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Chapter 2

Maps, Strange Attractors, and Chaos

2.1 Motion on Resonant Tori

Consider an integrable Hamiltonian with two degrees of freedom. The energy E(J1, J2) is then a function of the
two action coordinates, so at fixed energy we may regard J2(J1;E) as being determined by J1. The motion is
then given by φj(t) = ωj(J1;E) t + βj , and, at fixed E, is confined to a two-torus T2 specified by the action J1 ,
as depicted in Fig. 2.1. For a system with N freedoms (i.e. a phase space of dimension 2n), integrable motion is
confined to an n-torus TN = S1 × · · · × S1. The frequencies ωj = ∂E/∂Jj = ωj(J1, . . . , JN−1;E) are specified, at
fixed E, by N − 1 action variables. If, on a given torus, the frequency ratios ωj/ωj′ are rational numbers for all
j and j′, then the motion is periodic, and all frequencies are said to be in resonance. In this case we may write
ωj = kj ω0 for some set {k1, . . . , kN} ∈ ZN , and some quantity ω0 which has dimensions of frequency. One can
Fourier decompose the original coordinates qσ(φ,J)) as

qσ(φ,J) =
∑

m

q̂σ,m(J) eim·φ , (2.1)

and similarly for pσ(φ,J) , where m ∈ ZN . Invoking the solution φσ(t) = kσω0t+ βσ , one sees that the motion is
periodic in time with period T = 2π/ω0 . That all the frequencies are in resonance further means that for some of
the m vectors, one has m · k = 0.

2.1.1 The twist map

Consider the motion φ(t) = ω(J) t + β along a resonant torus, and let us plot consecutive intersections of the
trajectory with the (J1, φ1) plane, i.e. the subset of phase space where both E (or J2) and φ2 are fixed. Such a plot is
called a surface of section. Successive intersections of this surface occur at time interval ∆t = 2π/ω2, during which
the angle φ1 changes by ∆φ1 = ω1∆t = 2πα, where α = ω1/ω2. Focusing only on the surface of section, we write
φ ≡ φ1 and J ≡ J1. The relation between (φ, J) values at successive crossings of this surface is

φn+1 = φn + 2πα(Jn+1)

Jn+1 = Jn .
(2.2)

Formally, we may write the map as ϕn+1 = T̂ϕn, where ϕn = (φn, Jn) and T̂ is the map. Note that the action
variable is unchanged during the motion1, and hence is fixed under the map. We are left with a mapping of

1It is for this reason that we may write α(J
n+1

) in the first equation, rather than α(Jn). The reason will soon be apparent.
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2 CHAPTER 2. MAPS, STRANGE ATTRACTORS, AND CHAOS

Figure 2.1: Motion of an n = 2 system on an invariant torus specified by action J1, with E(J1, J2) fixed.

the circle onto itself, called the twist map. Since the map faithfully represents Hamiltonian evolution, it must be
canonical, meaning

{
φn+1, Jn+1

}

(φn,Jn)
= det

∂(φn+1, Jn+1)

∂(φn, Jn)
=

∂φn+1

∂φn

∂Jn+1

∂Jn
− ∂φn+1

∂Jn

∂Jn+1

∂φn

= 1 , (2.3)

which is indeed satisfied. If α(J) ∈ Q is rational, certain iterations of the map leave the circle fixed. Specifically,

let α = r/s. Then T̂ s acts as the identity, leaving the entire circle (and indeed the entire (φ, J) plane) fixed.

For systems with N degrees of freedom, with (φN , JN ) as the surface of section, one defines φ = (φ1, . . . ,φN−1)
and J = (J1, . . . , JN−1) and α = (ω1/ωN , . . . , ωN−1/ωN), one has

φn+1 = φn + 2πα(Jn+1)

Jn+1 = Jn .
(2.4)

One can check that this map is also area-preserving (canonical).

2.1.2 The perturbed twist map

Now consider a perturbed Hamiltonian H(J ,φ) = H0(J) + ǫH1(J ,φ) , again for N = 2. Once more we consider

the surface of section defined by the (φ1, J1) plane. We expect a perturbed twist map T̂ǫ of the form

φn+1 = φn + 2πα(Jn+1) + ǫ f(φn, Jn+1)

Jn+1 = Jn + ǫ g(φn, Jn+1) ,
(2.5)

for some functions f and g. Is the perturbed twist map canonical? We could investigate this by computing the
Poisson bracket {φn+1, Jn+1}, but here we take another approach, which is to exhibit explicitly a type-II generator
F2(φn, Jn+1) which effects the canonical transformation (φn, Jn) → (φn+1, Jn+1). Consider the generator

F2(φn, Jn+1) = φnJn+1 + 2πA(Jn+1) + ǫB(φn, Jn+1) . (2.6)

The CT generated is

φn+1 =
∂F2

∂Jn+1

= φn + 2π
∂A

∂Jn+1

+ ǫ
∂B

∂Jn+1

Jn =
∂F2

∂φn

= Jn+1 + ǫ
∂B

∂φn

.

(2.7)
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We therefore identify α(Jn+1) = A′(Jn+1) as well as

f(Jn+1, φn) =
∂B

∂Jn+1

, g(Jn+1, φn) = − ∂B

∂φn

. (2.8)

This, in turn, requires
∂f

∂φn

+
∂g

∂Jn+1

= 0 , (2.9)

which is a necessary and sufficient condition in order that the map T̂ǫ be canonical.

In the case g = g(φn), the above condition requires f = f(Jn+1), and we may absorb f(J) into the definition of
α(J). We then have the map

φn+1 = φn + 2πα(Jn+1)

Jn+1 = Jn + ǫ g(φn) .
(2.10)

For α(J) = J and g(φ) = − sinφ, we obtain the standard map, about which we shall have more to say below.

2.2 Maps from Time-Dependent Hamiltonian Systems

2.2.1 Parametric Oscillator

Consider the equation
ẍ+ ω2

0(t)x = 0 , (2.11)

where the oscillation frequency is a function of time. Equivalently,

d

dt

(
x
ẋ

)

=

M(t)
︷ ︸︸ ︷
(

0 1
−ω2

0(t) 0

)

ϕ(t)
︷︸︸︷
(
x
ẋ

)

. (2.12)

The formal solution is the path-ordered exponential,

ϕ(t) = P exp







t∫

0

dt′ M(t′)






ϕ(0) . (2.13)

Let’s consider an example in which

ω(t) =







(1 + ǫ)ω0 if 2nτ ≤ t ≤ (2n+ 1)τ

(1− ǫ)ω0 if (2n+ 1)τ ≤ t ≤ (2n+ 2)τ .

(2.14)

Define ϕn ≡ ϕ(2nτ). Then

ϕn+1 = exp(M−τ) exp(M+τ)ϕn ≡ U ϕn , (2.15)

where

M± =

(
0 1

−ω2
± 0

)

, (2.16)
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with ω± ≡ (1 ± ǫ)ω0. Note that M2
± = −ω2

± I is a multiple of the identity. Evaluating the Taylor series for the
exponential, one finds

U± ≡ exp(M±t) =

(
cosω±τ ω−1

± sinω±τ

−ω± sinω±τ cosω±τ

)

, (2.17)

from which we derive the evolution matrix

U ≡ U−U+ =

(
cosω−τ ω−1

− sinω−τ

−ω− sinω−τ cosω−τ

)(
cosω+τ ω−1

+ sinω+τ

−ω+ sinω+τ cosω+τ

)

≡
(
a b
c d

)

with

a = cosω−τ cosω+τ − ω+

ω−

sinω−τ sinω+τ

b =
1

ω+
cosω−τ sinω+τ +

1

ω−

sinω−τ cosω+τ

c = −ω+ cosω−τ sinω+τ − ω− sinω−τ cosω+τ

d = cosω−τ cosω+τ − ω−

ω+
sinω−τ sinω+τ .

(2.18)

Note that U± are each symplectic, hence det exp(M±τ) = 1, and therefore U is also symplectic with detU = 1. Also
note that

P (λ) = det
(
U − λ · I

)
= λ2 − Tλ+∆ , (2.19)

where T = a+ d = Tr U and ∆ = ad− bc = det U . The eigenvalues of U are

λ± = 1
2T ± 1

2

√

T 2 − 4∆ . (2.20)

In our case, ∆ = 1. There are two cases to consider:

|T | < 2 : λ+ = λ∗

− = eiδ , δ = cos−1 1
2T

|T | > 2 : λ+ = λ−1
− = ±eµ , µ = cosh−1 1

2 |T | .
(2.21)

When |T | < 2, ϕ remains bounded; when |T | > 2, |ϕ| increases exponentially with time. Note that phase space
volumes are preserved by the dynamics.

To investigate more fully, let θ ≡ ω0τ . The period of the frequency oscillations is ∆t = 2τ , i.e. ωpump = π/τ is the
frequency at which the system is ‘pumped’, so

θ

π
=

ω0

ωpump

=
Tpump

T0

, (2.22)

where T0 = 2π/ω0 is the unperturbed natural frequency and Tpump = ∆t = 2τ . One finds T = TrU is given by

T =
2 cos(2θ)− 2ǫ2 cos(2ǫθ)

1− ǫ2
. (2.23)

We are interested in the boundaries in the (θ, ǫ) plane where |T | = 2. Setting T = +2, we write θ = nπ + δ, which
means Tpump ≈ nT0. Expanding for small δ and ǫ, we obtain the relation

δ2 = ǫ4 θ2 ⇒ ǫ = ±
∣
∣
∣
∣

δ

nπ

∣
∣
∣
∣

1/2

. (2.24)
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Figure 2.2: Phase diagram for the parametric oscillator in the (θ, ǫ) plane. Thick black lines correspond to T = ±2.
Blue regions: |T | < 2. Red regions: T > 2. Magenta regions: T < −2.

Setting T = −2, we write θ = (n+ 1
2 )π + δ, i.e. Tpump ≈ (n+ 1

2 )T0. This gives

δ2 = ǫ2 ⇒ ǫ = ±δ . (2.25)

The full phase diagram in the (θ, ǫ) plane is shown in Fig. 2.2. A physical example is pumping a swing. By
extending your legs periodically, you effectively change the length ℓ(t) of the pendulum, resulting in a time-

dependent ω0(t) =
√

g/ℓ(t).

2.2.2 Kicked dynamics

A related model is described by the kicked dynamics of the Hamiltonian

H(t) = T (p) + V (q)K(t) , (2.26)

where

K(t) = τ

∞∑

n=−∞

δ(t− nτ) (2.27)

is the kicking function. The potential thus winks on and off with period τ . Note that

lim
τ→0

K(t) = 1 . (2.28)
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Figure 2.3: Top: the standard map, as defined in the text. Four values of the ǫ parameter are shown: ǫ = 0.01 (left),
ǫ = 0.2 (center), and ǫ = 0.4 (right). Bottom: details of the ǫ = 0.4 map.

In the τ → 0 limit, the system is continuously kicked, and is equivalent to motion in a time-independent external
potential V (q).

The equations of motion are
q̇ = T ′(p) , ṗ = −V ′(q)K(t) . (2.29)

Integrating these equations, we obtain the map

qn+1 = qn + τ T ′(pn)

pn+1 = pn − τ V ′(qn+1) .
(2.30)

Note that the determinant of Jacobean of the map is unity:

det
∂(qn+1 , pn+1)

∂(qn , pn)
= det

(
1 τ T ′′(pn)

−τ V ′′(qn+1) 1− τ2 T ′′(pn)V
′′(qn+1)

)

= 1 . (2.31)

This means that the map preserves phase space volumes.
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Figure 2.4: The kicked harper map, with α = 2, and with ǫ = 0.01, 0.125, 0.2, and 5.0 (clockwise from upper left).
The phase space here is the unit torus, T2 = [0, 1]× [0, 1].

Consider, for example, the Hamiltonian H(t) = L2

2I − V cos(φ)K(t), where L is the angular momentum conjugate
to φ. This results in the map

φn+1 = φn + 2πǫ Jn

Jn+1 = Jn − ǫ sinφn+1 ,
(2.32)

where Jn = Ln/
√
2πIV and ǫ = τ

√

V/2πI . This is the standard map2, which we encountered earlier, albeit in

a slightly different form. In the limit ǫ → 0, we may define φ̇ = (φn+1 − φn)/ǫ and J̇ = (Jn+1 − Jn)/ǫ, and we

recover the continuous time dynamics φ̇ = 2πJ and J̇ = − sinφ. These dynamics preserve the energy function
E = πJ2 − cosφ. There is a separatrix at E = 1, given by J(φ) = ± 2

π

∣
∣cos(φ/2)

∣
∣. We see from fig. 2.3 that this

separatrix is the first structure to be replaced by a chaotic fuzz as ǫ increases from zero to a small finite value.

2The standard map us usually written in the form x
n+1 = xn + Jn and Jn+1 = Jn − k sin(2πxn+1). We can recover our version by

rescaling φn = 2πxn, Jn ≡
√
k Jn and defining ǫ ≡

√
k.
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Another well-studied system is the kicked Harper model, for which

H(t) = −V1 cos

(
2πp

P

)

− V2 cos

(
2πq

Q

)

K(t) . (2.33)

With x = q/Q and y = p/P , Hamilton’s equations generate the map

xn+1 = xn + ǫ α sin(2πyn)

yn+1 = yn − ǫ

α
sin(2πxn+1) ,

(2.34)

where ǫ = 2πτ
√
V1V2/PQ and α =

√

V1/V2 are dimensionless parameters. In this case, the conserved energy is

E = −α−1 cos(2πx)− α cos(2πy) . (2.35)

There are then two separatrices, at E = ±(α − α−1), with equations α cos(πy) = ± sin(πx) and α sin(πy) =
± cos(πx). Again, as is apparent from fig. 2.4, the separatrix is the first structure to be destroyed at finite ǫ. This
also occurs for the standard map – there is a transition to global stochasticity at a critical value of ǫ.

Note that the kicking function may be written as

K(t) = τ

∞∑

n=−∞

δ(t− nτ) =

∞∑

m=−∞

cos

(
2πmt

τ

)

, (2.36)

a particularly handy result known as the Poisson summation formula. This, a kicked Hamiltonian may be written as

H(J, φ, t) = H0(J) + V (φ)

∞∑

m=−∞

cos

(
2πmt

τ

)

. (2.37)

The m = 0 term generates the continuous time dynamics φ̇ = ω0(J), J̇ = −V ′(φ). For the standard map, these
are the dynamics of a simple pendulum. The m 6= 0 terms are responsible for resonances and the formation of
so-called ‘stochastic layers’.

2.3 Local Stability and Lyapunov Exponents

2.3.1 The fate of nearly separated initial conditions under iteration

Consider a map T̂ acting on a phase space of dimension 2N (i.e. N position degrees of freedom). We ask what is
the fate of two nearby initial conditions, ξ0 and ξ0 + dξ, under the iterated map. Under the first iteration, we have

ξ0 → ξ1 = T̂ξ0 and
ξ0 + dξ −→ ξ1 +M(ξ0) dξ , (2.38)

where M(ξ) is a matrix given by the linearization of T̂ at ξ, viz.

Mij(ξ) =
∂(T̂ξ)i
∂ξj

. (2.39)

Let’s iterate again. Clearly ξ1 → ξ2 = T̂ 2ξ0 and

ξ1 +M(ξ0) dξ −→ ξ2 +M(ξ1)M(ξ0) dξ . (2.40)
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After n iterations, we clearly have T̂ nξ0 = ξn and

T̂ n(ξ0 + dξ) = ξn +M(ξn−1) · · ·M(ξ0) dξ , (2.41)

and we define R(n)(ξ) = M
(
T̂ nξ) · · ·M(T̂ξ)M(ξ), whose matrix elements may be written asR

(n)
ij (ξ) = ∂(T̂ nξ)i/∂ξj .

Since the map T̂ is presumed to be canonical, at each stage M(ξj) ∈ Sp(2N), and since the product of symplectic

matrices is a symplectic matrix, R(n)(ξ) ∈ Sp(2N). It is easy to see that for any real symplectic matrix R, the
eigenvalues come in unimodular conjugate pairs

{
eiδ, e−iδ

}
, in real pairs

{
λ, λ−1

}
with λ ∈ R, or in quartets

{
λ, λ−1, λ∗, λ∗−1

}
with λ ∈ C, where λ∗ is the complex conjugate of λ. This follows from analysis of the character-

istic polynomial P (λ) = det(λ − R) given the symplectic condition3 Rt JR = J. Let
{
λ
(n)
j (ξ)

}
be the eigenvalues

of R(n)(ξ), with j ∈ {1, . . . , 2N}. One defines the Lyapunov exponents,

νj(ξ) = lim
n→∞

1

n
ln
∣
∣λ

(n)
j (ξ)

∣
∣ . (2.42)

These may be ordered such that ν1 ≤ ν2 ≤ · · · ≤ ν2N . Positive Lyapunov exponents correspond to an exponential
stretching (as a function of the iteration number n), while negative ones correspond to an exponential squeezing.

As an example, consider the Arnol’d cat map, which is an automorphism of the torus T2 = S1 × S1, given by4

qn+1 = (K + 1) qn + pn

pn+1 = Kqn + pn ,
(2.43)

where K ∈ Z, and where both qn and pn are defined modulo unity, so (qn, pn) ∈ [0, 1]× [0, 1]. Note that K must be
an integer in order for the map to be smooth on the torus, i.e. it is left unchanged by displacing either coordinate
by an integer distance. The map is already linear, hence we can read off

M =
∂(qn+1, pn+1)

∂(qn, pn)
=

(
K + 1 1
K 1

)

, (2.44)

which is independent of (qn, pn). The inverse map also has integer coefficients:

M−1 =

(
1 −1

−K K + 1

)

. (2.45)

Since detM = 1, the cat map is canonical, i.e. it preserves phase space volumes. The eigenvalues of M are the
roots of the characteristic polynomial P (λ) = λ2 − (K + 2)λ−K , and are given by

λ± = 1 + 1
2K ±

√

K + 1
4K

2 . (2.46)

Thus, for K ∈ {−4,−3,−2,−1, 0}, the eigenvalues come in pairs e±iδK , with δ−4 = π, δ−3 = 2
3π, δ−2 = 1

2π,
δ−1 = 1

3π, and δ0 = 0. For K < −4 or K > 0, the eigenvalues are (λ, λ−1) with λ > 1 and 0 < λ−1 < 1,
corresponding, respectively, to stretching and squeezing. The Lyapunov exponents are ν± = ln |λ±|.

2.3.2 Kolmogorov-Sinai entropy

Let Γ < ∞ be our phase space (at constant energy, for a Hamiltonian system), and {∆j} a partition of disjoint
sets whose union is Γ . The simplest arrangement to think of is for each ∆j to correspond to a little hypercube;

3One has P (λ) = det(λ−R) = det(λ−Rt) = det(λ+JR−1J) = det(λ−1−R) ·λ2N / detR and therefore if λ is a root of the characteristic
polynomial, then so is λ−1. Since R = R∗, one also has P (λ∗) =

[

P (λ)
]

∗

, hence if λ is a root, then so is λ∗. From Pf(Rt JR) = det(R)Pf(J),
where Pf is the Pfaffian, one has detR = 1.

4The map in Eqn. 2.43 is a generalized version of Arnol’d’s original cat map, which had K = 1.
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Figure 2.5: The baker’s transformation involves stretching/squeezing and ‘folding’ (cutting and restacking).

stacking up all the hypercube builds the entire phase space. Now apply the inverse map T̂−1 to each ∆j , and form

the intersections ∆jk ≡ ∆j ∩ T̂−1∆k. If
∑

j µ(∆j) = µ(Γ ) ≡ 1, then
∑

j,k µ(∆jk) = 1. Iterating further, we obtain

∆jkl = ∆jk ≡ ∆j ∩ T̂−1∆k ∩ T̂−2∆l, etc.

The entropy of a distribution {pa} is defined to be S = −∑

a pa ln pa. Accordingly we define

SL(∆) = −
∑

j1

· · ·
∑

jL

µ(∆j1···jL
) lnµ(∆j1···jL

) . (2.47)

This is a function of both the iteration number L as well as the initial set ∆ = {∆1, . . . , ∆r}, where r is the number
of subregions in our original partition. We then define the Kolmogorov-Sinai entropy to be

h
KS

≡ sup
∆

lim
L→∞

1

L
SL(∆) . (2.48)

Here sup stands for supremum, meaning we maximize over all partitions ∆.

Consider, for example, the baker’s transformation (see Fig. 2.5), which stretches, cuts, stacks, and compresses the
torus according to

(q′, p′) = T̂ (q, p) =

{

(2q , 1
2p) if 0 ≤ p < 1

2

(2q − 1, 12p+
1
2 ) if 1

2 ≤ p < 1
(2.49)

It is not difficult to convince oneself that the KS entropy for the baker’s transformation is h
KS

= ln 2. On the other
hand, for a simple translation map which takes (q, p) → (q′, p′) = (q + α , p+ β), it is easy to see that h

KS
= 0. The

KS entropy is related to the Lyapunov exponents through the formula

h
KS

=
∑

j

νj Θ(νj) . (2.50)

The RHS is the sum over all the positive Lyapunov exponents γj > 0. Actually, this formula presumes that the γj
do not vary in phase space, but in general this is not the case. The more general result is known as Pesin’s entropy
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Figure 2.6: Left: The action of the iterated map T̂ s
0 leaves the circle with α(J) = r/s invariant (dotted curve), but

rotates slightly counterclockwise and clockwise on the circles J = J+ and J = J−, respectively. Right: The blue

curve Jǫ(φ) is the locus of points where T̂ s
ǫ acts purely radially and preserves φ, resulting in the red curve J̃ǫ(φ).

Since T̂ s
ǫ is volume-preserving, these curves must intersect in an alternating sequence of elliptic and hyperbolic

fixed points.

formula,

h
KS

=

∫

Γ

dµ(ξ)
∑

j

νj(ξ)Θ
(
νj(ξ)

)
. (2.51)

2.4 The Poincaré-Birkhoff Theorem

Let’s return to our discussion of the perturbed twist map,

(
φn+1

Jn+1

)

= T̂ǫ

(
φn

Jn

)

=

(
φn + 2πα(Jn+1) + ǫf(φn, Jn+1)

Jn + ǫg(φn, Jn+1)

)

, (2.52)

with ∂f
∂φn

+ ∂g
∂Jn+1

= 0 in order that the map be canonical. For ǫ = 0, the map T̂0 leaves J invariant, and takes

circles to circles. If α(J) 6= Q , the images of the iterated map become dense on the circle.

Consider now a circle with fixed J for which α(J) = r/s is rational5, and without loss of generality let us presume

α′(J) > 0 so that on circles J± = J ±∆J we have α(J+) > r/s and α(J−) < r/s. Under T̂ s
0 , all the points on the

circle C = C(J) are fixed, whereas those on C+ rotate slightly counterclockwise, and those on C− slightly clockwise

(see left panel of Fig. 2.6), where C± = C(J±). Now consider the action of the iterated perturbed map T̂ s
ǫ . Acting

on C+, the action is still a net counterclockwise shift (assuming ǫ ≪ ∆J
J , with some small O(ǫ) radial component.

Similarly, acting on C−, the action is a net clockwise shift plus O(ǫ) radial component. By the intermediate value
theorem, for a given fixed φ, as one proceeds radially outward from C− to C+, there must be a point J = Jǫ(φ)

where the angular shift vanishes. This defines an entire curve Jǫ(φ) along which the action of T̂ s
ǫ is purely radial.

Now consider the curve J̃ǫ(φ) = T̂ s
ǫ Jǫ(φ), i.e. the action of T̂ s

ǫ on the curve Jǫ(φ). We know that each point along

5We may assume r and s are relatively prime.
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Figure 2.7: Self-similar structures in the iterated twist map.

Jǫ(φ) is displaced radially, but we also know that T̂ s
ǫ is volume-preserving. Therefore, the curves Jǫ(φ) and J̃ǫ(φ)

must intersect at an even number of points6. These intersections are fixed points of the map T̂ s
ǫ . The situation is

depicted in the right panel of Fig. 2.6. From the figure, it is clear that the set Jǫ(φ) ∩ J̃ǫ(φ) consists of alternating
elliptic and hyperbolic fixed points.

What we have just described is the content of the Poincaré-Birkhoff theorem: A small perturbation of a resonant

torus with α(J) = r/s results in an equal number elliptic and hyperbolic fixed points for the iterated map T̂ s
ǫ .

Since Tǫ has period s acting on these fixed points, the number of EFPs and HFPs must be equal and also a multiple
of s. In the vicinity of the EFPs, this structure repeats, as depicted in Fig. 2.7.

Stable/unstable manifolds and homoclinic/heteroclinic intersections

Now consider the HFPs. Emanating from a given HFP ξ∗ are stable and unstable manifolds, ΣS/U(ξ∗), defined by:

ξ ∈ ΣS(ξ∗) ⇒ lim
n→∞

T̂+ns
ǫ ξ = ξ∗ (to ξ∗)

ξ ∈ ΣU(ξ∗) ⇒ lim
n→∞

T̂−ns
ǫ ξ = ξ∗ (from ξ∗) .

(2.53)

Note that ΣU(ξ∗i ) can never intersect ΣU(ξ∗j ) for any i and j, nor can ΣS(ξ∗i ) ever intersect ΣS(ξ∗j ). However,
ΣU(ξ∗i ) cans intersect ΣS(ξ∗j ). If i = j, such an intersection is called a homoclinic point, while for i 6= j the intersec-

tion is called a heteroclinic point. Because T̂ s
ǫ is continuous and invertible, its action at a homoclinic/heteroclinic

point will produce a new homoclinic/heteroclinic point, ad infinitum! For homoclinic intersections, the resulting
structure is known as a homoclinic tangle, an example of which is shown in Fig. 2.8.

6Tangency is nongeneric and broken by a small change in ǫ.
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Figure 2.8: Homoclinic tangle for the map xn+1 = yn and yn+1 = (a + by2n) yn − xn for parameters a = 2.693,
b = −104.888. Stable (blue) and unstable (red) manifolds emanating from the HFP at (0, 0) are shown.

2.5 One-dimensional Maps

Consider now an even simpler case of a purely one-dimensional map,

xn+1 = f(xn) . (2.54)

A fixed point of the map satisfies x = f(x). Writing the solution as x∗ and expanding about the fixed point, we
write x = x∗ + u and obtain

un+1 = f ′(x∗)un +O(u2) . (2.55)

Thus, the fixed point is stable if
∣
∣f ′(x∗)

∣
∣ < 1, since successive iterates of u then get smaller and smaller. The fixed

point is unstable if
∣
∣f ′(x∗)

∣
∣ > 1.

Perhaps the most important and most studied of the one-dimensional maps is the logistic map, where f(x) =
rx(1 − x), defined on the interval x ∈ [0, 1]. This has a fixed point at x∗ = 1 − r−1 if r > 1. We then have
f ′(x∗) = 2 − r, so the fixed point is stable if r ∈ (1, 3). What happens for r > 3? We can explore the behavior of
the iterated map by drawing a cobweb diagram, shown in fig. 2.9. We sketch, on the same graph, the curves y = x
(in blue) and y = f(x) (in black). Starting with a point x on the line y = x, we move vertically until we reach the
curve y = f(x). To iterate, we then move horizontally to the line y = x and repeat the process. We see that for
r = 3.4 the fixed point x∗ is unstable, but there is a stable two-cycle, defined by the equations

x2 = rx1(1− x1)

x1 = rx2(1− x2) .
(2.56)

The second iterate of f(x) is then

f (2)(x) = f
(
f(x)

)
= r2x(1 − x)

(
1− rx + rx2

)
. (2.57)

Setting x = f (2)(x), we obtain a cubic equation. Since x−x∗ must be a factor, we can divide out by this monomial
and obtain a quadratic equation for x1 and x2. We find

x1,2 =
1 + r ±

√

(r + 1)(r − 3)

2r
. (2.58)
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Figure 2.9: Cobweb diagram showing iterations of the logistic map f(x) = rx(1 − x) for r = 2.8 (upper left),
r = 3.4 (upper right), r = 3.5 (lower left), and r = 3.8 (lower right). Note the single stable fixed point for r = 2.8,
the stable two-cycle for r = 3.4, the stable four-cycle for r = 3.5, and the chaotic behavior for r = 3.8.

How stable is this 2-cycle? We find

d

dx
f (2)(x) = r2(1− 2x1)(1 − 2x2) = −r2 + 2r + 4 . (2.59)

The condition that the 2-cycle be stable is then

−1 < r2 − 2r − 4 < 1 =⇒ r ∈
[
3 , 1 +

√
6
]
. (2.60)

At r = 1 +
√
6 = 3.4494897 . . . there is a bifurcation to a 4-cycle, as can be seen in fig. 2.10.
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Figure 2.10: Iterates of the logistic map f(x) = rx(1 − x).

2.5.1 Lyapunov Exponents

The Lyapunov exponent λ(x) of the iterated map f(x) at point x is defined to be

λ(x) = lim
n→∞

1

n
ln

∣
∣
∣
∣

df (n)(x)

dx

∣
∣
∣
∣
= lim

n→∞

1

n

n∑

j=1

ln
∣
∣f ′(xj)

∣
∣ , (2.61)

where xj+1 ≡ f(xj). The significance of the Lyapunov exponent is the following. If Re
(
λ(x)

)
> 0 then two initial

conditions near x will exponentially separate under the iterated map. For the tent map,

f(x) =

{

2rx if x < 1
2

2r(1 − x) if x ≥ 1
2 ,

(2.62)

one easily finds λ(x) = ln(2r) independent of x. Thus, if r > 1
2 the Lyapunov exponent is positive, meaning that

every neighboring pair of initial conditions will eventually separate exponentially under repeated application of
the map. The Lyapunov exponent for the logistic map is depicted in fig. 2.11.
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Figure 2.11: Lyapunov exponent (in red) for the logistic map.

2.5.2 Chaos in the logistic map

What happens in the logistic map for r > 1+
√
6 ? At this point, the 2-cycle becomes unstable and a stable 4-cycle

develops. However, this soon goes unstable and is replaced by a stable 8-cycle, as the right hand panel of fig. 2.10
shows. The first eight values of r where bifurcations occur are given by

r1 = 3 , r2 = 1 +
√
6 = 3.4494897 , r3 = 3.544096 , r4 = 3.564407 ,

r5 = 3.568759 , r6 = 3.569692 , r7 = 3.569891 , r8 = 3.569934 , . . .
(2.63)

Feigenbaum noticed that these numbers seemed to be converging exponentially. With the Ansatz

r∞ − rk =
c

δk
, (2.64)

one finds

δ =
rk − rk−1

rk+1 − rk
, (2.65)

and taking the limit k → ∞ from the above data one finds

δ = 4.669202 , c = 2.637 , r∞ = 3.5699456 . (2.66)

There’s a very nifty way of thinking about the chaos in the logistic map at the special value r = 4. If we define
xn ≡ sin2θn, then we find

θn+1 = 2θn . (2.67)

Now let us write

θ0 = π
∞∑

k=1

bk
2k

, (2.68)
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Figure 2.12: Iterates of the sine map f(x) = r sin(πx).

where each bk is either 0 or 1. In other words, the {bk} are the digits in the binary decimal expansion of θ0/π. Now
θn = 2nθ0, hence

θn = π

∞∑

k=1

bn+k

2k
. (2.69)

We now see that the logistic map has the effect of shifting to the left the binary digits of θn/π to yield θn+1/π. With
each such shift, leftmost digit falls off the edge of the world, as it were, since it results in an overall contribution to
θn+1 which is zero modulo π. This very emphatically demonstrates the sensitive dependence on initial conditions
which is the hallmark of chaotic behavior, for eventually two very close initial conditions, differing by ∆θ ∼ 2−m,
will, after m iterations of the logistic map, come to differ by O(1).

2.5.3 Intermittency

Successive period doubling is one route to chaos, as we’ve just seen. Another route is intermittency. Intermittency
works like this. At a particular value of our control parameter r, the map exhibits a stable periodic cycle, such as
the stable 3-cycle at r = 3.829, as shown in the bottom panel of fig. 2.13. If we then vary the control parameter
slightly in a certain direction, the periodic behavior persists for a finite number of iterations, followed by a burst,
which is an interruption of the regular periodicity, followed again by periodic behavior, ad infinitum. There are
three types of intermittent behavior, depending on whether the Lyapunov exponent λ goes through Re(λ) = 0
while Im(λ) = 0 (type-I intermittency), or with Im(λ) = π (type-III intermittency), or, as is possible for two-
dimensional maps, with Im(λ) = η, a general real number.
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Figure 2.13: Intermittency in the logistic map in the vicinity of the 3-cycle Top panel: r = 3.828, showing intermit-
tent behavior. Bottom panel: r = 3.829, showing a stable 3-cycle.

2.6 Attractors

An attractor of a dynamical system ϕ̇ = V (ϕ) is the set of ϕ values that the system evolves to after a sufficiently
long time. For N = 1 the only possible attractors are stable fixed points. For N = 2, we have stable nodes and
spirals, but also stable limit cycles. For N > 2 the situation is qualitatively different, and a fundamentally new
type of set, the strange attractor, emerges.

A strange attractor is basically a bounded set on which nearby orbits diverge exponentially (i.e. there exists at least
one positive Lyapunov exponent). To envision such a set, consider a flat rectangle, like a piece of chewing gum.
Now fold the rectangle over, stretch it, and squash it so that it maintains its original volume. Keep doing this.
Two points which started out nearby to each other will eventually, after a sufficiently large number of folds and
stretches, grow far apart. Formally, a strange attractor is a fractal, and may have noninteger Hausdorff dimension.
(We won’t discuss fractals and Hausdorff dimension here.)

2.7 The Lorenz Model

The canonical example of an N = 3 strange attractor is found in the Lorenz model. E. N. Lorenz, in a seminal
paper from the early 1960’s, reduced the essential physics of the coupled partial differential equations describing
Rayleigh-Benard convection (a fluid slab of finite thickness, heated from below – in Lorenz’s case a model of the
atmosphere warmed by the ocean) to a set of twelve coupled nonlinear ordinary differential equations. Lorenz’s
intuition was that his weather model should exhibit recognizable patterns over time. What he found instead was
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Figure 2.14: (a) Evolution of the Lorenz equations for σ = 10, b = 8
3 , and r = 15, with initial conditions

(X,Y, Z) = (0, 1, 0), projected onto the (X,Z) plane. The attractor is a stable spiral. (b) - (d) Chaotic regime
(r = 28) evolution showing sensitive dependence on initial conditions. The magenta and green curves differ in
their initial X coordinate by 10−5. (Source: Wikipedia)

that in some cases, changing his initial conditions by a part in a thousand rapidly led to totally different behavior.
This sensitive dependence on initial conditions is a hallmark of chaotic systems.

The essential physics (or mathematics?) of Lorenz’s N = 12 system is elicited by the reduced N = 3 system,

Ẋ = −σX + σY

Ẏ = rX − Y −XZ

Ż = XY − bZ ,

(2.70)

where σ, r, and b are all real and positive. Here t is the familiar time variable (appropriately scaled), and (X,Y, Z)
represent linear combinations of physical fields, such as global wind current and poleward temperature gradient.
These equations possess a symmetry under (X,Y, Z) → (−X,−Y, Z), but what is most important is the presence
of nonlinearities in the second and third equations.

The Lorenz system is dissipative because phase space volumes contract:

∇·V =
∂Ẋ

∂X
+

∂Ẏ

∂Y
+

∂Ż

∂Z
= −(σ + b+ 1) . (2.71)

Thus, volumes contract under the flow. Another property is the following. Let

F (X,Y, Z) = 1
2X

2 + 1
2Y

2 + 1
2 (Z − r − σ)2 . (2.72)

Then

Ḟ = XẊ + Y Ẏ + (Z − r − σ)Ż

= −σX2 − Y 2 − b
(
Z − 1

2r − 1
2σ

)2
+ 1

4b(r + σ)2 .
(2.73)

Thus, Ḟ < 0 outside an ellipsoid, which means that all solutions must remain bounded in phase space for all
times.
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Figure 2.15: Left: Evolution of the Lorenz equations for σ = 10, b = 8
3 , and r = 28, with initial conditions

(X0, Y0, Z0) = (0, 1, 0), showing the ‘strange attractor’. Right: The Lorenz attractor, projected onto the (X,Z)
plane. (Source: Wikipedia)

2.7.1 Fixed point analysis

Setting Ẋ = Ẏ = Ż = 0, we find three solutions. One solution which is always present is X∗ = Y ∗ = Z∗ = 0. If
we linearize about this solution, we obtain

d

dt





δX
δY
δZ



 =





−σ σ 0
r −1 0
0 0 −b









δX
δY
δZ



 . (2.74)

The eigenvalues of the linearized dynamics are found to be

λ1,2 = − 1
2 (1 + σ)± 1

2

√

(1 + σ)2 + 4σ(r − 1) (2.75)

λ3 = −b ,

and thus if 0 < r < 1 all three eigenvalues are negative, and the fixed point is a stable node. If, however, r > 1,

then λ2 > 0 and the fixed point is attractive in two directions but repulsive in a third, corresponding to a three-
dimensional version of a saddle point.

For r > 1, a new pair of solutions emerges, with

X∗ = Y ∗ = ±
√

b(r − 1) , Z∗ = r − 1 . (2.76)

Linearizing about either one of these fixed points, we find

d

dt





δX
δY
δZ



 =





−σ σ 0
1 −1 −X∗

X∗ X∗ −b









δX
δY
δZ



 . (2.77)

The characteristic polynomial of the linearized map is

P (λ) = λ3 + (b+ σ + 1)λ2 + b(σ + r)λ + 2b(r − 1) . (2.78)
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Figure 2.16: X(t) for the Lorenz equations with σ = 10, b = 8
3 , r = 28, and initial conditions (X0, Y0, Z0) =

(−2.7,−3.9, 15.8), and initial conditions (X0, Y0, Z0) = (−2.7001,−3.9, 15.8).

Since b, σ, and r are all positive, P ′(λ) > 0 for all λ ≥ 0. Since P (0) = 2b(r − 1) > 0, we may conclude that there is

always at least one eigenvalue λ1 which is real and negative. The remaining two eigenvalues are either both real

and negative, or else they occur as a complex conjugate pair: λ2,3 = α ± iβ. The fixed point is stable provided
α < 0. The stability boundary lies at α = 0. Thus, we set

P (iβ) =
[

2b(r − 1)− (b + σ + 1)β2
]

+ i
[

b(σ + r) − β2
]

β = 0 , (2.79)

which results in two equations. Solving these two equations for r(σ, b), we find

rc =
σ(σ + b+ 3)

σ − b− 1
. (2.80)

The fixed point is stable for r ∈
[
1, rc

]
. These fixed points correspond to steady convection. The approach to this

fixed point is shown in Fig. 2.14.

The Lorenz system has commonly been studied with σ = 10 and b = 8
3 . This means that the volume collapse is

very rapid, since ∇ · V = − 41
3 ≈ −13.67, leading to a volume contraction of e−41/3 ≃ 1.16 × 10−6 per unit time.

For these parameters, one also has rc =
470
19 ≈ 24.74. The capture by the strange attractor is shown in Fig. 2.15.

In addition to the new pair of fixed points, a strange attractor appears for r > rs ≃ 24.06. In the narrow interval
r ∈ [24.06, 24.74] there are then three stable attractors, two of which correspond to steady convection and the third
to chaos. Over this interval, there is also hysteresis. I.e. starting with a convective state for r < 24.06, the system
remains in the convective state until r = 24.74, when the convective fixed point becomes unstable. The system is
then driven to the strange attractor, corresponding to chaotic dynamics. Reversing the direction of r, the system
remains chaotic until r = 24.06, when the strange attractor loses its own stability.

2.7.2 Poincaré section

One method used by Lorenz in analyzing his system was to plot its Poincaré section. This entails placing one con-
straint on the coordinates (X,Y, Z) to define a two-dimensional surface Σ, and then considering the intersection

of this surface Σ with a given phase curve for the Lorenz system. Lorenz chose to set Ż = 0, which yields the

surface Z = b−1XY . Note that since Ż = 0, Z(t) takes its maximum and minimum values on this surface; see the



22 CHAPTER 2. MAPS, STRANGE ATTRACTORS, AND CHAOS

Figure 2.17: Left: Lorenz attractor for b = 8
3 , σ = 10, and r = 28. Maxima of Z are depicted by stars. Right:

Relation between successive maxima ZN along the strange attractor.

left panel of Fig. 2.17. By plotting the values of the maxima ZN as the integral curve successively passed through
this surface, Lorenz obtained results such as those shown in the right panel of Fig. 2.17, which has the form of a
one-dimensional map and may be analyzed as such. Thus, chaos in the Lorenz attractor can be related to chaos in
a particular one-dimensional map, known as the return map for the Lorenz system.

2.7.3 Rössler System

The strange attractor is one of the hallmarks of the Lorenz system. Another simple dynamical system which
possesses a strange attractor is the Rössler system. This is also described by N = 3 coupled ordinary differential
equations, viz.

Ẋ = −Y − Z

Ẏ = Z + aY

Ż = b+ Z(X − c) ,

(2.81)

typically studied as a function of c for a = b = 1
5 . In Fig. 2.19, we present results from work by Crutchfield et

al. (1980). The transition from simple limit cycle to strange attractor proceeds via a sequence of period-doubling
bifurcations, as shown in the figure. A convenient diagnostic for examining this period-doubling route to chaos is
the power spectral density, or PSD, defined for a function F (t) as

ΦF (ω) =

∣
∣
∣
∣
∣

∞∫

−∞

dω

2π
F (t) e−iωt

∣
∣
∣
∣
∣

2

=
∣
∣F̂ (ω)

∣
∣
2
. (2.82)

As one sees in Fig. 2.19, as c is increased past each critical value, the PSD exhibits a series of frequency halvings
(i.e. period doublings). All harmonics of the lowest frequency peak are present. In the chaotic region, where
c > c∞ ≈ 4.20, the PSD also includes a noisy broadband background.
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Figure 2.18: Period doubling bifurcations of the Rössler attractor, projected onto the (x, y) plane, for nine values
of c, with a = b = 1

10 .

Figure 2.19: Period doubling bifurcations of the Rössler attractor with a = b = 1
5 , projected onto the (X,Y) plane,

for eight values of c, and corresponding power spectral density for Z(t). (a) c = 2.6; (b) c = 3.5; (c) c = 4.1; (d)
c = 4.18; (e) c = 4.21; (f) c = 4.23; (g) c = 4.30; (h) c = 4.60.


