

S = qσPσ︸ ︷︷ ︸
identity

transformation

+ ǫS1 + ǫ2S2 + . . . .

(1.163)

Then

Qσ =
∂S

∂Pσ
= qσ + ǫ

∂S1

∂Pσ
+ ǫ2

∂S2

∂Pσ
+ . . .

= Qσ +

(
q1,σ +

∂S1

∂Pσ

)
ǫ+

(
q2,σ +

∂S2

∂Pσ

)
ǫ2 + . . .

(1.164)

and

pσ =
∂S

∂qσ
= Pσ + ǫ

∂S1

∂qσ
+ ǫ2

∂S2

∂qσ
+ . . .

= Pσ + ǫ p1,σ + ǫ2 p2,σ + . . . .

(1.165)

We therefore conclude, order by order in ǫ,

qk,σ = − ∂Sk
∂Pσ

, pk,σ = +
∂Sk
∂qσ

. (1.166)

Now let’s expand the Hamiltonian:

H̃(Q,P , t) = H0(q,p, t) + ǫH1(q, p, t) +
∂S

∂t

= H0(Q,P , t) +
∂H0

∂Qσ
(qσ −Qσ) +

∂H0

∂Pσ
(pσ − Pσ)

+ ǫH1(Q,P , t) + ǫ
∂

∂t
S1(Q,P , t) +O(ǫ2) .

(1.167)

12Here S(q,P , t) is not meant to signify Hamilton’s principal function.
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Collecting terms, we have

H̃(Q,P , t) = H0(Q,P , t) +

(
− ∂H0

∂Qσ

∂S1

∂Pσ
+
∂H0

∂Pσ

∂S1

∂Qσ
+
∂S1

∂t
+H1

)
ǫ+O(ǫ2)

= H0(Q,P , t) +

(
H1 +

{
S1, H0

}
+
∂S1

∂t

)
ǫ+O(ǫ2) .

(1.168)

In the above expression, we evaluate Hk(q, p, t) and Sk(q, P, t) at q = Q and p = P and expand in the differences
q −Q and p− P . Thus, we have derived the relation

H̃(Q,P , t) = H̃0(Q,P , t) + ǫH̃1(Q,P , t) + . . . (1.169)

with

H̃0(Q,P , t) = H0(Q,P , t) (1.170)

H̃1(Q,P , t) = H1 +
{
S1, H0

}
+
∂S1

∂t
. (1.171)

The problem, though, is this: we have one equation, eqn, 1.171, for the two unknowns H̃1 and S1. Thus, the prob-

lem is underdetermined. Of course, we could choose H̃1 = 0, which basically recapitulates standard Hamilton-

Jacobi theory. But we might just as well demand that H̃1 satisfy some other requirement, such as that H̃0 + ǫH̃1

being integrable.

Incidentally, this treatment is paralleled by one in quantum mechanics, where a unitary transformation may be
implemented to eliminate a perturbation to lowest order in a small parameter. Consider the Schrödinger equation,

i~
∂ψ

∂t
= (H0 + ǫH1)ψ , (1.172)

and define χ by

ψ ≡ eiS/~ χ , (1.173)

with
S = ǫ S1 + ǫ2 S2 + . . . . (1.174)

As before, the transformation U ≡ exp(iS/~) collapses to the identity in the ǫ → 0 limit. Now let’s write the
Schrödinger equation for χ. Expanding in powers of ǫ, one finds

i~
∂χ

∂t
= H0

χ+ ǫ

(
H1 +

1

i~

[
S1,H0

]
+
∂S1

∂t

)
χ+ . . . ≡ H̃χ , (1.175)

where [A,B] = AB −BA is the commutator. Note the classical-quantum correspondence,

{A,B} ←→ 1

i~
[A,B] . (1.176)

Again, what should we choose for S1? Usually the choice is made to make the O(ǫ) term in H̃ vanish. But this is
not the only possible simplifying choice.

1.7.2 Canonical perturbation theory for n = 1 systems

Henceforth we shall assume H(ξ, t) = H(ξ) is time-independent, with ξ = (q, p) , and we write the perturbed
Hamiltonian as

H(ξ) = H0(ξ) + ǫH1(ξ) . (1.177)
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Let (φ0, J0) be the action-angle variables for H0. Then

H̃0(φ0, J0) = H0

(
q(φ0, J0), p(φ0, J0)

)
= H̃0(J0) . (1.178)

We define
H̃1(φ0, J0) = H1

(
q(φ0, J0), p(φ0, J0)

)
. (1.179)

We assume that H̃ = H̃0 + ǫH̃1 is integrable13, so it, too, possesses action-angle variables, which we denote by

(φ, J)14. Thus, there must be a canonical transformation taking (φ0, J0)→ (φ, J), with

H̃
(
φ0(φ, J), J0(φ, J)

)
≡ E(J) . (1.180)

We solve via a type-II canonical transformation:

S(φ0, J) = φ0J + ǫ S1(φ0, J) + ǫ2 S2(φ0, J) + . . . , (1.181)

where φ0J is the identity transformation. Then

J0 =
∂S

∂φ0
= J + ǫ

∂S1

∂φ0
+ ǫ2

∂S2

∂φ0
+ . . .

φ =
∂S

∂J
= φ0 + ǫ

∂S1

∂J
+ ǫ2

∂S2

∂J
+ . . . ,

(1.182)

and

E(J) = E0(J) + ǫ E1(J) + ǫ2E2(J) + . . .

= H̃0(φ0, J0) + ǫH̃1(φ0, J0) .

(1.183)

We now expand H̃(φ0, J0) in powers of J0 − J :

H̃(φ0, J0) = H̃0(φ0, J0) + ǫ H̃1(φ0, J0)

= H̃0(J) +
∂H̃0

∂J

∣∣∣∣
φ0

(J0 − J) +
1

2

∂2H̃0

∂J2

∣∣∣∣
φ0

(J0 − J)2 + . . .

+ ǫH̃1(φ0, J) + ǫ
∂H̃1

∂J

∣∣∣∣
φ0

(J0 − J) + . . . .

(1.184)

Collecting terms,

H̃(φ0, J0) = H̃0(J) +

(
H̃1 +

∂H̃0

∂J

∂S1

∂φ0

)
ǫ

+

(
∂H̃0

∂J

∂S2

∂φ0
+

1

2

∂2H̃0

∂J2

(
∂S1

∂φ0

)2
+
∂H̃1

∂J

∂S1

∂φ0

)
ǫ2 + . . . ,

(1.185)

where all terms on the RHS are expressed as functions of φ0 and J . Equating terms, then,

E0(J) = H̃0(J)

E1(J) = H̃1(φ0, J) +
∂H̃0

∂J

∂S1

∂φ0

E2(J) =
∂H̃0

∂J

∂S2

∂φ0
+

1

2

∂2H̃0

∂J2

(
∂S1

∂φ0

)2
+
∂H̃1

∂J

∂S1

∂φ0
.

(1.186)

13This is always true, in fact, for n = 1.
14We assume the motion is bounded, so action-angle variables may be used.
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How, one might ask, can we be sure that the LHS of each equation in the above hierarchy depends only on J when

each RHS seems to depend on φ0 as well? The answer is that we use the freedom to choose each Sk to make this

so. We demand each RHS be independent of φ0, which means it must be equal to its average, 〈RHS(φ0) 〉, where

〈
f
(
φ0
)〉

=

2π∫

0

dφ0
2π

f
(
φ0
)
. (1.187)

The average is performed at fixed J and not at fixed J0. In this regard, we note that holding J constant and

increasing φ0 by 2π also returns us to the same starting point. Therefore, J is a periodic function of φ0. We must
then be able to write

Sk(φ0, J) =
∞∑

ℓ=−∞

Sk,ℓ(J) e
iℓφ0 (1.188)

for each k > 0, in which case 〈
∂Sk
∂φ0

〉
=

1

2π

[
Sk(2π, J)− Sk(0, J)

]
= 0 . (1.189)

Let’s see how this averaging works to the first two orders of the hierarchy. Since H̃0(J) is independent of φ0 and

since ∂S1/∂φ0 is periodic, we have

E1(J) =
〈
H̃1(φ0, J)

〉
+
∂H̃0

∂J

this vanishes!︷ ︸︸ ︷〈
∂S1

∂φ0

〉
(1.190)

and hence S1 must satisfy

∂S1

∂φ0
=

〈
H̃1

〉
− H̃1

ν0(J)
, (1.191)

where ν0(J) = ∂H̃0/∂J . Clearly the RHS of eqn. 1.191 has zero average, and must be a periodic function of φ0.

The solution is S1 = S1(φ0, J) + f(J), where f(J) is an arbitrary function of J . However, f(J) affects only the

difference φ− φ0, changing it by a constant value f ′(J). So there is no harm in taking f(J) = 0.

Next, let’s go to second order in ǫ. We have

E2(J) =

〈
∂H̃1

∂J

∂S1

∂φ0

〉
+

1

2

∂ν0
∂J

〈(
∂S1

∂φ1

)2〉
+ ν0(J)

this vanishes!︷ ︸︸ ︷〈
∂S2

∂φ0

〉
. (1.192)

The equation for S2 is then

∂S2

∂φ0
=

1

ν20 (J)

{〈
∂H̃1

∂J

〉〈
H̃0

〉
−
〈
∂H̃1

∂J
H̃0

〉
− ∂H̃1

∂J

〈
H̃1

〉
+
∂H̃1

∂J
H̃1

+
1

2

∂ ln ν0
∂J

(〈
H̃2

1

〉
− 2

〈
H̃1

〉2
+ 2

〈
H̃1

〉
− H̃2

1

)}
.

(1.193)

The expansion for the energy E(J) is then

E(J) = H̃0(J) + ǫ
〈
H̃1

〉
+

ǫ2

ν0(J)

{〈
∂H̃1

∂J

〉〈
H̃1

〉
−
〈
∂H̃1

∂J
H̃1

〉

+
1

2

∂ ln ν0
∂J

(〈
H̃2

1 −
〈
H̃1

〉2)
}

+O(ǫ3) .
(1.194)
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Figure 1.4: Action-angle variables for the harmonic oscillator.

Note that we don’t need S to find E(J)! The perturbed frequencies are ν(J) = ∂E/∂J . Sometimes the frequencies
are all that is desired. However, we can of course obtain the full motion of the system via the succession of
canonical transformations,

(φ, J) −→ (φ0, J0) −→ (q, p) . (1.195)

1.7.3 Example : nonlinear oscillator

Consider the nonlinear oscillator with Hamiltonian

H(q, p) =

H0︷ ︸︸ ︷
p2

2m
+ 1

2mν
2
0q

2 + 1
4ǫαq

4 . (1.196)

The action-angle variables for the harmonic oscillator Hamiltonian H0 are

φ0 = tan−1
(
mν0q/p) , J0 =

p2

2mν0
+ 1

2mν0q
2 , (1.197)

and the relation between (φ0, J0) and (q, p) is further depicted in fig. 1.4. Note H0 = ν0 J0. For the full Hamilto-
nian, we have

H̃(φ0, J0) = ν0J0 +
1
4ǫα

(√
2J0
mν0

sinφ0

)4

= ν0J0 +
ǫα

m2ν20
J2
0 sin4φ0 ≡ H0(φ0, J0) + ǫH̃1(φ0, J0) .

(1.198)

We may now evaluate

E1(J) =
〈
H̃1(φ0, J)

〉
=

αJ2

m2ν20

2π∫

0

dφ0
2π

sin4φ0 =
3αJ2

8m2ν20
. (1.199)

The frequency, to order ǫ, is

ν(J) = ν0 +
3ǫαJ

4m2ν20
. (1.200)

Now to lowest order in ǫ, we may replace J by J0 = 1
2mν0A

2, where A is the amplitude of the q motion. Thus,

ν(A) = ν0 +
3ǫαA2

8mν0
. (1.201)
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This result agrees with that obtained via heavier lifting, using the Poincaré-Lindstedt method.

Next, let’s evaluate the canonical transformation (φ0, J0)→ (φ, J). We have

ν0
∂S1

∂φ0
=

αJ2

m2ν20

(
3
8 − sin4φ0

)
⇒

S(φ0, J) = φ0 J +
ǫαJ2

8m2ν30

(
3 + 2 sin2φ0

)
sinφ0 cosφ0 +O(ǫ2) .

(1.202)

Thus,

φ =
∂S

∂J
= φ0 +

ǫαJ

4m2ν30

(
3 + 2 sin2φ0

)
sinφ0 cosφ0 +O(ǫ2)

J0 =
∂S

∂φ0
= J +

ǫαJ2

8m2ν30

(
4 cos 2φ0 − cos 4φ0

)
+O(ǫ2) .

(1.203)

Again, to lowest order, we may replace J by J0 in the above, whence

J = J0 −
ǫαJ2

0

8m2ν30

(
4 cos 2φ0 − cos 4φ0

)
+O(ǫ2

φ = φ0 +
ǫαJ0
8m2ν30

(
3 + 2 sin2φ0

)
sin 2φ0 +O(ǫ2) .

(1.204)

To obtain (q, p) in terms of (φ, J) is not analytically tractable – the relations cannot be analytically inverted.

1.7.4 n > 1 systems : degeneracies and resonances

Generalizing the procedure we derived for n = 1, we obtain

Jα0 =
∂S

∂φα0
= Jα + ǫ

∂S1

∂φα0
+ ǫ2

∂S2

∂φα0
+ . . .

φα =
∂S

∂Jα
= φα0 + ǫ

∂S1

∂Jα
+ ǫ2

∂S2

∂Jα
+ . . .

(1.205)

and

E0(J) = H̃0(J)

E1(J) = H̃0(φ0,J) + να0 (J)
∂S1

∂φα0

E2(J) =
∂H̃0

∂Jα
∂S2

∂φα0
+

1

2

∂να0
∂Jβ

∂S1

∂φα0

∂S1

∂φβ0
+
∂H̃1

∂Jα
∂S1

∂φα0
.

(1.206)

We now implement the averaging procedure, with

〈
f(φ10, . . . , φ

n
0 , J

1, . . . , Jn)
〉
=

2π∫

0

dφ10
2π
· · ·

2π∫

0

dφn0
2π

f
(
φ10, . . . , φ

n
0 , J

1, . . . , Jn
)
. (1.207)

The equation for S1 is

να0
∂S1

∂φα0
=
〈
H̃1(φ0,J)

〉
− H̃1(φ0,J) ≡ −

∑

ℓ

′
V
ℓ
(J) eiℓ·φ0 , (1.208)
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where ℓ = {ℓ1, ℓ2, . . . , ℓn}, with each ℓσ an integer, and with ℓ 6= 0. The solution is

S1(φ0,J) = i
∑

l

′ Vℓ
ℓ · ν0

eiℓ·φ0 . (1.209)

where ℓ · ν0 = lανα0 . When two or more of the frequencies να(J) are commensurate, there exists a set of integers
l such that the denominator of D(l) vanishes. But even when the frequencies are not rationally related, one can

approximate the ratios να0 /ν
α′

0 by rational numbers, and for large enough l the denominator can become arbitrarily
small.

Periodic time-dependent perturbations

Periodic time-dependent perturbations present a similar problem. Consider the system

H(φ,J , t) = H0(J) + ǫ V (φ,J , t) , (1.210)

where V (t+ T ) = V (t). This means we may write

V (φ,J , t) =
∑

k

Vk(φ,J) e
−ikΩt

=
∑

k

∑

ℓ

V̂k,ℓ(J) e
iℓ·φ e−ikΩt .

(1.211)

by Fourier transforming from both time and angle variables; here Ω = 2π/T . Note that V (φ,J , t) is real if
V ∗
k,ℓ = V−k,−l. The equations of motion are

J̇α = − ∂H
∂φα

= −iǫ
∑

k,ℓ

lα V̂k,ℓ(J) e
iℓ·φ e−ikΩt

φ̇α = +
∂H

∂Jα
= να0 (J) + ǫ

∑

k,ℓ

∂V̂k,ℓ(J)

∂Jα
eiℓ·φ e−ikΩt .

(1.212)

We now expand in ǫ:

φα = φα0 + ǫ φα1 + ǫ2 φα2 + . . .

Jα = Jα0 + ǫ Jα1 + ǫ2 Jα2 + . . . .
(1.213)

To order ǫ0, we have Jα = Jα0 and φα0 = να0 t+ βα0 . To order ǫ1,

J̇α1 = −i
∑

k,l

lα V̂k,ℓ(J0) e
i(ℓ·ν0−kΩ) t eiℓ·β0 (1.214)

and

φ̇α1 =
∂να0
∂Jβ

Jβ1 +
∑

k,ℓ

∂V̂k,ℓ(J)

∂Jα
ei(ℓ·ν0−kΩ) t eiℓ·β0 , (1.215)

where derivatives are evaluated at J = J0. The solution is:

Jα1 =
∑

k,ℓ

lα V̂k,ℓ(J0)

kΩ − ℓ · ν0
ei(ℓ·ν0−kΩ) t eiℓ·β0

φα1 =

{
∂να0

∂Jβ0

lβ V̂k,ℓ(J0)

(kΩ − ℓ·ν0)2
+
∂V̂k,ℓ(J0)

∂Jα0

1

kΩ − ℓ·ν0

}
ei(ℓ·ν0−kΩ) t eiℓ·β0 .

(1.216)
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When the resonance condition,

kΩ = ℓ·ν0(J0) , (1.217)

holds, the denominators vanish, and the perturbation theory breaks down.

1.7.5 Nonlinear oscillator with two degrees of freedom

As an example of how to implement canonical perturbation theory for n > 1, consider the nonlinear oscillator
system,

H =
p21
2m

+
p22
2m

+ 1
2mω

2
1 q

2
1 +

1
2mω

2
2 q

2
2 +

1
4ǫ b ω

2
1 ω

2
2 q

2
1 q

2
2 . (1.218)

Writing H = H0 + ǫH1, we have, in terms of the action-angle variables (φ1,20 , J1,2
0 ),

H̃0(J0) = ω1J
1
0 + ω2J

2
0 (1.219)

with qk = (2Jk0 /mωk)
1/2 sinφk0 and pk = (2mωkJ

k
0 )

1/2 cosφk0 with k ∈ {1, 2}. We then have

H̃1(φ0,J) = b ω1 ω2 J
1J2 sin2φ10 sin2φ20 . (1.220)

We therefore have E(J) = E0(J) + ǫE1(J) with E0(J) = H0(J) = ω1J
1 + ω2J

2 and

E1(J) =
〈
H̃1(φ0,J)

〉
= 1

4b ω1ω2 J
1J2 . (1.221)

Next, we work out the generator S1(φ0,J) from Eqn. 1.208:

〈
H̃1(φ0,J)

〉
− H̃1(φ0,J) = b ω1ω2 J

1J2
{

1
4 − sin2φ10 sin2φ20

}
(1.222)

= b ω1ω2 J
1J2

{
− 1

2 cos
(
2φ10 + 2φ20

)
− 1

2 cos
(
2φ10 − 2φ20

)

+ cos 2φ10 + cos 2φ20

}
,

and therefore, from Eqn. 1.209,

S1(φ0,J) =
1
4b ω1ω2 J

1J2

{
− sin(2φ10 + 2φ20

)

ω1 + ω2

− sin(2φ10 − 2φ20
)

ω1 − ω2

+
2 sin 2φ10
ω1

+
2 sin 2φ20
ω2

}
. (1.223)

We see that there is a vanishing denominator if ω1 = ω2 .

1.7.6 Particle-wave Interaction

Consider a particle of charge e moving in the presence of a constant magnetic field B = Bẑ and a space- and
time-varying electric field E(x, t), described by the Hamiltonian

H =
1

2m

(
p− e

cA
)2

+ ǫ eV0 cos(k⊥x+ kzz − ωt) , (1.224)

where ǫ is a dimensionless expansion parameter. This is an n = 3 system with canonical pairs (x, px), (y, py), and
(z, pz).
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Working in the gaugeA = Bxŷ, we transform the first two pairs (x, y, px, py) to convenient variables (Q,P, φ, J),
explicitly discussed in §1.11.2 below), such that

H = ωcJ +
p2z
2m

+ ǫ eV0 cos

(
kzz +

k⊥P

mωc
+ k⊥

√
2J

mωc
sinφ− ωt

)
. (1.225)

Here,

x =
P

mωc
+

√
2J

mωc
sinφ , y = Q+

√
2J

mωc
cosφ , (1.226)

with ωc = eB/mc, the cyclotron frequency. Here, (Q,P ) describe the guiding center degrees of freedom, and (φ, J)
the cyclotron degrees of freedom.

We now make a mixed canonical transformation, generated by

F = φJ̃ +
(
kzz +

k⊥P

mωc
− ωt

)
K̃ − PQ̃ , (1.227)

where the new sets of conjugate variables are
{
(φ̃, J̃) , (Q̃, P̃ ) , (ψ̃, K̃)

}
. We then have

φ̃ =
∂F

∂J̃
= φ J =

∂F

∂φ
= J̃ (1.228)

Q = −∂F
∂P

= −k⊥K̃
mωc

+ Q̃ P̃ = −∂F
∂Q̃

= P (1.229)

ψ̃ =
∂F

∂K̃
= kzz +

k⊥P

mωc
− ωt pz =

∂F

∂z
= kzK̃ . (1.230)

The transformed Hamiltonian is

H ′ = H +
∂F

∂t

= ωcJ̃ +
k2z
2m

K̃2 − ωK̃ + ǫ eV0 cos

(
ψ̃ + k⊥

√
2J̃

mωc
sin φ̃

)
.

(1.231)

Note the guiding center pair (Q̃, P̃ ) doesn’t appear in the transformed Hamiltonian H ′.

We now drop the tildes and the prime on H and write H = H0 + ǫH1, with

H0 = ωcJ +
k2z
2m

K2 − ωK

H1 = eV0 cos

(
ψ + k⊥

√
2J

mωc
sinφ

)
.

(1.232)

When ǫ = 0, the frequencies associated with the φ and ψ motion are

ω0
φ =

∂H0

∂φ
= ωc , ω0

ψ =
∂H0

∂ψ
=
k2zK

m
− ω = kzvz − ω , (1.233)

where vz = pz/m is the z-component of the particle’s velocity.

We are now in position to implement the time-independent canonical perturbation theory approach. We invoke a
generator

S(φ,J , ψ,K) = φJ + ψK + ǫ S1(φ,J , ψ,K) + ǫ2S2(φ,J , ψ,K) + . . . (1.234)
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to transform from (φ, J, ψ,K) to (Φ,J , Ψ,K). We must now solve eqn. 1.208:

ω0
φ

∂S1

∂φ
+ ω0

ψ

∂S1

∂ψ
= 〈H1 〉 −H1 . (1.235)

That is,

ωc

∂S1

∂φ
+

(
k2z K
m
− ω

)
∂S1

∂ψ
= −eA0 cos

(
ψ + k⊥

√
2J
mωc

sinφ

)

= −eA0

∞∑

n=−∞

Jn

(
k⊥

√
2J
mωc

)
cos(ψ + nφ) ,

where we have used the result

eiz sin θ =

∞∑

n=−∞

Jn(z) e
inθ . (1.236)

The solution for S1 is then

S1(φ,J , ψ,K) =
∑

n

eV0
ω − nωc − k2z K/m

Jn

(
k⊥

√
2J
mωc

)
sin(ψ + nφ) . (1.237)

We then have new action variables J and K, where

J = J + ǫ
∂S1

∂φ
+O(ǫ2)

K = K+ ǫ
∂S1

∂ψ
+O(ǫ2) .

(1.238)

Defining the dimensionless variable

λ ≡ k⊥
√

2J

mωc
, (1.239)

we obtain the result15

(
mω2

c

2eV0k2⊥

)
Λ2 =

(
mω2

c

2eV0k2⊥

)
λ2 − ǫ

∑

n

nJn(Λ) cos(ψ + nφ)

ω/ωc − n− k2z K/mωc
+O(ǫ2) , (1.240)

where Λ ≡ k⊥(2J /mωc)
1/2.

We see that resonances occur whenever
ω

ωc
− k2z K
mωc

= n , (1.241)

for any integer n. Let us consider the case kz = 0, in which the resonance condition is ω = nωc. We then have

Λ2

2α
=
λ2

2α
− ǫ
∑

n

nJn(Λ) cos(ψ + nφ)

ω/ωc − n
, (1.242)

where

α =
E0

B
· ck⊥
ωc

(1.243)

15Note that the argument of Jn in eqn. 1.240 is λ and not Λ. This arises because we are computing the new action J in terms of the old
variables (φ, J) and (ψ,K).
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Figure 1.5: Plot of Λ versus ψ for φ = 0 (Poincaré section) for ω = 30.11ωc Top panels are nonresonant invariant
curves calculated to first order. Bottom panels are exact numerical dynamics, with x symbols marking the initial
conditions. Left panels: weak amplitude (no trapping). Right panels: stronger amplitude (shows trapping). From
Lichtenberg and Lieberman (1983).

is a dimensionless measure of the strength of the perturbation, with E0 ≡ k⊥V0. In Fig. 1.5 we plot the level
sets for the RHS of the above equation λ(ψ) for φ = 0, for two different values of the dimensionless amplitude
α, for ω/ωc = 30.11 (i.e. off resonance). Thus, when the amplitude is small, the level sets are far from a primary
resonance, and the analytical and numerical results are very similar (left panels). When the amplitude is larger,
resonances may occur which are not found in the lowest order perturbation treatment. However, as is apparent
from the plots, the gross features of the phase diagram are reproduced by perturbation theory. What is missing is
the existence of ‘chaotic islands’ which initially emerge in the vicinity of the trapping regions.

1.8 Adiabatic Invariants

1.8.1 Slow perturbations

Adiabatic perturbations are slow, smooth, time-dependent perturbations to a dynamical system. A classic ex-
ample: a pendulum with a slowly varying length l(t). Suppose λ(t) is the adiabatic parameter. We write H =
H
(
q,p ;λ(t)

)
. All explicit time-dependence to H comes through λ(t). Typically, a dimensionless parameter ǫ may



1.8. ADIABATIC INVARIANTS 35

be associated with the perturbation:

ǫ =
1

ω0

∣∣∣∣
d lnλ

dt

∣∣∣∣ , (1.244)

where ω0 is the natural frequency of the system when λ is constant. We require ǫ≪ 1 for adiabaticity. In adiabatic
processes, the action variables are conserved to a high degree of accuracy. These are the adiabatic invariants. For
example, for the harmonix oscillator, the action is J = E/ν. While E and ν may vary considerably during the
adiabatic process, their ratio is very nearly fixed. As a consequence, assuming small oscillations,

E = νJ = 1
2mgl θ

2
0 ⇒ θ0(l) ≈

2J

m
√
g l3/2

, (1.245)

so θ0(ℓ) ∝ l−3/4.

Suppose that for fixed λ the Hamiltonian is transformed to action-angle variables via the generator S(q, J ;λ). The
transformed Hamiltonian is

H̃(φ, J, t) = H(φ, J ;λ) +
∂S

∂λ

dλ

dt
, (1.246)

where
H(φ, J ;λ) = H

(
q(φ, J ;λ), p(φ, J ;λ);λ) . (1.247)

We assume n = 1 here. Hamilton’s equations are now

φ̇ = +
∂H̃

∂J
= ν(J ;λ) +

∂2S

∂λ∂J

dλ

dt

J̇ = −∂H̃
∂φ

= − ∂2S

∂λ∂φ

dλ

dt
.

(1.248)

The second of these may be Fourier decomposed as

J̇ = −iλ̇
∑

m

m
∂Sm(J ;λ)

∂λ
eimφ , (1.249)

hence

∆J = J(t = +∞)− J(t = −∞) = −i
∑

m

m

∞∫

−∞

dt
∂Sm(J ;λ)

∂λ

dλ

dt
eimφ . (1.250)

Since λ̇ is small, we have φ(t) = ν t+ β, to lowest order. We must therefore evaluate integrals such as

Im =

∞∫

−∞

dt

{
∂Sm(J ;λ)

∂λ

dλ

dt

}
eimνt . (1.251)

The term in curly brackets is a smooth, slowly varying function of t. Call it f(t). We presume f(t) can be analyt-
ically continued off the real t axis, and that its closest singularity in the complex t plane lies at t = ±iτ , in which
case I behaves as exp(−|m|ντ). Consider, for example, the Lorentzian,

f(t) =
1

π

τ

t2 + τ2
⇒

∞∫

−∞

dt f(t) eimνt = e−|m|ντ , (1.252)

which is exponentially small in the time scale τ . Because of this, only m = ±1 need be considered. What this tells
us is that the change ∆J may be made arbitrarily small by a sufficiently slowly varying λ(t).



36 CHAPTER 1. HAMILTONIAN MECHANICS

Figure 1.6: A mechanical mirror.

1.8.2 Example: mechanical mirror

Consider a two-dimensional version of a mechanical mirror, depicted in fig. 1.6. A particle bounces between two

curves, y = ±D(x), where |D′(x)| ≪ 1. The bounce time given by τb⊥ = 2D/vy . We assume τ ≪ L/vx, where vx,y
are the components of the particle’s velocity, and L is the total length of the system. There are, therefore, many
bounces, which means the particle gets to sample the curvature in D(x).

The adiabatic invariant is the action,

J =
1

2π

D∫

−D

dy mvy +
1

2π

−D∫

D

dy m (−vy) =
2

π
mvyD(x) . (1.253)

Thus,

E = 1
2m
(
v2x + v2y) =

1
2mv

2
x +

π2J2

8mD2(x)
, (1.254)

or

v2x =
2E

m
−
(

πJ

2mD(x)

)2

. (1.255)

The particle is reflected in the throat of the device at horizontal coordinate x∗, where

D(x∗) =
πJ√
8mE

. (1.256)

1.8.3 Example: magnetic mirror

Consider a particle of charge e moving in the presence of a uniform magnetic field B = Bẑ. Recall the basic
physics: velocity in the parallel direction vz is conserved, while in the plane perpendicular to B the particle
executes circular ‘cyclotron orbits’, satisfying

mv2⊥
ρ

=
e

c
v⊥B ⇒ ρ =

mcv⊥
eB

, (1.257)

where ρ is the radial coordinate in the plane perpendicular to B. The period of the orbits is T = 2πρ.v⊥ =
2πmc/eB, hence their frequency is the cyclotron frequency ωc = eB/mc.

Now assume that the magnetic field is spatially dependent. Note that a spatially varyingB-field cannot be unidi-
rectional:

∇ ·B = ∇⊥ ·B⊥ +
∂Bz
∂z

= 0 . (1.258)
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Figure 1.7: B field lines in a magnetic bottle.

The non-collinear nature of B results in the drift of the cyclotron orbits. Nevertheless, if the field B felt by the
particle varies slowly on the time scale T = 2π/ωc, then the system possesses an adiabatic invariant:

J =
1

2π

∮

C

p · dℓ = 1

2π

∮

C

(
mv + e

c A
)
· dℓ

=
m

2π

∮

C

v · dℓ+ e

2πc

∮

int(C)

B · n̂ dΣ .
(1.259)

The last two terms are of opposite sign, and one has

J = −m
2π
· ρeBz
mc

· 2πρ+ e

2πc
· Bz · πρ2

= −eBzρ
2

2c
= − e

2πc
· ΦB(C) = −

m2v2⊥c

2eBz
,

(1.260)

where ΦB(C) is the magnetic flux enclosed by C.

The energy is
E = 1

2mv
2
⊥ + 1

2mv
2
z , (1.261)

hence we have

vz =

√
2

m

(
E −MB

)
. (1.262)

where

M ≡ − e

mc
J =

e2

2πmc2
ΦB(C) (1.263)

is the magnetic moment. Note that vz vanishes when B = Bmax = E/M . When this limit is reached, the particle
turns around. This is a magnetic mirror. A pair of magnetic mirrors may be used to confine charged particles in a
magnetic bottle, depicted in fig. 1.7.

Let v‖,0 , v⊥,0 , and B‖,0 be the longitudinal particle velocity, transverse particle velocity, and longitudinal compo-

nent of the magnetic field, respectively, at the point of injection. Our two conservation laws (J and E) guarantee

v2‖(z) + v2⊥(z) = v2‖,0 + v2⊥,0

v⊥(z)
2

B‖(z)
=
v2⊥,0
B‖,0

.

(1.264)
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This leads to reflection at a longitudinal coordinate z∗, where

B‖(z
∗) = B‖,0

√√√√1 +
v2‖,0
v2⊥,0

. (1.265)

The physics is quite similar to that of the mechanical mirror.

1.8.4 Resonances

When n > 1, we have

J̇α = −iλ̇
∑

m

mα ∂Sm(J ;λ)

∂λ
eim·φ

∆Jα = −i
∑

m

mα

∞∫

−∞

dt
∂Sm(J ;λ)

∂λ

dλ

dt
eim·νt eim·β .

(1.266)

Therefore, when m · ν(J) = 0 we have a resonance, and the integral grows linearly with time – a violation of the
adiabatic invariance of Jα.

1.9 Removal of Resonances in Perturbation Theory

We follow the treatment in chapter 3 of Lichtenberg and Lieberman.

1.9.1 The case of n = 1
1
2

degrees of freedom

Consider the time-dependent Hamiltonian,

H(J, φ, t) = H0(J) + ǫ V (J, φ, t) , (1.267)

where V (J, φ, t) = V (J, φ + 2π, t) = V (J, φ, t + T ) is periodic in time as well as in the angle variable φ. We may
express the perturbation as a double Fourier sum,

V (J, φ, t) =
∑

k,ℓ

Vk,ℓ(J) e
ikφ e−iℓΩt , (1.268)

where Ω = 2π/T . Hamilton’s equations of motion are

J̇ = −∂H
∂φ

= −iǫ
∑

k,ℓ

k Vk,l(J) e
ikφ e−iℓΩt

φ̇ = +
∂H

∂J
= ω0(J) + ǫ

∑

k,ℓ

∂Vk,l(J)

∂J
eikφ e−iℓΩt ,

(1.269)

where ω0(J) ≡ ∂H0/∂J . The resonance condition is obtained by inserting the zeroth order solution φ(t) =
ω0(J) t + β into the perturbation terms. When k ω0(J) = lΩ, the perturbation results in a secular forcing, leading
to a linear time increase and a failure of the solution at sufficiently large values of t.



1.9. REMOVAL OF RESONANCES IN PERTURBATION THEORY 39

To resolve this crisis, we focus on a particular resonance, where (k, ℓ) = ±(k0, ℓ0), The equation k0 ω(J) = ℓ0Ω
fixes the value of J . There may be several solutions, and we focus on a particular one, which we write as J = J0.
There is still an infinite set of possible (k, l) values, because if (k0, ℓ0) yields a solution for J = J0, so does (k, ℓ) =
(pk0, pℓ0) for p ∈ Z. However, the amplitude of the Fourier components Vpk0,pℓ0 is, in general, a rapidly decreasing

function of |p|, provided V (J, φ, t) is smooth in φ and t. Furthermore, p = 0 always yields a solution. Therefore,
we will assume k0 and ℓ0 are relatively prime and take p = 0 and p = ±1. This simplifies the system in Eqn. 1.269
to

J̇ = 2ǫk0V1 sin(k0φ− ℓΩt+ δ)

φ̇ = ω0(J) + ǫ
∂V0
∂J

+ 2ǫ
∂V1
∂J

cos(k0φ− ℓΩt+ δ) ,

(1.270)

where V0,0 ≡ V0 and Vk0,ℓ0
= V ∗

−k0,−ℓ0
≡ V1 eiδ . We then expand, writing J = J0+∆J and ψ = k0φ− ℓ0Ωt+ δ+π,

resulting in the system

d∆J

dt
= −2ǫk0V1(J0) sinψ

dψ

dt
= k0 ω

′
0(J0)∆J + ǫk0V

′
0(J0) .,

(1.271)

which follow from the Hamiltonian

K(∆J, ψ) = 1
2k0 ω

′
0(J0) (∆J)

2 + ǫk0V
′
0(J0)∆J − 2ǫk0V1(J0) cosψ . (1.272)

with dψ/dt = ∂K/∂(∆J) and d(∆J)/dt = −∂K/∂ψ. The linear term in K can be removed by a shift of ∆J →
∆J − ǫV ′

0(J0)/ω
′
0(J0). This is tantamount to shifting the value of J0, which we could have done at the outset by

absorbing the term ǫV0(J) into H0(J), and defining ω(J) ≡ ω0(J) + ǫ
∂V0

∂J . We are left with a simple pendulum,
with

ψ̈ + γ2 sinψ = 0 (1.273)

with γ =
√
2ǫk20 ω

′(J0)V1 .

What do we conclude? The original 1-torus (i.e. circle) with J = J0 and φ(t) = ω0(J0) t+ β is destroyed. It and its
neighboring tori are replaced, in the case k0 = 1, by the separatrix in the left panel of Fig. 1.8 and the neighboring
librational and rotational phase curves. The structure for k0 = 6 is shown in the right panel. The amplitude of the

separatrix is (∆J)max =
√
8ǫV1/ω

′
0 . In order for the approximations leading to this structure to be justified, we

need (∆J)max ≪ J0 and ∆ω ≪ ω0, where ∆ω = γ. These conditions may be written as

ǫ≪ α≪ 1

ǫ
, (1.274)

where α = d lnω0/d ln J
∣∣
J0

= J0|ω′
0|/ω0.

1.9.2 n = 2 systems

Consider now the time-independent Hamiltonian H = H0(J) + ǫH1(J ,φ) with n = 2 degrees of freedom, i.e.
J = (J1, J2) and φ = (φ1, φ2). We Fourier expand

H1(J ,φ) =
∑

ℓ

V
ℓ
(J) eiℓ·φ , (1.275)
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Figure 1.8: Librations, separatrices, and rotations for k0 = 1 (left) and k0 = 6 (right), plotted in the (q, p) phase
plane. Elliptical fixed points are shown in magenta. Hyperbolic fixed points are located at the self-intersection of
the separatrices (black curves).

with ℓ = (ℓ1, ℓ2) and V−ℓ
(J) = V ∗

ℓ
(J) since V

ℓ
(J) are the Fourier components of a real function. A resonance

exists between the frequencies ω1,2 = ∂H0/∂J1,2 if there exist nonzero integers r and s such that rω1 = sω2. We
eliminate the resonance in two steps. First, we employ a canonical transformation (φ,J)→ (ϕ,J ), generated by

F2(φ,J ) = (rφ1 − sφ2)J1 + φ2J2 . (1.276)

We then have

J1 =
∂F2

∂φ1
= rJ1 ϕ1 =

∂F2

∂J1
= rφ1 − sφ2 (1.277)

J2 =
∂F2

∂φ2
= J2 − sJ1 ϕ2 =

∂F2

∂J2
= φ2 . (1.278)

This transforms us to a rotating frame in which ϕ̇1 = rφ̇1 − sφ̇2 is slowly varying, while ϕ̇2 = φ̇2 ≈ ω2. Note that
we could have chosen F2 = φ1J1+(rφ1−sφ2)J2 , in which case we’d have obtained ϕ1 = φ1 with an unperturbed
natural frequency of ω1 and ϕ2 = rφ1 − sφ2 slowly varying, i.e. with an unperturbed natural frequency of zero.
Which transformation are we to choose? The answer is that we want to end up averaging over the slower of ω1,2,
so the generator in Eqn. 1.276 is appropriate if ω1 > ω2 . The reason has to do with what happens when there are
higher order resonances to be removed – a state of affairs we shall discuss in the following section.

At this stage, our transformed Hamiltonian is

H̃(J ,ϕ) = H0

(
J(J )

)
+ ǫH1

(
J(J ),ϕ(φ)

)

≡ H̃0(J ) + ǫ
∑

ℓ

Ṽℓ(J ) exp

[
iℓ1
r
ϕ1 + i

(
ℓ1s

r
+ ℓ2

)
ϕ2

]
,

(1.279)

where H̃(J ) ≡ H0

(
J(J )

)
and Ṽ

ℓ
(J ) ≡ V

ℓ

(
J(J )

)
. Note that φ1 = 1

r ϕ1 +
s
r ϕ2 . We now average over ϕ2 , which

requires sℓ1 + rℓ2 = 0 . Thus, ℓ1 = −pr and ℓ2 = ps for some p ∈ Z, and

〈H1〉 =
∑

p

Ṽ−pr,ps(J ) e−ipϕ1 . (1.280)
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Figure 1.9: Motion in the vicinity of a resonance, showing elliptical fixed point in green, hyperbolic fixed point in
red, and separatrix in black.

The averaging is valid close to the resonance, where |ϕ̇2| ≫ |ϕ̇1| . We are now left with the Hamiltonian

K(J , ϕ1) = H̃0(J ) + ǫ
∑

p

Ṽ−pr,ps(J ) e−ipϕ1 . (1.281)

Here, J2 is to be regarded as a parameter which itself has no dynamics: J̇2 = 0. Note that J2 = s
rJ1 + J2 is the

new invariant.

At this point, ϕ2 has been averaged out, J2 is a constant, and only the (J1, ϕ1) variables are dynamical. A sta-
tionary point for these dynamics, satisfying ∂K

∂J1
= ∂K

∂ϕ1
= 0 corresponds to a periodic solution to the original

perturbed Hamiltonian, since we are now in a rotating frame. Since the Fourier amplitudes Ṽ−pr,ps(J ) generally
decrease rapidly with increasing |p|, we make the approximation of restricting to p = 0 and p = ±1. Thus,

K(J , ϕ1) ≈ H̃0(J ) + ǫṼ0,0(J ) + 2ǫṼr,−s(J ) cosϕ1 , (1.282)

where we have absorbed any phase in the Fourier amplitude Ṽr,−s(J ) into a shift of ϕ1 , and subsequently take

Ṽr,−s(J ) to be real. The fixed points
(
J (0)
1 , ϕ

(0)
1

)
of the (J1, ϕ1) dynamics are solutions to

0 =
∂H̃0

∂J1
+ ǫ

∂Ṽ0,0
∂J1

+ 2ǫ
∂Ṽr,−s
∂J1

cosϕ1

0 = 2ǫ Ṽr,−s sinϕ1 .

(1.283)

Thus, ϕ1 = 0 or π at the fixed points. Note that

∂H̃0

∂J1
=
∂H0

∂J1

∂J1
∂J1

+
∂H0

∂J2

∂J2
∂J1

= rω1 − sω2 = 0 , (1.284)

and therefore fixed points occur for solutions J (0)
1 to

∂Ṽ0,0
∂J1

± 2
∂Ṽr,−s
∂J1

= 0 , (1.285)

where the upper sign corresponds to ϕ
(0)
1 = 0 and the lower sign to ϕ

(0)
1 = π . We now consider two cases.
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(i) accidental degeneracy

In the case of accidental degeneracy, the resonance condition rω1 = sω2 is satisfied only for particular values of
(J1, J2), i.e. on a set J2 = J2(J1). This corresponds to the case where H0(J1, J2) is a generic function of its two

arguments. According to Eqn. 1.282, excursions of J1 relative to its value J (0)
1 at the fixed points are on the order

of ǫ Ṽr,−s , while excursions of ϕ1 areO(1). We may then expand

H̃0(J1,J2) = H̃0

(
J (0)
1 ,J2

)
+
∂H̃0

∂J1
∆J1 +

1

2

∂2H̃0

∂J 2
1

(∆J1)2 + . . . , (1.286)

where the derivatives are evaluated at J1 = J (0)
1 . Thus, we arrive at what is often called the standard Hamiltonian,

K(∆J1, ϕ1) =
1
2G (∆J1)2 − F cosϕ1 , (1.287)

with

G(J2) =
∂2H̃0

∂J 2
1

∣∣∣∣∣
J

(0)
1

, F (J2) = −2ǫ Ṽr,−s
(
J (0)
1 ,J2

)
. (1.288)

Thus, the motion in the vicinity of every resonance is like that of a pendulum, meaning libration, separatrix, and rotation
in the phase plane. F is the amplitude of the first Fourier mode of the perturbation (i.e. |p| = 1), and G the
‘nonlinearity parameter’. For FG > 0 the elliptic fixed point (EFP) is at ϕ1 = 0 and the hyperbolic fixed point
(HFP) at ϕ1 = π. For FG < 0, the locations are switched. The frequency of libration about the EFP is given by

ν1 =
√
FG = O

(√
ǫṼr,−s

)
. The frequency decreases to zero as the separatrix is approached. The maximum

excursion along the separatrix is (∆J1)max = 2
√
F/G which is also O

(√
ǫṼr,−s

)
. The ratio of semiminor to

semimajor axis lengths for motion in the vicinity of the EFP is

(∆J1)max

(∆ϕ1)max

=

√
F

G
= O

(
ǫ1/2

)
. (1.289)

(ii) intrinsic degeneracy

In this case, H0(J1, J2) is a function of only the combination sJ1 + rJ2 = rJ2 , so

K(J , ϕ1) = H̃0(J2) + ǫ Ṽ0,0(J ) + 2ǫ Ṽr,−s(J ) cosϕ1 . (1.290)

In this case excursions of J1 and ϕ1 are both O
(
ǫṼ•,•

)
, and we are not in general licensed to expand in ∆J1.

However, in the vicinity of an EFP, we may expand, both in ∆J1 and ∆ϕ1, resulting in

K = 1
2G (∆J1)2 + 1

2F (∆ϕ1)
2 , (1.291)

where

G(J2) =
[
∂2H̃0

∂J 2
1

+ ǫ
∂2Ṽ0,0
∂J 2

1

+ 2ǫ
∂2Ṽr,−s
∂J 2

1

]

(J
(0)
1 ,J2)

, F (J2) = −2ǫ Ṽr,−s
(
J (0)
1 ,J2

)
. (1.292)

For the case of intrinsic degeneracy, the first term in brackets on the RHS of the equation for G(J2) vanishes, since

H̃0 is a function only of J2. Hence F and G are bothO
(
ǫṼ•,•

)
, hence ν1 =

√
FG = O(ǫ) and the ratio of semiminor

to semimajor axis lengths of the motion is

(∆J1)max

(∆ϕ1)max

=

√
F

G
= O(1) . (1.293)
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1.9.3 Secondary resonances

By averaging over the ϕ2 motion and expanding about the EFP, we arrived the Hamiltonian in Eqns. 1.291 and
1.292. In so averaging, we dropped all terms on the RHS of Eqn. 1.279 for which sℓ1 + rℓ2 6= 0. We now
restore those terms, and continue to expand about the EFP. The first step is to transform the harmonic oscillator
Hamiltonian in Eqn. 1.291 to action-angle variables; this was already done in §1.7.3. The canonical transformation
from (∆J1,∆ϕ1) to (I1, χ1) is given by

∆J1 = (2RI1)
1/2 cosχ1 , ∆ϕ1 = (2R−1I1)

1/2 sinχ1 , (1.294)

with R = (F/G)1/2. We will also define I2 ≡ J2 and χ2 ≡ ϕ2. Then we may write

K(J , ϕ1) −→ K̃0(I) = H̃0

(
J (0)
1 , I2

)
+ ν1(I2) I1 − 1

16 G(I2) I
2
1 + . . . , (1.295)

where the last term on the RHS before the ellipses is from nonlinear terms in ∆ϕ1. The missing terms we seek are

H̃ ′
1 =

∑

ℓ

Ṽℓ
(
J (0)
1 , I2

)
eiℓ1(2R

−1I1)
1/2 sinχ1/r ei(rℓ1+sℓ2)χ2/r . (1.296)

Note that we set J1 = J (0)
1 in the argument of Ṽ

ℓ
(J ), because ∆J1 is of order ǫ1/2. Next we invoke the Bessel

function identity,

eiu sinχ =
∞∑

−∞

Jn(u) e
inχ , (1.297)

so we write

H̃ ′
1 −→ K̃1(I,χ) =

∑

ℓ

∑

n

Wℓ,n(I) e
inχ1 ei(rℓ1+sℓ2)χ2/r , (1.298)

where

Wℓ,n(I) = Ṽℓ
(
J (0)
1 , I2

)
Jn

(
ℓ1
r

√
2I1
R

)
. (1.299)

We now write

K̃(I,χ) = K̃0(I) + ǫ̃ K̃1(I,χ) . (1.300)

Here, while ǫ̃ = ǫ it is convenient to use a new symbol since ǫ itself appears within K̃0.

A secondary resonance will occur if r′ν1 = s′ν2, with νj(I) = ∂K̃0/∂Ij and r′, s′ ∈ Z. Note that ν1 = O(ǫ1/2)
while ν2 = O(1) in the case of an accidental primary resonance. As before, we may eliminate this new resonance
by transforming to a moving frame in which the resonance shifts to zero frequency to zeroth order and then
averaging over the remaining motion. That is, we canonically transform (I,χ) → (I,ψ) via a type-II generator
F ′
2 = (r′χ1 − s′χ2) I1 + χ2 I2 , yielding

I1 =
∂F ′

2

∂χ1

= r′I1 ψ1 =
∂F ′

2

∂I1
= r′χ1 − s′χ2 (1.301)

I2 =
∂F ′

2

∂χ2

= I2 − s′I1 ψ2 =
∂F ′

2

∂I2
= χ2 . (1.302)

The phase angle in Eqn. 1.298 is then

(
ℓ1 +

s

r
ℓ2

)
χ2 =

n

r′
ψ1 +

(
ns′

r′
+
sℓ1
r

+ ℓ2

)
ψ2 . (1.303)
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Figure 1.10: Motion in the vicinity of a secondary resonance with r′ = 6 and s′ = 1. Elliptical fixed points are in
green, hyperbolic fixed points in red, and separatrices in black and blue.

Averaging over ψ2(t) then requires nrs′ + ℓ1sr
′ + ℓ2rr

′ = 0, which is satisfied when

n = jr′ , ℓ1 = kr , ℓ2 = −js′ − ks (1.304)

for some j, k ∈ Z. The result of the averaging is

〈
K̃
〉
ψ2

= K̃0

(
I(I)

)
+ ǫ̃
∑

j

Γjr′,−js′(I) e
−ijψ1 (1.305)

where

Γjr′,−js′ (I) =Wkr,−js′−ks,jr′
(
I(I)

)
= Ṽkr,−js′−ks

(
J (0)
1 , I2

)
Jjr′

(
k

√
2I1(I)

R

)
. (1.306)

Since
〈
K̃
〉
ψ2

is independent of ψ2, the corresponding action I2 = s′

r′ I1 + I2 is the adiabatic invariant for the new

oscillation.

Strength of island resonances

To assess the strength of the secondary resonances, we consider r = s = j = k = s′ = 1, in which case r′ = ν2/ν1 =
O(ǫ−1/2) is parametrically large. The resulting structure in the phase plane is depicted in Fig. 1.10 for r′ = 6. The
amplitude of the I1 oscillations is proportional to

Jr
(
(2I1(I)/2R)

1/2
)
∼
(
2I1(I)/2R

)r′/2

r′!
= O

(
1

(ǫ−1/2)!

)
. (1.307)

The frequency of the island oscillations is of the same order of magnitude. Successive higher order resonances
result in an increasingly tiny island chain amplitude.

1.10 Whither Integrability?

We are left with the question: what happens when we perturb an integrable Hamiltonian, H(J ,φ) = H0(J) +
ǫH1(J ,φ)? Two extreme conjectures, and their refutations:
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(i) H(J ,φ) is always integrable, even though we may not always be able to obtain the corresponding action-
angle variables. Tori are deformed but not destroyed. If this were the case, there would be n conserved
quantities, i.e. the first integrals of motion Ij . This would violate the fundamental tenets of equilibrium
statistical physics, as the canonical Gibbs distribution ̺ = exp(−βH)/Z would be replaced with the pseudo-
Gibbs distribution, ̺ = exp(−λjIj)/Z , where {λj} are a set of Lagrange multipliers16.

(ii) Integrability is destroyed for any ǫ > 0, in which case E = H(J ,φ) is the only conserved quantity17. If
this were the case, the solar system would be unstable, and we wouldn’t be here to study Hamiltonian
mechanics.

So the truth lies somewhere in between, and is the focus of the celebrated KAM theorem18. We have already
encountered the problem of resonances, which arise for tori which satisfy ℓ · ω0(J) = 0 for some integers ℓ =
{ℓ1, . . . , ℓn}. Such tori are destroyed by arbitrarily small perturbations, as we have seen. This observation dates
back to Poincaré. For a given torus with an (n− 1)-dimensional family of periodic orbits, Jn = Jn(J1, . . . , Jn−1), it
is generally the case that only a finite number of periodic orbits survive the perturbation. Since, in a nondegenerate
system, the set of resonant tori is dense, it seems like the situation is hopeless and that arbitrarily small ǫ will
induce ergodicity on each energy surface. Until the early 1950s, it was generally believed that this was the case,
and the stability of the solar system was regarded as a deep mystery.

Enter Andrey Nikolaevich Kolmogorov, who in 1954 turned conventional wisdom on its head, showing that,
in fact, the majority of tori survive. Specifically, Kolmogorov proved that strongly nonresonant tori survive small
perturbations. A strongly nonresonant torus is one for which there exist constants α > 0 and τ > 0 such that∣∣ℓ · ω0(J)

∣∣ ≥ α |ℓ|−τ , where |ℓ| ≡ |ℓ1| + . . . + |ℓn|. From a measure theoretic point of view, almost all tori are
strongly nonresonant for any τ > n − 1, but in order to survive the perturbation, it is necessary that ǫ ≪ α2.
For these tori, perturbation theory converges, although not quite in the naı̈ve form we have derived, i.e. from
the generator S(J ,φ) = S0 + ǫS1 + ǫ2S2 + . . . , but rather using the ‘superconvergent’ method pioneered by
Kolmogorov.

Since the arithmetic of the strongly nonresonant tori is a bit unusual, let’s first convince ourselves that such tori
actually exist19. Let ∆τ

α denote the set of all ω ∈ Rn satisfying, for fixed α and τ , the infinitely many conditions

ℓ ·ω ≥ α|ℓ|−τ , for all nonzero ℓ ∈ Zn. Clearly ∆τ
α is the complement of the open and dense setRτα =

⋃
06=ℓ∈Zn Rτα,ℓ ,

where
Rτα,ℓ =

{
ω ∈ R

n : |ℓ · ω| < α |ℓ|−τ
}

. (1.308)

For any bounded region ω ∈ Rn, we can estimate the Lebesgue measure of the set Rτα ∩Ω from the calculation

µ
(
Rτα ∩ Ω

)
≤
∑

ℓ 6=0

µ
(
Rτα,ℓ ∩Ω

)
= O(α) , (1.309)

The sum converges provided τ > n − 1 since µ
(
Rτα,ℓ ∩ Ω

)
= O

(
α/|ℓ|τ+1

)
. Taking the intersection over all α > 0,

we conclude Rτ =
⋂
α>0R

τ
α is a set of measure zero, and therefore its complement, ∆τ =

⋃
α>0 ∆

τ
α , is a set of full

measure in Rn. This means that almost every ω ∈ Rn belongs to the set ∆τ , which is the set of all ω satisfying the
Diophantine condition |ℓ · ω| ≥ α |ℓ|−τ for some value of α, again provided τ > n− 1.

We say that a torus survives the perturbation if for ǫ > 0 there exists a deformed torus in phase space homotopic
to that for ǫ = 0, and for which the frequencies satisfy ωǫ = f(ǫ)ω0 , with limǫ→0 f(ǫ) = 1. Note this says
ωj/ωk = ω0,j/ω0,k. Only tori with frequencies in ∆τ

α with α ≫ √ǫ survive. The KAM theorem says that the
measure of the space of surviving tori approaches unity as ǫ→ 0.

16The corresponding microcanonical distribution would be
∏n

j=1
δ(Ij − 〈Ij〉) , as opposed to δ(H − E).

17Without loss of generality, we may assume ǫ ≥ 0.
18KAM = Kolmogorov-Arnol’d-Moser, who developed the theory in a series of papers during the 1950s and 1960s.
19See J. Pöschel, A Lesson on the Classical KAM Theorem, Proc. Symp. Pure Math. 69, 707 (2001), in §1.d.
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1.11 Appendices

1.11.1 Hamilton-Jacobi theory for point charge plus electric field

Consider a potential of the form

U(r) =
k

r
− Fz , (1.310)

which corresponds to a charge in the presence of an external point charge plus an external electric field. This
problem is amenable to separation in parabolic coordinates, (ξ, η, ϕ):

x =
√
ξη cosϕ , y =

√
ξη sinϕ , z = 1

2 (ξ − η) . (1.311)

Note that

ρ ≡
√
x2 + y2 =

√
ξη

r =
√
ρ2 + z2 = 1

2 (ξ + η) .
(1.312)

The kinetic energy is

T = 1
2m
(
ρ̇2 + ρ2 ϕ̇2 + ż2

)

= 1
8m (ξ + η)

(
ξ̇2

ξ
+
η̇2

η

)
+ 1

2mξη ϕ̇2 ,
(1.313)

and hence the Lagrangian is

L = 1
8m (ξ + η)

(
ξ̇2

ξ
+
η̇2

η

)
+ 1

2mξη ϕ̇2 − 2k

ξ + η
+ 1

2F (ξ − η) . (1.314)

Thus, the conjugate momenta are

pξ =
∂L

∂ξ̇
= 1

4m (ξ + η)
ξ̇

ξ

pη =
∂L

∂η̇
= 1

4m (ξ + η)
η̇

η

pϕ =
∂L

∂ϕ̇
= mξη ϕ̇ ,

(1.315)

and the Hamiltonian is

H = pξ ξ̇ + pη η̇ + pϕ ϕ̇

=
2

m

(
ξ p2ξ + η p2η

ξ + η

)
+

p2ϕ
2mξη

+
2k

ξ + η
− 1

2F (ξ − η) .
(1.316)

Notice that ∂H/∂t = 0, which means dH/dt = 0, i.e. H = E ≡ Λ1 is a constant of the motion. Also, ϕ is cyclic in
H , so its conjugate momentum pϕ is a constant of the motion.

We write

S(q, Λ) =W (q, Λ)− Et
=Wξ(ξ, Λ) +Wη(η, Λ) +Wϕ(ϕ,Λ)− Et .

(1.317)



1.11. APPENDICES 47

with E = Λ1. Clearly we may take

Wϕ(ϕ,Λ) = Pϕ ϕ , (1.318)

where Pϕ = Λ2. Multiplying the Hamilton-Jacobi equation by 1
2m (ξ + η) then gives

ξ

(
dWξ

dξ

)2

+
P 2
ϕ

4ξ
+mk − 1

4Fξ
2 − 1

2mEξ

= −η
(
dWη

dη

)2

− P 2
ϕ

4η
− 1

4Fη
2 + 1

2mEη ≡ Υ ,
(1.319)

where Υ = Λ3 is the third constant: Λ = (E,Pϕ, Υ ). Thus,

S
(

q︷ ︸︸ ︷
ξ, η, ϕ;E,Pϕ, Υ︸ ︷︷ ︸

Λ

)
=

∫ ξ

dξ′

√
1
2mE +

Υ −mk
ξ′

+ 1
4mFξ

′ − P 2
ϕ

4ξ′2

+

∫ η

dη′

√
1
2mE −

Υ

η′
− 1

4mFη
′ − P 2

ϕ

4η′2
+ Pϕ ϕ− Et .

(1.320)

1.11.2 Hamilton-Jacobi theory for charged particle in a magnetic field

The Hamiltonian is

H =
1

2m

(
p− e

c
A
)2
. (1.321)

We choose the gauge A = Bxŷ, and we write

S(x, y, P1, P2) =Wx(x, P1, P2) +Wy(y, P1, P2)− P1 t . (1.322)

Note that here we will consider S to be a function of {qσ} and {Pσ}.

The Hamilton-Jacobi equation is then

(
∂Wx

∂x

)2
+

(
∂Wy

∂y
− eBx

c

)2
= 2mP1 . (1.323)

We solve by writing

Wy = P2 y ⇒
(
dWx

dx

)2
+

(
P2 −

eBx

c

)2
= 2mP1 . (1.324)

This equation suggests the substitution

x =
cP2

eB
+

c

eB

√
2mP1 sin θ . (1.325)

in which case
∂x

∂θ
=

c

eB

√
2mP1 cos θ (1.326)

and
∂Wx

∂x
=
∂Wx

∂θ
· ∂θ
∂x

=
eB

c
√
2mP1

1

cos θ

∂Wx

∂θ
. (1.327)
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Substitution into eqn. 1.324, we have ∂Wx/∂θ = (2mcP1/eB) cos2θ which integrates to

Wx =
mcP1

eB
θ +

mcP1

2eB
sin(2θ) . (1.328)

We then have

px =
∂Wx

∂x
=
∂Wx

∂θ

/
∂x

∂θ
=
√
2mP1 cos θ (1.329)

and py = ∂Wy/∂y = P2. The type-II generator we seek is then

S(q, P, t) =
mcP1

eB
θ +

mcP1

2eB
sin(2θ) + P2 y − P1 t , (1.330)

where

θ =
eB

c
√
2mP1

sin−1

(
x− cP2

eB

)
. (1.331)

Note that, from eqn. 1.325, we may write

dx =
c

eB
dP2 +

mc

eB

1√
2mP1

sin θ dP1 +
c

eB

√
2mP1 cos θ dθ , (1.332)

from which we derive
∂θ

∂P1
= − tan θ

2P1
,

∂θ

∂P2
= − 1√

2mP1 cos θ
. (1.333)

These results are useful in the calculation of Q1 and Q2:

Q1 =
∂S

∂P1
=
mc

eB
θ +

mcP1

eB

∂θ

∂P1
+

mc

2eB
sin(2θ) +

mcP1

eB
cos(2θ)

∂θ

∂P1
− t

=
mc

eB
θ − t

(1.334)

and

Q2 =
∂S

∂P2
= y +

mcP1

eB

[
1 + cos(2θ)

] ∂θ
∂P2

= y − c

eB

√
2mP1 cos θ .

(1.335)

Now since H̃(P,Q) = 0, we have that Q̇σ = 0, which means that each Qσ is a constant. We therefore have the
following solution:

x(t) = x0 +A sin(ωct+ δ)

y(t) = y0 +A cos(ωct+ δ) ,
(1.336)

where ωc = eB/mc is the ‘cyclotron frequency’, and

x0 =
cP2

eB
, y0 = Q2 , δ ≡ ωcQ1 , A =

c

eB

√
2mP1 . (1.337)
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1.11.3 Action-angle variables for the Kepler problem

This is discussed in detail in standard texts, such as Goldstein. The potential is V (r) = −k/r, and the problem is
separable. We write20

W (r, θ, ϕ) =Wr(r) +Wθ(θ) +Wϕ(ϕ) , (1.338)

hence
1

2m

(
∂Wr

∂r

)2
+

1

2mr2

(
∂Wθ

∂θ

)2
+

1

2mr2 sin2θ

(
∂Wϕ

∂ϕ

)2
+ V (r) = E ≡ Λr . (1.339)

Separating, we have

1

2m

(
dWϕ

dϕ

)2
= Λϕ ⇒ Jϕ =

∮

Cϕ

dϕ
dWϕ

dϕ
= 2π

√
2mΛϕ . (1.340)

Next we deal with the θ coordinate. We have

1

2m

(
dWθ

dθ

)2
= Λθ −

Λϕ

sin2θ
, (1.341)

and therefore

Jθ = 4
√
2mΛθ

θ0∫

0

dθ
√
1−

(
Λϕ/Λθ

)
csc2θ

= 2π
√
2m
(√

Λθ −
√
Λϕ

)
,

(1.342)

where θ0 = sin−1(Λϕ/Λθ). Finally, we have for the radial coordinate

1

2m

(
dWr

dr

)2

= E +
k

r
− Λθ
r2

, (1.343)

and so21

Jr =

∮

Cr

dr

√
2m

(
E +

k

r
− Λθ
r2

)

= −(Jθ + Jϕ) + πk

√
2m

|E| ,

(1.344)

where we’ve assumed E < 0, i.e. bound motion.

Thus, we find

H = E = − 2π2mk2
(
Jr + Jθ + Jϕ

)2 . (1.345)

Note that the frequencies are completely degenerate:

ν ≡ νr,θ,ϕ =
∂H

∂Jr,θ,ϕ
=

4π2mk2
(
Jr + Jθ + Jϕ

)3 =

(
π2mk2

2 |E|3

)1/2
. (1.346)

20We denote the azimuthal angle by ϕ to distinguish it from the AA variable φ.
21The details of performing the integral around Cr are discussed in e.g. Goldstein.
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This threefold degeneracy may be removed by a transformation to new AA variables,

{
(φr , Jr), (φθ, Jθ), (φϕ, Jϕ)

}
−→

{
(χ1,J1), (χ2,J2), (χ3,J3)

}
, (1.347)

using the type-II generator

F2(φr, φθ, φϕ;J1,J2,J3) = (φϕ − φθ)J1 + (φθ − φr)J2 + φr J3 , (1.348)

which results in

χ1 =
∂F2

∂J1
= φϕ − φθ Jr =

∂F2

∂φr
= J3 − J2 (1.349)

χ2 =
∂F2

∂J2
= φθ − φr Jθ =

∂F2

∂φθ
= J2 − J1 (1.350)

χ3 =
∂F2

∂J3
= φr Jϕ =

∂F2

∂φϕ
= J1 . (1.351)

The new Hamiltonian is

H(J1,J2,J3) = −
2π2mk2

J 2
3

, (1.352)

whence ν1 = ν2 = 0 and ν3 = ν.

1.11.4 Action-angle variables for charged particle in a magnetic field

For the case of the charged particle in a magnetic field, studied above in section 1.11.2, we found

x =
cP2

eB
+

c

eB

√
2mP1 sin θ (1.353)

with px =
√
2mP1 cos θ and py = P2 . The action variable J is then

J =

∮
px dx =

2mcP1

eB

2π∫

0

dθ cos2θ =
mcP1

eB
. (1.354)

We then have

W = Jθ + 1
2J sin(2θ) + Py , (1.355)

where P ≡ P2. Thus,

φ =
∂W

∂J
= θ + 1

2 sin(2θ) + J
[
1 + cos(2θ)

] ∂θ
∂J

= θ + 1
2 sin(2θ) + 2J cos2θ ·

(
− tan θ

2J

)
= θ .

(1.356)

The other canonical pair is (Q,P ), where

Q =
∂W

∂P
= y −

√
2cJ

eB
cosφ . (1.357)
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Therefore, we have

x =
cP

eB
+

√
2cJ

eB
sinφ , y = Q+

√
2cJ

eB
cosφ (1.358)

and

px =

√
2eBJ

c
cosφ , py = P . (1.359)

The Hamiltonian is

H =
p2x
2m

+
1

2m

(
py −

eBx

c

)2

=
eBJ

mc
cos2φ+

eBJ

mc
sin2φ = ωc J ,

(1.360)

where ωc = eB/mc. The equations of motion are

φ̇ =
∂H

∂J
= ωc , J̇ = −∂H

∂φ
= 0 (1.361)

and

Q̇ =
∂H

∂P
= 0 , Ṗ = −∂H

∂Q
= 0 . (1.362)

Thus, Q, P , and J are constants, and φ(t) = φ0 + ωc t.

1.11.5 Canonical perturbation theory for the cubic oscillator

Consider the Hamiltonian

H =
p2

2m
+ 1

2mω2
0 q

2 + 1
3ǫmω2

0

q3

a
,

where ǫ is a small dimensionless parameter.

(a) Show that the oscillation frequency satisfies ν(J) = ω0 + O(ǫ2). That is, show that the first order (in ǫ)
frequency shift vanishes.

Solution: It is good to recall the basic formulae

q =

√
2J0
mω0

sinφ0 , p =
√
2mω0 J0 cosφ0 (1.363)

as well as the results

J0 =
∂S

∂φ0
= J + ǫ

∂S1

∂φ0
+ ǫ2

∂S2

∂φ0
+ . . .

φ =
∂S

∂J
= φ0 + ǫ

∂S1

∂J
+ ǫ2

∂S2

∂J
+ . . . ,

(1.364)

and

E0(J) = H̃0(J)

E1(J) = H̃1(φ0, J) +
∂H̃0

∂J

∂S1

∂φ0

E2(J) =
∂H̃0

∂J

∂S2

∂φ0
+

1

2

∂2H̃0

∂J2

(
∂S1

∂φ0

)2
+
∂H̃1

∂J

∂S1

∂φ0
.

(1.365)
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Expressed in action-angle variables,

H̃0(φ0, J) = ω0 J

H̃1(φ0, J) =
2

3

√
2ω0

ma2
J3/2 sin3φ0 .

(1.366)

Thus, ν0 =
∂H̃0

∂J = ω0 .

Averaging the equation for E1(J) yields

E1(J) =
〈
H̃1(φ0, J)

〉
=

2

3

√
2ω0

ma2
J3/2

〈
sin3φ0

〉
= 0 . (1.367)

(b) Compute the frequency shift ν(J) to second order in ǫ.

Solution : From the equation for E1, we also obtain

∂S1

∂φ0
=

1

ν0

(〈
H̃1

〉
− H̃1

)
. (1.368)

Inserting this into the equation for E2(J) and averaging then yields

E2(J) =
1

ν0

〈
∂H̃1

∂J

(〈
H̃1

〉
− H̃1

)〉
= − 1

ν0

〈
H̃1

∂H̃1

∂J

〉

= −4ν0J
2

3ma2
〈
sin6φ0

〉
(1.369)

In computing the average of sin6φ0, it is good to recall the binomial theorem, or the Fibonacci tree. The sixth order
coefficents are easily found to be {1, 6, 15, 20, 15, 6, 1}, whence

sin6φ0 =
1

(2i)6
(
eiφ0 − e−iφ0

)6

= 1
64

(
− 2 sin 6φ0 + 12 sin4φ0 − 30 sin 2φ0 + 20

)
.

(1.370)

Thus
〈
sin6φ0

〉
= 5

16 ,whence

E(J) = ω0 J − 5
12ǫ

2 J2

ma2
(1.371)

and

ν(J) =
∂E

∂J
= ω0 − 5

6ǫ
2 J

ma2
. (1.372)

(c) Find q(t) to order ǫ. Your result should be finite for all times.

Solution : From the equation for E1(J), we have

∂S1

∂φ0
= −2

3

√
2J3

mω0a2
sin3φ0 . (1.373)

Integrating, we obtain

S1(φ0, J) =
2

3

√
2J3

mω0a2
(
cosφ0 − 1

3 cos
3φ0
)

=
J3/2

√
2mω0a2

(
cosφ0 − 1

9 cos 3φ0
)
.

(1.374)
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Thus, with
S(φ0, J) = φ0 J + ǫ S1(φ0, J) + . . . , (1.375)

we have

φ =
∂S

∂J
= φ0 +

3

2

ǫ J1/2

√
2mω0a2

(
cosφ0 − 1

9 cos 3φ0
)

J0 =
∂S

∂φ0
= J − ǫ J3/2

√
2mω0a2

(
sinφ0 − 1

3 sin 3φ0
)
.

(1.376)

Inverting, we may write φ0 and J0 in terms of φ and J :

φ0 = φ+
3

2

ǫ J1/2

√
2mω0a2

(
1
9 cos 3φ− cosφ

)

J0 = J +
ǫ J3/2

√
2mω0a2

(
1
3 sin 3φ− sinφ

)
.

(1.377)

Thus,

q(t) =

√
2J0
mω0

sinφ0

=

√
2J

mω0
sinφ ·

(
1 +

δJ

2J
+ . . .

)(
sinφ+ δφ cosφ+ . . .

)

=

√
2J

mω0
sinφ− ǫ J

mω0a

(
1 + 1

3 cos 2φ
)
+O

(
ǫ2
)
,

(1.378)

with
φ(t) = φ(0) + ν(J) t . (1.379)


