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Chapter 3

Nonlinear Oscillators

3.1 Weakly Perturbed Linear Oscillators

Consider a nonlinear oscillator described by the equation of motion

ẍ+Ω2
0 x = ǫ h(x) . (3.1)

Here, ǫ is a dimensionless parameter, assumed to be small, and h(x) is a nonlinear function of x. In general, we
might consider equations of the form

ẍ+Ω2
0 x = ǫ h(x, ẋ) , (3.2)

such as the van der Pol oscillator,
ẍ+ µ(x2 − 1)ẋ+Ω2

0 x = 0 . (3.3)

First, we will focus on nondissipative systems, i.e. where we may write mẍ = −∂xV , with V (x) some potential.

As an example, consider the simple pendulum, which obeys

θ̈ +Ω2
0 sin θ = 0 , (3.4)

where Ω2
0 = g/ℓ, with ℓ the length of the pendulum. We may rewrite his equation as

θ̈ +Ω2
0 θ = Ω2

0 (θ − sin θ)

= 1
6 Ω

2
0 θ

3 − 1
120 Ω

2
0 θ

5 + . . .
(3.5)

The RHS above is a nonlinear function of θ. We can define this to be h(θ), and take ǫ = 1.

3.1.1 Naı̈ve Perturbation theory and its failure

Let’s assume though that ǫ is small, and write a formal power series expansion of the solution x(t) to equation 3.1
as

x = x0 + ǫ x1 + ǫ2 x2 + . . . . (3.6)

We now plug this into 3.1. We need to use Taylor’s theorem,

h(x0 + η) = h(x0) + h′(x0) η +
1
2 h

′′(x0) η
2 + . . . (3.7)

1



2 CHAPTER 3. NONLINEAR OSCILLATORS

with
η = ǫ x1 + ǫ2 x2 + . . . . (3.8)

Working out the resulting expansion in powers of ǫ is tedious. One finds

h(x) = h(x0) + ǫ h′(x0)x1 + ǫ2
{

h′(x0)x2 +
1
2 h

′′(x0)x
2
1

}

+ . . . . (3.9)

Equating terms of the same order in ǫ, we obtain a hierarchical set of equations,

ẍ0 +Ω2
0 x0 = 0

ẍ1 +Ω2
0 x1 = h(x0)

ẍ2 +Ω2
0 x2 = h′(x0)x1

ẍ3 +Ω2
0 x3 = h′(x0)x2 +

1
2 h

′′(x0)x
2
1

(3.10)

et cetera, where prime denotes differentiation with respect to argument. The first of these is easily solved: x0(t) =

A cos(Ω0t + ϕ), where A and ϕ are constants. This solution then is plugged in at the next order, to obtain an

inhomogeneous equation for x1(t). Solve for x1(t) and insert into the following equation for x2(t), etc. It looks
straightforward enough.

The problem is that resonant forcing terms generally appear in the RHS of each equation of the hierarchy past the

first. Define θ ≡ Ω0t+ ϕ. Then x0(θ) is an even periodic function of θ with period 2π, hence so is h(x0). We may

then expand h
(
x0(θ)

)
in a Fourier series:

h
(
A cos θ

)
=

∞∑

n=0

hn(A) cos(nθ) . (3.11)

The n = 1 term leads to resonant forcing. Thus, the solution for x1(t) is

x1(t) =
1

Ω2
0

∞∑

n=0
(n 6=1)

hn(A)

1− n2
cos(nΩ0t+ nϕ) +

h1(A)

2Ω0

t sin(Ω0t+ ϕ) , (3.12)

which increases linearly with time. As an example, consider a cubic nonlinearity with h(x) = r x3, where r is a
constant. Then using

cos3θ = 3
4 cos θ +

1
4 cos(3θ) , (3.13)

we have h1 = 3
4 rA

3 and h3 = 1
4 rA

3.

3.1.2 Poincaré-Lindstedt method

The problem here is that the nonlinear oscillator has a different frequency than its linear counterpart. Indeed, if
we assume the frequency Ω is a function of ǫ, with

Ω(ǫ) = Ω0 + ǫΩ1 + ǫ2Ω2 + . . . , (3.14)

then subtracting the unperturbed solution from the perturbed one and expanding in ǫ yields

cos(Ωt) − cos(Ω0t) = − sin(Ω0t) (Ω −Ω0) t− 1
2 cos(Ω0t) (Ω −Ω0)

2 t2 + . . .

= −ǫ sin(Ω0t)Ω1t− ǫ2
{

sin(Ω0t)Ω2t+
1
2 cos(Ω0t)Ω

2
1t

2
}

+O(ǫ3) .
(3.15)
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What perturbation theory can do for us is to provide a good solution up to a given time, provided that ǫ is sufficiently
small. It will not give us a solution that is close to the true answer for all time. We see above that in order to do
that, and to recover the shifted frequency Ω(ǫ), we would have to resum perturbation theory to all orders, which
is a daunting task.

The Poincaré-Lindstedt method obviates this difficulty by assuming Ω = Ω(ǫ) from the outset. Define a dimen-
sionless time s ≡ Ωt and write 3.1 as

Ω2 d
2x

ds2
+Ω2

0 x = ǫ h(x) , (3.16)

where

x = x0 + ǫ x1 + ǫ2 x2 + . . .

Ω2 = a0 + ǫ a1 + ǫ2 a2 + . . . .
(3.17)

We now plug the above expansions into 3.16:

(
a0 + ǫ a1+ǫ

2 a2 + . . .
)
(
d2x0
ds2

+ ǫ
d2x1
ds2

+ ǫ2
d2x2
ds2

+ . . .

)

+Ω2
0

(
x0 + ǫ x1 + ǫ2 x2 + . . .

)

= ǫ h(x0) + ǫ2 h′(x0)x1 + ǫ3
{

h′(x0)x2 +
1
2 h

′′(x0)x
2
1

}

+ . . .

(3.18)

Now let’s write down equalities at each order in ǫ:

a0
d2x0
ds2

+Ω2
0 x0 = 0 (3.19)

a0
d2x1
ds2

+Ω2
0 x1 = h(x0)− a1

d2x0
ds2

(3.20)

a0
d2x2
ds2

+Ω2
0 x2 = h′(x0)x1 − a2

d2x0
ds2

− a1
d2x1
ds2

, (3.21)

et cetera.

The first equation of the hierarchy is immediately solved by

a0 = Ω2
0 , x0(s) = A cos(s+ ϕ) . (3.22)

At O(ǫ), then, we have

d2x1
ds2

+ x1 = Ω−2
0 h

(
A cos(s+ ϕ)

)
+Ω−2

0 a1A cos(s+ ϕ) . (3.23)

The LHS of the above equation has a natural frequency of unity (in terms of the dimensionless time s). We expect

h(x0) to contain resonant forcing terms, per 3.11. However, we now have the freedom to adjust the undetermined

coefficient a1 to cancel any such resonant term. Clearly we must choose

a1 = −h1(A)
A

. (3.24)

The solution for x1(s) is then

x1(s) =
1

Ω2
0

∞∑

n=0
(n 6=1)

hn(A)

1− n2
cos(ns+ nϕ) , (3.25)
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which is periodic and hence does not increase in magnitude without bound, as does 3.12. The perturbed frequency
is then obtained from

Ω2 = Ω2
0 − h1(A)

A
ǫ+O(ǫ2) =⇒ Ω(ǫ) = Ω0 −

h1(A)

2AΩ0

ǫ +O(ǫ2) . (3.26)

Note that Ω depends on the amplitude of the oscillations.

As an example, consider an oscillator with a quartic nonlinearity in the potential, i.e. h(x) = r x3. Then

h
(
A cos θ

)
= 3

4rA
3 cos θ + 1

4rA
3 cos(3θ) . (3.27)

We then obtain, setting ǫ = 1 at the end of the calculation,

Ω = Ω0 −
3 rA2

8Ω0

+ . . . (3.28)

where the remainder is higher order in the amplitude A. In the case of the pendulum,

θ̈ +Ω2
0 θ =

1
6Ω

2
0 θ

3 +O
(
θ5
)
, (3.29)

and with r = 1
6 Ω

2
0 and θ0(t) = θ0 sin(Ωt), we find

T (θ0) =
2π

Ω
=

2π

Ω0

·
{

1 + 1
16 θ

2
0 + . . .

}

. (3.30)

One can check that this is correct to lowest nontrivial order in the amplitude, using the exact result for the period,

T (θ0) =
4

Ω0

K
(
sin2 1

2θ0
)
, (3.31)

where K(x) is the complete elliptic integral.

The procedure can be continued to the next order, where the free parameter a2 is used to eliminate resonant forcing
terms on the RHS.

A good exercise to test one’s command of the method is to work out the lowest order nontrivial corrections to the
frequency of an oscillator with a quadratic nonlinearity, such as h(x) = rx2. One finds that there are no resonant
forcing terms at first order in ǫ, hence one must proceed to second order to find the first nontrivial corrections to
the frequency.

3.2 Multiple Time Scale Method

Another method of eliminating secular terms (i.e. driving terms which oscillate at the resonant frequency of the
unperturbed oscillator), and one which has applicability beyond periodic motion alone, is that of multiple time
scale analysis. Consider the equation

ẍ+ x = ǫ h(x, ẋ) , (3.32)

where ǫ is presumed small, and h(x, ẋ) is a nonlinear function of position and/or velocity. We define a hierarchy
of time scales: Tn ≡ ǫn t. There is a normal time scale T0 = t, slow time scale T1 = ǫt, a ‘superslow’ time scale
T2 = ǫ2t, etc. Thus,

d

dt
=

∂

∂T0
+ ǫ

∂

∂T1
+ ǫ2

∂

∂T2
+ . . . =

∞∑

n=0

ǫn
∂

∂Tn
. (3.33)
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Next, we expand

x(t) =

∞∑

n=0

ǫn xn(T0 , T1, . . .) . (3.34)

Thus, we have
( ∞∑

n=0

ǫn
∂

∂Tn

)2( ∞∑

k=0

ǫk xk

)

+

∞∑

k=0

ǫk xk = ǫ h

( ∞∑

k=0

ǫk xk ,

∞∑

n=0

ǫn
∂

∂Tn

( ∞∑

k=0

ǫk xk

))

. (3.35)

We now evaluate this order by order in ǫ:

O(ǫ0) :

(
∂2

∂T 2
0

+ 1

)

x0 = 0 (3.36)

O(ǫ1) :

(
∂2

∂T 2
0

+ 1

)

x1 = −2
∂2x0

∂T0 ∂T1
+ h

(

x0 ,
∂x0
∂T0

)

(3.37)

O(ǫ2) :

(
∂2

∂T 2
0

+ 1

)

x2 = −2
∂2x1

∂T0 ∂T1
− 2

∂2x0
∂T0 ∂T2

− ∂2x0
∂T 2

1

(3.38)

+
∂h

∂x

∣
∣
∣
∣
∣

{x0,ẋ0}

x1 +
∂h

∂ẋ

∣
∣
∣
∣
∣

{x0,ẋ0}

(
∂x1
∂T0

+
∂x0
∂T1

)

,

et cetera. The expansion gets more and more tedious with increasing order in ǫ.

Let’s carry this procedure out to first order in ǫ. To order ǫ0,

x0 = A cos
(
T0 + φ

)
, (3.39)

where A and φ are arbitrary (at this point) functions of
{
T1 , T2 , . . .

}
. Now we solve the next equation in the

hierarchy, for x1. Let θ ≡ T0 + φ. Then ∂
∂T0

= ∂
∂θ and we have

(
∂2

∂θ2
+ 1

)

x1 = 2
∂A

∂T1
sin θ + 2A

∂φ

∂T1
cos θ + h

(
A cos θ,−A sin θ

)
. (3.40)

Since the arguments of h are periodic under θ → θ + 2π, we may expand h in a Fourier series:

h(θ) ≡ h
(
A cos θ,−A sin θ

)
=

∞∑

k=1

αk(A) sin(kθ) +

∞∑

k=0

βk(A) cos(kθ) . (3.41)

The inverse of this relation is

β0(A) =

2π∫

0

dθ

2π
h(θ) (3.42)

and, for k > 0,

αk(A) =

2π∫

0

dθ

π
h(θ) sin(kθ) , βk(A) =

2π∫

0

dθ

π
h(θ) cos(kθ) . (3.43)

We now demand that the secular terms on the RHS – those terms proportional to cos θ and sin θ – must vanish.
This means

2
∂A

∂T1
+ α1(A) = 0

2A
∂φ

∂T1
+ β1(A) = 0 .

(3.44)
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These two first order equations require two initial conditions, which is sensible since our initial equation ẍ+ x =
ǫ h(x, ẋ) is second order in time.

With the secular terms eliminated, we may solve for x1:

x1 =
∞∑

k 6=1

{
αk(A)

1− k2
sin(kθ) +

βk(A)

1− k2
cos(kθ)

}

+ C0 cos θ +D0 sin θ . (3.45)

Note: (i) the k = 1 terms are excluded from the sum, and (ii) an arbitrary solution to the homogeneous equation,
i.e. eqn. 3.40 with the right hand side set to zero, is included. The constants C0 and D0 are arbitrary functions of

T1, T2 , etc. .

The equations for A and φ are both first order in T1. They will therefore involve two constants of integration – call

them A0 and φ0. At second order, these constants are taken as dependent upon the superslow time scale T2. The
method itself may break down at this order. (See if you can find out why.)

Let’s apply this to the nonlinear oscillator ẍ + sinx = 0, also known as the simple pendulum. We’ll expand the
sine function to include only the lowest order nonlinear term, and consider

ẍ+ x = 1
6 ǫ x

3 . (3.46)

We’ll assume ǫ is small and take ǫ = 1 at the end of the calculation. This will work provided the amplitude of the

oscillation is itself small. To zeroth order, we have x0 = A cos(t+ φ), as always. At first order, we must solve

(
∂2

∂θ2
+ 1

)

x1 = 2
∂A

∂T1
sin θ + 2A

∂φ

∂T1
cos θ + 1

6 A
2 cos3 θ

= 2
∂A

∂T1
sin θ + 2A

∂φ

∂T1
cos θ + 1

24 A
3 cos(3θ) + 1

8 A
3 cos θ .

(3.47)

We eliminate the secular terms by demanding

∂A

∂T1
= 0 ,

∂φ

∂T1
= − 1

16 A
2 , (3.48)

hence A = A0 and φ = − 1
16 A

2
0 T1 + φ0, and

x(t) = A0 cos
(
t− 1

16 ǫA
2
0 t+ φ0

)

− 1
192 ǫA

3
0 cos

(
3t− 3

16 ǫA
2
0 t+ 3φ0

)
+ . . . ,

(3.49)

which reproduces the result obtained from the Poincaré-Lindstedt method.

3.2.1 Duffing oscillator

Consider the equation

ẍ+ 2ǫµẋ+ x+ ǫx3 = 0 . (3.50)

This describes a damped nonlinear oscillator. Here we assume both the damping coefficient µ̃ ≡ ǫµ as well as
the nonlinearity both depend linearly on the small parameter ǫ. We may write this equation in our standard form
ẍ+ x = ǫ h(x, ẋ), with h(x, ẋ) = −2µẋ− x3.
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For ǫ > 0, which we henceforth assume, it is easy to see that the only fixed point is (x, ẋ) = (0, 0). The linearized
flow in the vicinity of the fixed point is given by

d

dt

(
x
ẋ

)

=

(
0 1
−1 −2ǫµ

)(
x
ẋ

)

+O(x3) . (3.51)

The determinant is D = 1 and the trace is T = −2ǫµ. Thus, provided ǫµ < 1, the fixed point is a stable spiral; for
ǫµ > 1 the fixed point becomes a stable node.

We employ the multiple time scale method to order ǫ. We have x0 = A cos(T0 + φ) to zeroth order, as usual. The
nonlinearity is expanded in a Fourier series in θ = T0 + φ:

h
(

x0 ,
∂x0

∂T0

)

= 2µA sin θ −A3 cos3 θ

= 2µA sin θ − 3
4A

3 cos θ − 1
4A

3 cos 3θ .
(3.52)

Thus, α1(A) = 2µA and β1(A) = − 3
4A

3. We now solve the first order equations,

∂A

∂T1
= − 1

2 α1(A) = −µA =⇒ A(T ) = A0 e
−µT1 (3.53)

as well as
∂φ

∂T1
= −β1(A)

2A
= 3

8A
2
0 e

−2µT1 =⇒ φ(T1) = φ0 +
3A2

0

16µ

(
1− e−2µT1

)
. (3.54)

After elimination of the secular terms, we may read off

x1(T0 , T1) =
1
32A

3(T1) cos
(
3T0 + 3φ(T1)

)
. (3.55)

Finally, we have

x(t) = A0 e
−ǫµt cos

(

t+
3A2

0

16µ

(
1− e−2ǫµt

)
+ φ0

)

+ 1
32ǫA

3
0 e

−3ǫµt cos
(

3t+
9A2

0

16µ

(
1− e−2ǫµt

)
+ 3φ0

)

.

(3.56)

3.2.2 Van der Pol oscillator

Let’s apply this method to another problem, that of the van der Pol oscillator,

ẍ+ ǫ (x2 − 1) ẋ+ x = 0 , (3.57)

with ǫ > 0. The nonlinear term acts as a frictional drag for x > 1, and as a ‘negative friction’ (i.e. increasing the
amplitude) for x < 1. Note that the linearized equation at the fixed point (x = 0, ẋ = 0) corresponds to an unstable
spiral for ǫ < 2.

For the van der Pol oscillator, we have h(x, ẋ) = (1 − x2) ẋ, and plugging in the zeroth order solution x0 =
A cos(t+ φ) gives

h

(

x0 ,
∂x0
∂T0

)

=
(
1−A2 cos2 θ

) (
−A sin θ

)

=
(
−A+ 1

4A
3
)
sin θ + 1

4 A
3 sin(3θ) ,

(3.58)
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with θ ≡ t+ φ. Thus, α1 = −A+ 1
4A

3 and β1 = 0, which gives φ = φ0 and

2
∂A

∂T1
= A− 1

4A
3 . (3.59)

The equation for A is easily integrated:

dT1 = − 8 dA

A (A2 − 4)
=

(
2

A
− 1

A− 2
− 1

A+ 2

)

dA = d ln

(
A

A2 − 4

)

=⇒ A(T1) =
2

√

1−
(
1− 4

A2
0

)
exp(−T1)

.
(3.60)

Thus,

x0(t) =
2 cos(t+ φ0)

√

1−
(
1− 4

A2
0

)
exp(−ǫt)

. (3.61)

This behavior describes the approach to the limit cycle 2 cos(t+ φ0). With the elimination of the secular terms, we
have

x1(t) = − 1
32A

3 sin(3θ) = −
1
4 sin

(
3t+ 3φ0

)

[

1−
(
1− 4

A2
0

)
exp(−ǫt)

]3/2
. (3.62)

3.3 Forced Nonlinear Oscillations

The forced, damped linear oscillator,

ẍ+ 2µẋ+ x = f0 cosΩt (3.63)

has the solution
x(t) = xh(t) + C(Ω) cos

(
Ωt+ δ(Ω)

)
, (3.64)

where xh(t) = A+ e
λ+t + A− e

λ−t is the solution to the homogeneous equation (i.e. with f0 = 0), with λ± =

−µ±
√

µ2 − 1 the roots of λ2 + 2µλ+ 1 = 0. The ‘susceptibility’ C and phase shift δ are given by

C(Ω) =
1

√

(Ω2 − 1)2 + 4µ2Ω2
, δ(Ω) = tan−1

(
2µΩ

1− Ω2

)

. (3.65)

The homogeneous solution, xh(t), is a transient and decays exponentially with time, since Re(λ±) < 0. The
asymptotic behavior is a phase-shifted oscillation at the driving frequency Ω.

Now let’s add a nonlinearity. We study the equation

ẍ+ x = ǫ h(x, ẋ) + ǫ f0 cos(t+ ǫνt) . (3.66)

Note that amplitude of the driving term, ǫf0 cos(Ωt), is assumed to be small, i.e. proportional to ǫ, and the driving
frequency Ω = 1+ ǫν is assumed to be close to resonance. (The resonance frequency of the unperturbed oscillator
is ωres = 1.) Were the driving frequency far from resonance, it could be dealt with in the same manner as the
non-secular terms encountered thus far. The situation whenΩ is close to resonance deserves our special attention.

At order ǫ0, we still have x0 = A cos(T0 + φ). We write

Ωt = t+ ǫνt = T0 + νT1 ≡ θ − ψ , (3.67)
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where θ = T0 + φ(T1) as before, and ψ(T1) ≡ φ(T1)− νT1. At order ǫ1, we must then solve

(
∂2

∂θ2
+ 1

)

x1 = 2A′ sin θ + 2Aφ′ cos θ + h
(
A cos θ , −A sin θ

)
+ f0 cos(θ − ψ)

=
∑

k 6=1

(

αk sin(kθ) + βk cos(kθ)
)

+
(

2A′ + α1 + f0 sinψ
)

sin θ

+
(

2Aψ′ + 2Aν + β1 + f0 cosψ
)

cos θ ,

(3.68)

where the prime denotes differentiation with respect to T1. We thus have the N = 2 dynamical system

dA

dT1
= − 1

2α1(A)− 1
2f0 sinψ

dψ

dT1
= −ν − β1(A)

2A
− f0

2A
cosψ .

(3.69)

If we assume that {A,ψ} approaches a fixed point of these dynamics, then at the fixed point these equations

provide a relation between the amplitude A, the ‘detuning’ parameter ν, and the drive f0:

F (A) ≡
[

α1(A)
]2

+
[

2νA+ β1(A)
]2

= f2
0 . (3.70)

In general this is a nonlinear equation for A(f0, ν). The linearized (A,ψ) dynamics in the vicinity of a fixed point
is governed by the matrix

M =





∂Ȧ/∂A ∂Ȧ/∂ψ

∂ψ̇/∂A ∂ψ̇/∂ψ



 =





− 1
2α

′
1(A) νA+ 1

2β1(A)

−β′
1(A)
2A − ν

A −α1(A)
2A



 . (3.71)

If the (A,ψ) dynamics exhibits a stable fixed point (A∗, ψ∗), then one has

x0(t) = A∗ cos(T0 + νT1 + ψ∗) = A∗ cos(Ωt+ ψ∗) . (3.72)

The oscillator’s frequency is then the forcing frequency Ω = 1 + ǫν, in which case the oscillator is said to be
entrained, or synchronized, with the forcing. Note that

detM =
F ′(A∗)

8A∗ .

3.3.1 Forced Duffing oscillator

Thus far our approach has been completely general. We now restrict our attention to the Duffing equation, for
which

α1(A) = 2µA , β1(A) = − 3
4A

3 , (3.73)

which yields the cubic equation

A6 − 16
3 νA

4 + 64
9 (µ2 + ν2)A2 − 16

9 f
2
0 = 0 . (3.74)

Analyzing the cubic is a good exercise. Setting y = A2, we define

G(y) ≡ y3 − 16
3 ν y

2 + 64
9 (µ2 + ν2) y , (3.75)
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Figure 3.1: Phase diagram for the forced Duffing oscillator.

and we seek a solution to G(y) = 16
9 f

2
0 . Setting G′(y) = 0, we find roots at

y± = 16
9 ν ± 8

9

√

ν2 − 3µ2 . (3.76)

If ν2 < 3µ2 the roots are imaginary, which tells us that G(y) is monotonically increasing for real y. There is then a
unique solution to G(y) = 16

9 f
2
0 .

If ν2 > 3µ2, then the cubic G(y) has a local maximum at y = y− and a local minimum at y = y+. For ν < −
√
3µ,

we have y− < y+ < 0, and since y = A2 must be positive, this means that once more there is a unique solution to
G(y) = 16

9 f
2
0 .

For ν >
√
3µ, we have y+ > y− > 0. There are then three solutions for y(ν) for f0 ∈

[
f−
0 , f

+
0

]
, where f±

0 =
3
4

√

G(y∓). If we define κ ≡ ν/µ, then

f±
0 = 8

9 µ
3/2

√

κ3 + 9κ±
√

κ2 − 3 . (3.77)

Figure 3.2: Amplitude A versus detuning ν for the forced Duffing oscillator for three values of the drive f0. The
critical drive is f0,c =

16
35/4

µ3/2. For f0 > f0,c , there is hysteresis as a function of the detuning.
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Figure 3.3: Amplitude versus detuning for the forced Duffing oscillator for ten equally spaced values of f0 between
µ3/2 and 10µ3/2. The critical value is f0,c = 4.0525µ3/2. The red and blue curves are boundaries for the fixed point
classification.

The phase diagram is shown in Fig. 3.1. The minimum value for f0 is f0,c =
16
35/4

µ3/2, which occurs at κ =
√
3.

Thus far we have assumed that the (A,ψ) dynamics evolves to a fixed point. We should check to make sure
that this fixed point is in fact stable. To do so, we evaluate the linearized dynamics at the fixed point. Writing
A = A∗ + δA and ψ = ψ∗ + δψ, we have

d

dT1

(
δA
δψ

)

=M

(
δA
δψ

)

, (3.78)

with

M =






∂Ȧ
∂A

∂Ȧ
∂ψ

∂ψ̇
∂A

∂ψ̇
∂ψ




 =





−µ − 1
2f0 cosψ

3
4A+ f0

2A2 cosψ f0
2A sinψ



 =





−µ νA− 3
8A

3

9
8A− ν

A −µ



 . (3.79)

One then has T = −2µ and
D = µ2 +

(
ν − 3

8A
2
)(
ν − 9

8A
2
)
. (3.80)

Setting D = 1
4T

2 = µ2 sets the boundary between stable spiral and stable node. Setting D = 0 sets the boundary
between stable node and saddle. The fixed point structure is as shown in Fig. 3.3. Though the amplitude exhibits
hysteresis, the oscillator frequency is always synchronized with the forcing as one varies the detuning.

3.3.2 Forced van der Pol oscillator

Consider now a weakly dissipative, weakly forced van der Pol oscillator, governed by the equation

ẍ+ ǫ (x2 − 1) ẋ+ x = ǫ f0 cos(t+ ǫνt) , (3.81)

where the forcing frequency is Ω = 1 + ǫν, which is close to the natural frequency ω0 = 1. We apply the multiple

time scale method, with h(x, ẋ) = (1 − x2) ẋ. As usual, the lowest order solution is x0 = A(T1) cos
(
T0 + φ(T1)

)
,
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Figure 3.4: Amplitude versus detuning for the forced van der Pol oscillator. Fixed point classifications are abbre-
viated SN (stable node), SS (stable spiral), UN (unstable node), US (unstable spiral), and SP (saddle point).

where T0 = t and T1 = ǫt. Again, we define θ ≡ T0 + φ(T1) and ψ(T1) ≡ φ(T1)− νT1. From

h(A cos θ,−A sin θ) =
(
1
4A

3 −A
)
sin θ + 1

4A
3 sin(3θ) , (3.82)

we arrive at
(
∂2

∂θ2
+ 1

)

x1 = −2
∂2x0

∂T0 ∂T1
+ h

(

x0 ,
∂x0
∂T0

)

=
(
1
4A

3 −A+ 2A′ + f0 sinψ
)
sin θ +

(
2Aψ′ + 2νA+ f0 cosψ

)
cos θ + 1

4A
3 sin(3θ) .

(3.83)

We eliminate the secular terms, proportional to sin θ and cos θ, by demanding

dA

dT1
= 1

2A− 1
8A

3 − 1
2f0 sinψ (3.84)

dψ

dT1
= −ν − f0

2A
cosψ . (3.85)

Stationary solutions have A′ = ψ′ = 0, hence cosψ = −2νA/f0 , and hence

f2
0 = 4ν2A2 +

(
1− 1

4A
2
)2
A2

= 1
16A

6 − 1
2A

4 + (1 + 4ν2)A2 .
(3.86)

For this solution, we have
x0 = A∗ cos(T0 + νT1 + ψ∗) , (3.87)
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Figure 3.5: Phase diagram for the weakly forced van der Pol oscillator in the (ν2, f2
0 ) plane. Inset shows detail.

Abbreviations for fixed point classifications are as in Fig. 3.4.

and the oscillator’s frequency is the forcing frequency Ω = 1 + εν.

To proceed further, let y = A2, and consider the cubic equation

G(y) = 1
16y

3 − 1
2y

2 + (1 + 4ν2) y = f2
0 . (3.88)

Setting G′(y) = 0, we find the roots of G′(y) lie at y± = 4
3 (2 ± u), where u = (1 − 12 ν2)1/2. Thus, the roots are

complex for ν2 > 1
12 , in which case G(y) is monotonically increasing, and there is a unique solution to G(y) = f2

0 .

Since G(0) = 0 < f2
0 , that solution satisfies y > 0. For ν2 < 1

12 , there are two local extrema at y = y±. When

Gmin = G(y+) < f2
0 < G(y−) = Gmax, the cubic equation G(y) = f2

0 has three real, positive roots. This is
equivalent to the condition

− 8
27 u

3 + 8
9 u

2 < 32
27 − f2

0 <
8
27 u

3 + 8
9 u

2 . (3.89)

We can say even more by exploring the behavior of eqs. (3.84) and (3.85) in the vicinity of the fixed points. Writing
A = A∗ + δA and ψ = ψ∗ + δψ, we have

d

dT1





δA

δψ



 =





1
2

(
1− 3

4A
∗2) νA∗

−ν/A∗ 1
2

(
1− 1

4A
∗2)









δA

δψ



 . (3.90)

The eigenvalues of the linearized dynamics at the fixed point are given by λ± = 1
2

(
T ±

√
T 2 − 4D

)
, where T

and D are the trace and determinant of the linearized equation. Recall now the classification scheme for fixed

points of two-dimensional phase flows. When D < 0, we have λ− < 0 < λ+ and the fixed point is a saddle. For
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Figure 3.6: Forced van der Pol system with ǫ = 0.1, ν = 0.4 for three values of f0. The limit entrained solution
becomes unstable at f0 = 1.334.

0 < 4D < T 2, both eigenvalues have the same sign, so the fixed point is a node. For 4D > T 2, the eigenvalues
form a complex conjugate pair, and the fixed point is a spiral. A node/spiral fixed point is stable if T < 0 and
unstable if T > 0. For our forced van der Pol oscillator, we have

T = 1− 1
2A

∗2

D = 1
4

(
1−A∗2 + 3

16A
∗4)+ ν2 .

(3.91)

From these results we can obtain the plot of Fig. 3.4, where amplitude is shown versus detuning. We now ask:

for what values of f2
0 is there hysteretic behavior over a range ν ∈

[
ν−, ν+

]
? Suppose, following the curves of

constant f2
0 in Fig. 3.4, we start somewhere in the upper left corner of the diagram, in the region D > 0 and

f2
0 <

32
27 . Now ramp up ν2 while keeping f2

0 constant until we arrive on the upper branch of the D = 0 curve. An
infinitesimal further increase in ν2 will cause a discontinuous drop in y = A2 to a value below the saddle point
region. Clearly if f2

0 = 1, we will wind up on a branch of this curve for which A2 < 2, which is unstable, and
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so in order to end up on a stable branch, we must start with f2
0 > 1. To find the minimum such value of f2

0 for
which this is possible, we first demand G(y) = 0 as well as D = 0. The second of these conditions is equivalent
to G′(y) = 0. Eliminating y, we obtain the equation 8

27 (2 + u)2(1 − u) = f2
0 , where u =

√
1− 12ν2 as above.

Next, we demand that G(y) = 0 at y = 2 (i.e. the blue line in Fig. 3.4) for the same values of f2
0 and ν2. Thus says

f2
0 = 1

6 (7− 4u2). Eliminating f2
0 , we obtain the equation

8
27 (2 + u)2 (1− u) = 1

6 (7− 4u2) , (3.92)

which is equivalent to the factorized cubic (4u − 1)(2u + 1)2 = 0. The root we seek is u = 1
4 , corresponding to

ν2 = 15
16 · 1

12 and f2
0 = 27

24 . Thus, hysteretic behavior is possible only in the narrow regime f2
0 ∈

[
27
24 ,

32
27

]
. The phase

diagram in the (ν2, f2
0 ) plane is shown in Fig. 3.5. Hysteresis requires two among the three fixed points be stable,

so the system can jump from one stable branch to another as ν is varied. These regions are so small they are only
discernible in the inset.

Finally, we can make the following statement about the global dynamics (i.e. not simply in the vicinity of a fixed
point). For large A, we have

dA

dT1
= − 1

8A
3 + . . . ,

dψ

dT1
= −ν + . . . . (3.93)

This flow is inward, hence if the flow is not to a stable fixed point, it must be attracted to a limit cycle. The limit
cycle necessarily involves several frequencies. This result – the generation of new frequencies by nonlinearities –
is called heterodyning.

We can see heterodyning in action in the van der Pol system. In Fig. 3.5, the blue line which separates stable
and unstable spiral solutions is given by f2

0 = 8ν2 + 1
2 . For example, if we take ν = 0.40 then the boundary lies

at f0 = 1.334. For f0 < 1.334, we expect heterodyning, as the entrained solution is unstable. For f > 1.334 the
solution is entrained and oscillates at a fixed frequency. This behavior is exhibited in Fig. 3.6.

3.4 Synchronization

Thus far we have assumed both the nonlinearity as well as the perturbation are weak. In many systems, we
are confronted with a strong nonlinearity which we can perturb weakly. How does an attractive limit cycle in a
strongly nonlinear system respond to weak periodic forcing? Here we shall follow the nice discussion in the book
of Pikovsky et al.

Consider a forced dynamical system,

ϕ̇ = V (ϕ) + ε f(ϕ, t) . (3.94)

When ε = 0, we assume that the system has at least one attractive limit cycle γ(t) = γ(t + T0). All points on the
limit cycle are fixed under the T0-advance map gT0

, where gτϕ(t) = ϕ(t + τ). The idea is now to parameterize

the points along the limit cycle by a phase angle φ which runs from 0 to 2π such that φ(t) increases by 2π with

each orbit of the limit cycle, with φ increasing uniformly with time, so that φ̇ = ω0 = 2π/T0. Now consider the
action of the T0-advance map gT0

on points in the vicinity of the limit cycle. Since each point γ(φ) on the limit

cycle is a fixed point, and since the limit cycle is presumed to be attractive, we can define the φ-isochrone as the set
of points {ϕ} in phase space which flow to the fixed point γ(φ) under repeated application of gT0

. The isochrones

are (N − 1)-dimensional hypersurfaces.

Equivalently, consider a point ϕ0 ∈ Ωγ lying within the basin of attraction Ωγ of the limit cycle γ(t). We say that
ϕ0 lies along the φ-isochrone if

lim
t→∞

∣
∣
∣ϕ(t)− γ

(

t+
φ

2π
T0

)∣
∣
∣ = 0 , (3.95)
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where ϕ(0) = ϕ0. For each ϕ0 ∈ Ωγ , there exists a unique corresponding value of φ(ϕ0) ∈ [0, 2π]. This is called
the asymptotic (or latent) phase of ϕ0.

To illustrate this, we analyze the example in Pikovsky et al. of the complex amplitude equation (CAE),

dA

dt
= (1 + iα)A− (1 + iβ) |A|2A , (3.96)

where A ∈ C is a complex number. It is convenient to work in polar coordinates, writing A = ReiΘ , in which case
the real and complex parts of the CAE become

Ṙ = (1−R2)R

Θ̇ = α− βR2 .
(3.97)

These equations can be integrated to yield the solution

R(t) =
R0

√

R2
0 + (1−R2

0) e
−2t

Θ(t) = Θ0 + (α− β)t− 1
2β ln

[
R2

0 + (1−R2
0) e

−2t
]

= Θ0 + (α− β) t+ β ln(R/R0) .

(3.98)

As t → ∞, we have R(t) → 1 and Θ̇(t) → ω0. Thus the limit cycle is the circle R = 1, and its frequency is
ω0 = α− β.

Since all points on each isochrone share the same phase, we can evaluate φ̇ along the limit cycle, and thus we

have φ̇ = ω0. The functional form of the isochrones is dictated by the rotational symmetry of the vector field,
which requires φ(R,Θ) = Θ − f(R), where f(R) is an as-yet undetermined function. Taking the derivative, we
immediately find f(R) = β lnR , i.e.

φ(R,Θ) = Θ − β lnR+ c , (3.99)

where c is a constant. We can now check that

φ̇ = Θ̇ − β
Ṙ

R
= α− β = ω0 . (3.100)

Without loss of generality we may take c = 0. Thus the φ-isochrone is given by the curve Θ(R) = φ + β lnR,
which is a logarithmic spiral. These isochrones are depicted in fig. 3.7.

At this point we have defined a phase function φ(ϕ) as the phase of the fixed point along the limit cycle to which
ϕ flows under repeated application of the T0-advance map gT0

. Now let us examine the dynamics of φ for the

weakly perturbed system of eqn. 3.94. We have

dφ

dt
=

N∑

j=1

∂φ

∂ϕj

dϕj
dt

= ω0 + ε
N∑

j=1

∂φ

∂ϕj
fj(ϕ, t) .

(3.101)

We will assume that ϕ is close to the limit cycle, so that ϕ− γ(φ) is small. As an example, consider once more the
complex amplitude equation (3.96), but now adding in a periodic forcing term.

dA

dt
= (1 + iα)A− (1 + iβ) |A|2A+ ε cosωt . (3.102)



3.4. SYNCHRONIZATION 17

Figure 3.7: Isochrones of the complex amplitude equation Ȧ = (1 + iα)A− (1 + iβ)|A|2A, where A = X + iY .

Writing A = X + iY , we have

Ẋ = X − αY − (X − βY )(X2 + Y 2) + ε cosωt

Ẏ = Y + αX − (βX + Y )(X2 + Y 2) .
(3.103)

In Cartesian coordinates, the isochrones for the ε = 0 system are

φ = tan−1(Y/X)− 1
2β ln(X

2 + Y 2) , (3.104)

hence

dφ

dt
= ω0 + ε

∂φ

∂X
cosωt

= α− β − ε

(
βX + Y

X2 + Y 2

)

cosωt

≈ ω0 − ε (β cosφ+ sinφ) cosωt

= ω0 − ε
√

1 + β2 cos(φ− φβ) cosωt .

(3.105)

where φβ = ctn−1β. Note that in the third line above we have invoked R ≈ 1, i.e. we assume that we are close to
the limit cycle.

We now define the function

F (φ, t) ≡
N∑

j=1

∂φ

∂ϕj

∣
∣
∣
∣
γ(φ)

fj (γ(φ), t) . (3.106)
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Figure 3.8: Left panel: graphical analysis of the equation ψ̇ = −ν + εG(ψ). Right panel: Synchronization region
(gray) as a function of detuning ν.

The phase dynamics for φ are now written as

φ̇ = ω0 + ε F (φ, t) . (3.107)

Now F (φ, t) is periodic in both its arguments, so we may write

F (φ, t) =
∑

k,l

Fkl e
i(kφ+lωt) . (3.108)

For the unperturbed problem, we have φ̇ = ω0 , hence resonant terms in the above sum are those for which
kω0 + lω ≈ 0. This occurs when ω ≈ p

q ω0 , where p and q are relatively prime integers. In this case the resonance

condition is satisfied for k = jp and l = −jq for all j ∈ Z. We now separate the resonant from the nonresonant
terms in the (k, l) sum, writing

φ̇ = ω0 + ε
∑

j

Fjp,−jq e
ij(pφ−qωt) +NRT , (3.109)

where NRT denotes nonresonant terms, i.e. those for which (k, l) 6= (jp,−jq) for some integer j. We now average
over short time scales to eliminate the nonresonant terms, and focus on the dynamics of this averaged phase 〈φ〉.

We define the angle ψ ≡ p〈φ〉 − qωt, which obeys

ψ̇ = p 〈φ̇〉 − qω

= (pω0 − qω) + εp
∑

j

Fjp,−jq e
ijψ ≡ −ν + εG(ψ) , (3.110)

where ν ≡ qω − pω0 is the detuning and G(ψ) = p
∑

j Fjp,−jq e
ijψ is the sum over resonant terms. Note that

the nonresonant terms have been eliminated by the aforementioned averaging procedure. This last equation is a
simple N = 1 dynamical system on the circle – a system we have already studied. The dynamics are depicted in
fig. 3.8. If the detuning ν falls within the range [εGmin , εGmax], then ψ flows to a fixed point, and the nonlinear

oscillator is synchronized with the periodic external force, with 〈φ̇〉 → q
p ω. If the detuning is too large and lies

outside this region, then there is no synchronization. Rather, ψ(t) increases on average linearly with time. In this
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case we have 〈φ(t)〉 = φ0 +
q
pωt+

1
p ψ(t), where

dt =
dψ

εG(ψ)− ν
=⇒ Tψ =

π∫

−π

dψ

εG(ψ)− ν
. (3.111)

Thus, ψ(t) = Ωψ t+ Ψ(t), where Ψ(t) = Ψ(t+ T ) is periodic with period Tψ = 2π/Ωψ. This leads to heterodyning
with a beat frequency Ωψ(ν, ε).

Why do we here find the general resonance condition ω = p
q ω0, whereas for weakly forced, weakly nonlinear

oscillators resonance could only occur for ω = ω0? There are two reasons. The main reason is that in the latter
case, the limit cycle is harmonic to zeroth order, with x0(t) = A cos(t + φ). There are only two frequencies,
then, in the Fourier decomposition of the limit cycle: ω0 = ±1. In the strongly nonlinear case, the limit cycle is
decomposed into what is in general a countably infinite set of frequencies which are all multiples of a fundamental
ω0. In addition, if the forcing f(ϕ, t) is periodic in t, its Fourier decomposition in twill involve all integer multiples
of some fundamental ω. Thus, the most general resonance condition is kω0 + lω = 0.

Our analysis has been limited to the lowest order in ε, and we have averaged out the nonresonant terms. When
one systematically accounts for both these features, there are two main effects. One is that the boundaries of
the synchronous region are no longer straight lines as depicted in the right panel of fig. 3.8. The boundaries
themselves can be curved. Moreover, even if there are no resonant terms in the (k, l) sum to lowest order, they
can be generated by going to higher order in ε. In such a case, the width of the synchronization region ∆ν will be
proportional to a higher power of ε: ∆ν ∝ εn, where n is the order of ε where resonant forcing terms first appear
in the analysis.

3.5 Relaxation Oscillations

We saw how to use multiple time scale analysis to identify the limit cycle of the van der Pol oscillator when ǫ is
small. Consider now the opposite limit, where the coefficient of the damping term is very large. We generalize
the van der Pol equation to

ẍ+ µΦ(x) ẋ + x = 0 , (3.112)

and suppose µ ≫ 1. Define now the variable

y ≡ ẋ

µ
+

x∫

0

dx′ Φ(x′)

=
ẋ

µ
+ F (x) ,

(3.113)

where F ′(x) = Φ(x). (y is sometimes called the Liènard variable, and (x, y) the Liènard plane.) Then the original
second order equation may be written as two coupled first order equations:

ẋ = µ
(

y − F (x)
)

(3.114)

ẏ = −x
µ
. (3.115)

Since µ ≫ 1, the first of these equations is fast and the second one slow. The dynamics rapidly achieves y ≈ F (x),
and then slowly evolves along the curve y = F (x), until it is forced to make a large, fast excursion.
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Figure 3.9: Relaxation oscillations in the so-called Liènard plane (x, y). The system rapidly flows to a point on the
curve y = F (x), and then crawls slowly along this curve. The slow motion takes x from −b to −a, after which the
system executes a rapid jump to x = +b, then a slow retreat to x = +a, followed by a rapid drop to x = −b.

A concrete example is useful. Consider F (x) of the form sketched in Fig. 3.9. This is what one finds for the van

der Pol oscillator, where Φ(x) = x2 − 1 and F (x) = 1
3x

3 − x. The limit cycle behavior xLC(t) is sketched in Fig.
3.10. We assume Φ(x) = Φ(−x) for simplicity.

Assuming Φ(x) = Φ(−x) is symmetric, F (x) is antisymmetric. For the van der Pol oscillator and other similar
cases, F (x) resembles the sketch in fig. 3.9. There are two local extrema: a local maximum at x = −a and a local
minimum at x = +a. We define b such that F (b) = F (−a), as shown in the figure; antisymmetry then entails
F (−b) = F (+a). Starting from an arbitrary initial condition, the y dynamics are slow, since ẏ = −µ−1x (we
assume µ ≫ x(0)). So y can be regarded as essentially constant for the fast dynamics of eqn. 3.115, according to
which x(t) flows rapidly to the right if y > F (x) and rapidly to the left if y < F (x). This fast motion stops when
x(t) reaches a point where y = F (x). At this point, the slow dynamics takes over. Assuming y ≈ F (x), we have

y ≈ F (x) ⇒ ẏ = −x
µ
≈ F ′(x) ẋ , (3.116)

which says that

ẋ ≈ − x

µF ′(x)
if y ≈ F (x) (3.117)

over the slow segments of the motion, which are the regions x ∈ [−b,−a] and x ∈ [a, b]. The relaxation oscillation
is then as follows. Starting at x = −b, x(t) increases slowly according to eqn. 3.117. At x = −a, the motion can no
longer follow the curve y = F (x), since ẏ = −µ−1x is still positive. The motion thus proceeds quickly to x = +b,
with

ẋ ≈ µ
(

F (b)− F (x)
)

x ∈
[
− a,+b

]
. (3.118)

After reaching x = +b, the motion once again is slow, and again follows eqn. 3.117, according to which x(t) now
decreases slowly until it reaches x = +a, at which point the motion is again fast, with

ẋ ≈ µ
(

F (a)− F (x)
)

x ∈
[
− b,+a

]
. (3.119)

The cycle then repeats.
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Figure 3.10: A sketch of the limit cycle for the relaxation oscillation studied in this section.

Thus, the limit cycle is given by the following segments:

x ∈ [−b,−a ] (ẋ > 0) : ẋ ≈ − x

µF ′(x)
(3.120)

x ∈ [−a, b ] (ẋ > 0) : ẋ ≈ µ
[
F (b)− F (x)

]
(3.121)

x ∈ [ a, b ] (ẋ < 0) : ẋ ≈ − x

µF ′(x)
(3.122)

x ∈ [−b, a ] (ẋ < 0) : ẋ ≈ µ
[
F (a)− F (x)

]
. (3.123)

A sketch of the limit cycle is given in fig. 3.11, showing the slow and fast portions.

When µ ≫ 1 we can determine approximately the period of the limit cycle. Clearly the period is twice the time
for either of the slow portions, hence

T ≈ 2µ

b∫

a

dx
Φ(x)

x
, (3.124)

where F ′(±a) = Φ(±a) = 0 and F (±b) = F (∓a). For the van der Pol oscillator, with Φ(x) = x2 − 1, we have
a = 1, b = 2, and T ≃ (3− 2 ln 2)µ.

3.5.1 Example problem

Consider the equation

ẍ+ µ
(
|x| − 1

)
ẋ+ x = 0 . (3.125)

Sketch the trajectory in the Liènard plane, and find the approximate period of the limit cycle for µ≫ 1.
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Figure 3.11: Limit cycle for large µ relaxation oscillations, shown in the phase plane (x, ẋ).

Solution : We define

F ′(x) = |x| − 1 ⇒ F (x) =







+ 1
2x

2 − x if x > 0

− 1
2x

2 − x if x < 0 .

(3.126)

We therefore have

ẋ = µ
{
y − F (x)

}
, ẏ = −x

µ
, (3.127)

with y ≡ µ−1 ẋ+ F (x).

Setting F ′(x) = 0 we find x = ±a, where a = 1 and F (±a) = ∓ 1
2 . We also find F (±b) = F (∓a), where b = 1+

√
2.

Thus, the limit cycle is as follows: (i) fast motion from x = −a to x = +b, (ii) slow relaxation from x = +b to
x = +a, (iii) fast motion from x = +a to x = −b, and (iv) slow relaxation from x = −b to x = −a. The period is
approximately the time it takes for the slow portions of the cycle. Along these portions, we have y ≃ F (x), and
hence ẏ ≃ F ′(x) ẋ. But ẏ = −x/µ, so

F ′(x) ẋ ≃ −x
µ

⇒ dt = −µ F
′(x)

x
dx , (3.128)

which we integrate to obtain

T ≃ −2µ

a∫

b

dx
F ′(x)

x
= 2µ

1+
√
2∫

1

dx

(

1− 1

x

)

= 2µ
[√

2− ln
(
1 +

√
2
)]

≃ 1.066µ .

(3.129)
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Figure 3.12: Relaxation oscillations for ẍ+ µ
(
|x| − 1

)
ẋ+ x = 0 plotted in the Liénard plane. The solid black curve

is y = F (x) = 1
2x

2 sgn(x) − x. The variable y is defined to be y = µ−1 ẋ + F (x). Along slow portions of the limit
cycle, y ≃ F (x).

3.5.2 Multiple limit cycles

For the equation
ẍ+ µF ′(x) ẋ + x = 0 , (3.130)

it is illustrative to consider what sort of F (x) would yield more than one limit cycle. Such an example is shown in
fig. 3.13.

In polar coordinates, it is very easy to construct such examples. Consider, for example, the system

ṙ = sin(πr) + ǫ cos θ

θ̇ = b r ,
(3.131)

with |ǫ| < 1. First consider the case ǫ = 0. Clearly the radial flow is outward for sin(πr) > 0 and inward for
sin(πr) < 0. Thus, we have stable limit cycles at r = 2n+ 1 and unstable limit cycles at r = 2n, for all n ∈ Z. With
0 < |ǫ| < 1, we have

ṙ > 0 for r ∈
[
2n+ 1

π sin−1 ǫ , 2n+ 1− 1
π sin−1 ǫ

]
(3.132)

ṙ < 0 for r ∈
[
2n+ 1 + 1

π sin−1 ǫ , 2n+ 2− 1
π sin−1 ǫ

]
(3.133)

The Poincaré-Bendixson theorem then guarantees the existence of stable and unstable limit cycles. We can put
bounds on the radial extent of these limit cycles.

stable limit cycle : r ∈
[
2n+ 1− 1

π sin−1 ǫ , 2n+ 1 + 1
π sin−1 ǫ

]
(3.134)

unstable limit cycle : r ∈
[
2n− 1

π sin−1 ǫ , 2n+ 1
π sin−1 ǫ

]
(3.135)
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Figure 3.13: Liénard plots for systems with one (left) and two (right) relaxation oscillations.

Note that an unstable limit cycle is a repeller, which is to say that it is stable (an attractor) if we run the dynamics
backwards, sending t→ −t.

3.5.3 Example problem

Consider the nonlinear oscillator,

ẍ+ µΦ(x) ẋ + x = 0 , (3.136)

with µ ≫ 1. For each case in fig. 3.14, sketch the flow in the Liènard plane, starting with a few different initial
conditions. For which case(s) do relaxation oscillations occur?

Solution : Recall the general theory of relaxation oscillations. We define

y ≡ ẋ

µ
+

x∫

0

dx′ Φ(x′) =
ẋ

µ
+ F (x) , (3.137)

in which case the second order ODE for the oscillator may be written as two coupled first order ODEs:

ẏ = −x
µ

, ẋ = µ
(

y − F (x)
)

. (3.138)

Since µ ≫ 1, the first of these equations is slow and the second one fast. The dynamics rapidly achieves y ≈ F (x),
and then slowly evolves along the curve y = F (x), until it is forced to make a large, fast excursion.

To explore the dynamics in the Liènard plane, we plot F (x) versus x, which means we must integrate Φ(x). This
is done for each of the three cases in fig. 3.14.
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Figure 3.14: Three instances of Φ(x).

Note that a fixed point corresponds to x = 0 and ẋ = 0. In the Liènard plane, this means x = 0 and y = F (0).
Linearizing by setting x = δx and y = F (0) + δy, we have1

d

dt

(
δx
δy

)

=

(
µ δy − µF ′(0) δx

−µ−1 δx

)

=

(
−µF ′(0) µ
−µ−1 0

)(
δx
δy

)

. (3.139)

The linearized map has trace T = −µF ′(0) and determinant D = 1. Since µ ≫ 1 we have 0 < D < 1
4T

2, which
means the fixed point is either a stable node, for F ′(0) > 0, or an unstable node, for F ′(0) < 0. In cases (a) and
(b) the fixed point is a stable node, while in case (c) it is unstable. The flow in case (a) always collapses to the
stable node. In case (b) the flow either is unbounded or else it collapses to the stable node. In case (c), all initial
conditions eventually flow to a unique limit cycle exhibiting relaxation oscillations.

Figure 3.15: Phase flows in the Liénard plane for the three examples in fig. 3.14.

3.6 Appendix I : Multiple Time Scale Analysis to O(ǫ2)

Problem : A particle of mass m moves in one dimension subject to the potential

U(x) = 1
2mω2

0 x
2 + 1

3ǫmω2
0

x3

a
, (3.140)

1We could, of course, linearize about the fixed point in (x, ẋ) space and obtain the same results.
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where ǫ is a dimensionless parameter.

(a) Find the equation of motion for x. Show that by rescaling x and t you can write this equation in dimensionless
form as

d2u

ds2
+ u = −ǫu2 . (3.141)

Solution : The equation of motion is

mẍ = −U ′(x)

= −mω2
0x− ǫmω2

0

x2

a
.

(3.142)

We now define s ≡ ω0t and u ≡ x/a, yielding

d2u

ds2
+ u = −ǫu2 . (3.143)

(b) You are now asked to perform an O
(
ǫ2
)

multiple time scale analysis of this problem, writing

T0 = s , T1 = ǫs , T2 = ǫ2s ,

and
u = u0 + ǫu1 + ǫ2u2 + . . . .

This results in a hierarchy of coupled equations for the functions {un}. Derive the first three equations in the
hierarchy.

Solution : We have
d

ds
=

∂

∂T0
+ ǫ

∂

∂T1
+ ǫ2

∂

∂T2
+ . . . . (3.144)

Therefore

(
∂

∂T0
+ ǫ

∂

∂T1
+ ǫ2

∂

∂T2
+ . . .

)2 (

u0 + ǫ u1 + ǫ2 u2 + . . .
)

+
(

u0 + ǫ u1 + ǫ2 u2 + . . .
)

= −ǫ
(

u0 + ǫ u1 + ǫ2 u2 + . . .
)2

.

(3.145)

Expanding and then collecting terms order by order in ǫ, we derive the hierarchy. The first three levels are

∂2u0
∂T 2

0

+ u0 = 0 (3.146)

∂2u1
∂T 2

0

+ u1 = −2
∂2u0

∂T0 ∂T1
− u20 (3.147)

∂2u2
∂T 2

0

+ u2 = −2
∂2u0

∂T0 ∂T2
− ∂2u0
∂T 2

1

− 2
∂2u1

∂T0 ∂T1
− 2 u0 u1 . (3.148)

(c) Show that there is no frequency shift to first order in ǫ.

Solution : At the lowest (first) level of the hierarchy, the solution is

u0 = A(T1, T2) cos
(
T0 + φ(T1, T2)

)
. (3.149)
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At the second level, then,

∂2u1
∂T 2

0

+ u1 = 2
∂A

∂T1
sin(T0 + φ) + 2A

∂φ

∂T1
cos(T0 + φ)−A2 cos2(T0 + φ) . (3.150)

We eliminate the resonant forcing terms on the RHS by demanding

∂A

∂T1
= 0 and

∂φ

∂T1
= 0 . (3.151)

Thus, we must have A = A(T2) and φ = φ(T2). To O(ǫ), then, φ is a constant, which means there is no frequency
shift at this level of the hierarchy.

(d) Find u0(s) and u1(s).

Solution :The equation for u1 is that of a non-resonantly forced harmonic oscillator. The solution is easily found
to be

u1 = − 1
2A

2 + 1
6A

2 cos(2T0 + 2φ) . (3.152)

We now insert this into the RHS of the third equation in the hierarchy:

∂2u2
∂T 2

0

+ u2 = −2
∂2u0

∂T0 ∂T2
− 2 u0 u1 (3.153)

= 2
∂A

∂T2
sin(T0 + φ) + 2A

∂φ

∂T2
cos(T0 + φ) − 2A cos(T0 + φ)

{

− 1
2A

2 + 1
6A

2 cos(2T0 + 2φ)
}

= 2
∂A

∂T2
sin(T0 + φ) +

(

2A
∂φ

∂T2
+ 5

6A
3
)

cos(T0 + φ)− 1
6A

3 cos(3T0 + 3φ) .

Setting the coefficients of the resonant terms on the RHS to zero yields

∂A

∂T2
= 0 ⇒ A = A0

2A
∂φ

∂T2
+ 5

6A
3 = 0 ⇒ φ = − 5

12 A
2
0 T2 .

(3.154)

Therefore,

u(s) =

u0(s)
︷ ︸︸ ︷

A0 cos
(
s− 5

12 ǫ
2A2

0 s
)
+

ǫ u1(s)
︷ ︸︸ ︷
1
6 ǫA

2
0 cos

(
2s− 5

6 ǫ
2A2

0 s
)
− 1

2 ǫA
2
0 +O

(
ǫ2
)

(3.155)

3.7 Appendix II : MSA and Poincaré-Lindstedt Methods

3.7.1 Problem using multiple time scale analysis

Consider the central force law F (r) = −k rβ2−3.

(a) Show that a stable circular orbit exists at radius r0 = (ℓ2/µk)1/β
2

.

Solution : For a circular orbit, the effective radial force must vanish:

Feff(r) =
ℓ2

µr3
+ F (r) =

ℓ2

µr3
− k

r3−β2 = 0 . (3.156)
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Solving for r = r0, we have r0 = (ℓ2/µk)1/β
2

. The second derivative of Ueff(r) at this point is

U ′′
eff(r0) = −F ′

eff(r0) =
3ℓ2

µr40
+ (β2 − 3)

k

r4−β
2

0

=
β2ℓ2

µr40
, (3.157)

which is manifestly positive. Thus, the circular orbit at r = r0 is stable.

(b) Show that the geometric equation for the shape of the orbit may be written

d2s

dφ2
+ s = K(s) (3.158)

where s = 1/r, and

K(s) = s0

(
s

s0

)1−β2

, (3.159)

with s0 = 1/r0.

Solution : We have previously derived (e.g. in the notes) the equation

d2s

dφ2
+ s = − µ

ℓ2s2
F (s−1) . (3.160)

From the given F (r), we then have
d2s

dφ2
+ s =

µk

ℓ2
s1−β

2 ≡ K(s) , (3.161)

where s0 ≡ (µk/ℓ2)1/β
2

= 1/r0, and where

K(s) = s0

(
s

s0

)1−β2

. (3.162)

(c) Writing s ≡ (1 + u) s0, show that u satisfies

1

β2

d2u

dφ2
+ u = a1 u

2 + a2 u
3 + . . . . (3.163)

Find a1 and a2.

Solution : Writing s ≡ s0 (1 + u), we have

d2u

dφ2
+ 1+ u = (1 + u)1−β

2

= 1 + (1− β2)u+ 1
2 (−β

2)(1 − β2)u2

+ 1
6 (−1− β2)(−β2)(1− β2)u3 + . . . .

(3.164)

Thus,
1

β2

d2u

dφ2
+ u = a1 u

2 + a2 u
3 + . . . , (3.165)

where
a1 = − 1

2 (1− β2) , a2 = 1
6 (1− β4) . (3.166)
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(d) Now let us associate a power of ε with each power of the deviation u and write

1

β2

d2u

dφ2
+ u = ε a1 u

2 + ε2 a2 u
3 + . . . , (3.167)

Solve this equation using the method of multiple scale analysis (MSA). You will have to go to second order in the
multiple scale expansion, writing

X ≡ βφ , Y ≡ ε βφ , Z ≡ ε2 βφ (3.168)

and hence
1

β

d

dφ
=

∂

∂X
+ ε

∂

∂Y
+ ε2

∂

∂Z
+ . . . . (3.169)

Further writing

u = u0 + ε u1 + ε2 u2 + . . . , (3.170)

derive the equations for the multiple scale analysis, up to second order in ε.

Solution : We now associate one power of ε with each additional power of u beyond order u1. In this way, a
uniform expansion in terms of ε will turn out to be an expansion in powers of the amplitude of the oscillations.
We’ll see how this works below. We then have

1

β2

d2u

dφ2
+ u = a1 ε u

2 + a2 ε
2 u3 + . . . , (3.171)

with ε = 1. We now perform a multiple scale analysis, writing

X ≡ βφ , Y ≡ ε βφ , Z ≡ ε2 βφ . (3.172)

This entails
1

β

d

dφ
=

∂

∂X
+ ε

∂

∂Y
+ ε2

∂

∂Z
+ . . . . (3.173)

We also expand u in powers of ε, as

u = u0 + ε u1 + ε2 u2 + . . . . (3.174)

Thus, we obtain

(
∂X + ε ∂Y + ε2 ∂Z + . . .

)2
(u0 + εu1 + ε2u2 + . . . ) + (u0 + εu1 + ε2u2 + . . . )

= ε a1 (u0 + εu1 + ε2u2 + . . . )2 + ε2 a2 (u0 + εu1 + ε2u2 + . . . )3 + . . . .
(3.175)

We now extract a hierarchy of equations, order by order in powers of ε.

We find, out to order ε2,

O(ε0) :
∂2u0
∂X2

+ u0 = 0 (3.176)

O(ε1) :
∂2u1
∂X2

+ u1 = −2
∂2u0
∂Y ∂X

+ a1 u
2
0 (3.177)

O(ε2) :
∂2u2
∂X2

+ u2 = −2
∂2u0
∂Z ∂X

− ∂2u0
∂Y 2

− 2
∂2u1
∂Z ∂X

+ 2a1 u0 u1 + a2 u
3
0 . (3.178)

(e) Show that there is no shift of the angular period ∆φ = 2π/β if one works only to leading order in ε.
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Solution : The O(ε0) equation in the hierarchy is solved by writing

u0 = A cos(X + ψ) , (3.179)

where
A = A(Y, Z) , ψ = ψ(Y, Z) . (3.180)

We define θ ≡ X + ψ(Y, Z), so we may write u0 = A cos θ. At the next order, we obtain

∂2u1
∂θ2

+ u1 = 2
∂A

∂Y
sin θ + 2A

∂ψ

∂Y
cos θ + a1A

2 cos θ

= 2
∂A

∂Y
sin θ + 2A

∂ψ

∂Y
cos θ + 1

2a1A
2 + 1

2a1A
2 cos 2θ .

(3.181)

In order that there be no resonantly forcing terms on the RHS of eqn. 3.181, we demand

∂A

∂Y
= 0 ,

∂ψ

∂Y
= 0 ⇒ A = A(Z) , ψ = ψ(Z) . (3.182)

The solution for u1 is then

u1(θ) =
1
2a1A

2 − 1
6a1A

2 cos 2θ . (3.183)

Were we to stop at this order, we could ignore Z = ε2βφ entirely, since it is of order ε2, and the solution would be

u(φ) = A0 cos(βφ + ψ0) +
1
2εa1A

2
0 − 1

6εa1A
2
0 cos(2βφ+ 2ψ0) . (3.184)

The angular period is still ∆φ = 2π/β, and, starting from a small amplitude solution at order ε0 we find that to
order ε we must add a constant shift proportional to A2

0, as well as a second harmonic term, also proportional to
A2

0.

(f) Carrying out the MSA to second order in ε, show that the shift of the angular period vanishes only if β2 = 1
or β2 = 4.

Solution : Carrying out the MSA to the next order, O(ε2), we obtain

∂2u2
∂θ2

+ u2 = 2
∂A

∂Z
sin θ + 2A

∂ψ

∂Z
cos θ + 2a1A cos θ

(
1
2a1A

2 − 1
6a1A

2 cos 2θ
)
+ a2A

3 cos3θ

= 2
∂A

∂Z
sin θ + 2A

∂ψ

∂Z
cos θ +

(
5
6a

2
1 +

3
4a2
)
A3 cos θ +

(
− 1

6a
2
1 +

1
4a2
)
A3 cos 3θ .

(3.185)

Now in order to make the resonant forcing terms on the RHS vanish, we must choose

∂A

∂Z
= 0 (3.186)

as well as

∂ψ

∂Z
= −

(
5
12a

2
1 +

3
8a2
)
A2

= − 1
24 (β

2 − 4)(β2 − 1) .
(3.187)

The solutions to these equations are trivial:

A(Z) = A0 , ψ(Z) = ψ0 − 1
24 (β

2 − 1)(β2 − 4)A2
0 Z . (3.188)
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With the resonant forcing terms eliminated, we may write

∂2u2
∂θ2

+ u2 =
(
− 1

6a
2
1 +

1
4a2
)
A3 cos 3θ , (3.189)

with solution

u2 = 1
96 (2a

2
1 − 3a2)A

3 cos 3θ

= 1
96 β

2 (β2 − 1)A2
0 cos

(
3X + 3ψ(Z)

)
.

(3.190)

The full solution to second order in this analysis is then

u(φ) = A0 cos(β
′φ+ ψ0) +

1
2εa1A

2
0 − 1

6εa1A
2
0 cos(2β

′φ+ 2ψ0)

+ 1
96ε

2 (2a21 − 3a2)A
3
0 cos(3β′φ+ 3ψ0) .

(3.191)

with
β′ = β ·

{

1− 1
24 ε

2 (β2 − 1)(β2 − 4)A2
0

}

. (3.192)

The angular period shifts:

∆φ =
2π

β′ =
2π

β
·
{

1 + 1
24 ε

2 (β2 − 1)(β2 − 4)A2
0

}

+O(ε3) . (3.193)

Note that there is no shift in the period, for any amplitude, if β2 = 1 (i.e. Kepler potential) or β2 = 4 (i.e. harmonic
oscillator).

3.7.2 Solution using Poincaré-Lindstedt method

Recall that geometric equation for the shape of the (relative coordinate) orbit for the two body central force prob-
lem is

d2s

dφ2
+ s = K(s)

K(s) = s0

(
s

s0

)1−β2 (3.194)

where s = 1/r, s0 = (l2/µk)1/β
2

is the inverse radius of the stable circular orbit, and f(r) = −krβ2−3 is the central
force. Expanding about the stable circular orbit, one has

d2y

dφ2
+ β2 y = 1

2K
′′(s0) y

2 + 1
6K

′′′(s0) y
3 + . . . , (3.195)

where s = s0(1 + y), with

K ′(s) = (1− β2)

(
s0
s

)β2

K ′′(s) = −β2 (1− β2)

(
s0
s

)1+β2

K ′′′(s) = β2 (1 − β2) (1 + β2)

(
s0
s

)2+β2

.

(3.196)
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Thus,
d2y

dφ2
+ β2 y = ǫ a1 y

2 + ǫ2 a2 y
3 , (3.197)

with ǫ = 1 and

a1 = − 1
2 β

2 (1− β2)

a2 = + 1
6 β

2 (1− β2) (1 + β2) .
(3.198)

Note that we assign one factor of ǫ for each order of nonlinearity beyond order y1. Note also that while y here

corresponds to u in eqn. 3.165, the constants a1,2 here are a factor of β2 larger than those defined in eqn. 3.166.

We now apply the Poincaré-Lindstedt method, by defining θ = Ωφ, with

Ω2 = Ω2
0 + ǫΩ2

1 + ǫ2 Ω2
2 + . . . (3.199)

and

y(θ) = y0(θ) + ǫ y1(θ) + ǫ2 y2(θ) + . . . . (3.200)

We therefore have
d

dφ
= Ω

d

dθ
(3.201)

and

(
Ω2

0 + ǫΩ2
1+ǫ

2 Ω2
2 + . . .

)(
y′′0 + ǫ y′′1 + ǫ2 y′′2 + . . .

)
+ β2

(
y0 + ǫ y1 + ǫ2 y2 + . . .

)

= ǫ a1
(
y0 + ǫ y1 + ǫ2 y2 + . . .

)2
+ ǫ2 a2

(
y0 + ǫ y1 + ǫ2 y2 + . . .

)3
.

(3.202)

We now extract equations at successive orders of ǫ. The first three in the hierarchy are

Ω2
0 y

′′
0 + β2 y0 = 0

Ω2
1 y

′′
0 +Ω2

0 y
′′
1 + β2 y1 = a1y

2
0

Ω2
2 y

′′
0 +Ω2

1 y
′′
1 +Ω2

0 y
′′
2 + β2 y2 = 2 a1 y0 y1 + a2 y

3
0 ,

(3.203)

where prime denotes differentiation with respect to θ.

To order ǫ0, the solution is Ω2
0 = β2 and

y0(θ) = A cos(θ + δ) , (3.204)

where A and δ are constants.

At order ǫ1, we have

β2
(
y′′1 + y1

)
= −Ω2

1 y
′′
0 + a1 y

2
0

= Ω2
1A cos(θ + δ) + a1A

2 cos2(θ + δ)

= Ω2
1A cos(θ + δ) + 1

2 a1A
2 + 1

2 a1A
2 cos(2θ + 2δ) .

(3.205)

The secular forcing terms on the RHS are eliminated by the choice Ω2
1 = 0. The solution is then

y1(θ) =
a1A

2

2 β2

{

1− 1
3 cos(2θ + 2δ)

}

. (3.206)
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At order ǫ2, then, we have

β2
(
y′′2 + y2

)
= −Ω2

2 y
′′
0 − Ω2

1 y
′′
1 + 2 a1 y1 y1 + a2 y

3
0

= Ω2
2A cos(θ + δ) +

a21A
3

β2

{

1− 1
3 cos(2θ + 2δ)

}

cos(θ + δ) + a2A
3 cos2(θ + δ)

=

{

Ω2
2 +

5 a21A
3

6β2
+ 3

4 a2A
3

}

A cos(θ + δ) +

{

− a21A
3

6β2
+ 1

4 a2A
3

}

cos(3θ + 3δ) .

(3.207)

The resonant forcing terms on the RHS are eliminated by the choice

Ω2
2 = −

(
5
6 β

−2 a21 +
3
4 a2

)

A3

= − 1
24 β

2 (1− β2)
[

5 (1− β2) + 3 (1 + β2)
]

= − 1
12 β

2 (1− β2) (4− β2) .

(3.208)

Thus, the frequency shift to this order vanishes whenever β2 = 0, β2 = 1, or β2 = 4. Recall the force law is

F (r) = −C rβ2−3, so we see that there is no shift – hence no precession – for inverse cube, inverse square, or linear
forces.

3.8 Appendix III : Modified van der Pol Oscillator

Consider the nonlinear oscillator
ẍ+ ǫ (x4 − 1) ẋ+ x = 0 . (3.209)

Analyze this using the same approach we apply to the van der Pol oscillator.

(a) Sketch the vector field ϕ̇ for this problem. It may prove convenient to first identify the nullclines, which are
the curves along which ẋ = 0 or v̇ = 0 (with v = ẋ). Argue that a limit cycle exists.

Solution : There is a single fixed point, at the origin (0, 0), for which the linearized dynamics obeys

d

dt

(
x
v

)

=

(
0 1
−1 ǫ

)(
x
v

)

+O(x4 v) . (3.210)

One finds T = ǫ and D = 1 for the trace and determinant, respectively. The origin is an unstable spiral for
0 < ǫ < 2 and an unstable node for ǫ > 2.

The nullclines are sketched in Fig. 3.16. One has

ẋ = 0 ↔ v = 0 , v̇ = 0 ↔ v =
1

ǫ

x

1− x4
. (3.211)

The flow at large distances from the origin winds once around the origin and spirals in. The flow close to the
origin spirals out (ǫ < 2) or flows radially out (ǫ > 2). Ultimately the flow must collapse to a limit cycle, as can be
seen in the accompanying figures.

(b) In the limit 0 < ε ≪ 1, use multiple time scale analysis to obtain a solution which reveals the approach to the
limit cycle.

Solution : We seek to solve the equation
ẍ+ x = ǫ h(x, ẋ) , (3.212)
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Figure 3.16: Sketch of phase flow and nullclines for the oscillator ẍ + ǫ (x4 − 1) ẋ + x = 0. Red nullclines: v̇ = 0;
blue nullcline: ẋ = 0.

with
h(x, ẋ) = (1− x4) ẋ . (3.213)

Employing the multiple time scale analysis to lowest nontrivial order, we write T0 ≡ t, T1 ≡ ǫt,

x = x0 + ǫx1 + . . . (3.214)

and identify terms order by order in ǫ. At O(ǫ0), this yields

∂2x0
∂T 2

0

+ x0 = 0 ⇒ x0 = A cos(T0 + φ) , (3.215)

where A = A(T1) and φ = φ(T1). At O(ǫ1), we have

∂2x1
∂T 2

0

+ x1 = −2
∂2x0

∂T0 ∂T1
+ h

(

x0 ,
∂x0
∂T0

)

= 2
∂A

∂T1
sin θ + 2A

∂φ

∂T1
cos θ + h

(
A cos θ,−A sin θ

)
(3.216)

with θ = T0 + φ(T1) as usual. We also have

h(A cos θ,−A sin θ
)
= A5 sin θ cos θ −A sin θ

=
(
1
8A

5 −A
)
sin θ + 3

16 A
5 sin 3θ + 1

16 A
5 sin 5θ . (3.217)

To eliminate the resonant terms in eqn. 3.217, we must choose

∂A

∂T1
= 1

2A− 1
16A

5 ,
∂φ

∂T1
= 0 . (3.218)
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Figure 3.17: Vector field and phase curves for the oscillator ẍ + ǫ (x4 − 1) ẋ + x = 0, with ǫ = 1 and starting from
(x0, v0) = (1, 1).

TheA equation is similar to the logistic equation. ClearlyA = 0 is an unstable fixed point, andA = 81/4 ≈ 1.681793
is a stable fixed point. Thus, the amplitude of the oscillations will asymptotically approach A∗ = 81/4. (Recall the
asymptotic amplitude in the van der Pol case was A∗ = 2.)

To integrate the A equation, substitute y = 1√
8
A2, and obtain

dT1 =
dy

y (1− y2)
= 1

2d ln
y2

1− y2
⇒ y2(T1) =

1

1 + (y−2
0 − 1) exp(−2T1)

. (3.219)

We then have

A(T1) = 81/4
√

y(T1) =

(

8

1 + (8A−4
0 − 1) exp(−2T1)

)1/4

. (3.220)

(c) In the limit ǫ ≫ 1, find the period of relaxation oscillations, using Liénard plane analysis. Sketch the orbit of
the relaxation oscillation in the Liénard plane.

Solution : Our nonlinear oscillator may be written in the form

ẍ+ ǫ
dF (x)

dt
+ x = 0 , (3.221)

with

F (x) = 1
5x

5 − x . (3.222)
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Figure 3.18: Solution to the oscillator equation ẍ+ ǫ (x4 − 1) ẋ+ x = 0 with ǫ = 1 and initial conditions (x0, v0) =
(1, 3). x(t) is shown in red and v(t) in blue. Note that x(t) resembles a relaxation oscillation for this moderate
value of ǫ.

Note Ḟ = (x4 − 1) ẋ. Now we define the Liénard variable

y ≡ ẋ

ǫ
+ F (x) , (3.223)

and in terms of (x, y) we have

ẋ = ǫ
[

y − F (x)
]

, ẏ = −x
ǫ
. (3.224)

As we have seen in the notes, for large ǫ the motion in the (x, y) plane is easily analyzed. x(t) must move quickly
over to the curve y = F (x), at which point the motion slows down and slowly creeps along this curve until it can
no longer do so, at which point another big fast jump occurs. The jumps take place between the local extrema of
F (x), which occur for F ′(a) = a4 − 1 = 0, i.e. at a = ±1, and points on the curve with the same values of F (a).
Thus, we solve F (−1) = 4

5 = 1
5b

5 − b and find the desired root at b∗ ≈ 1.650629. The period of the relaxation
oscillations, for large ǫ, is

T ≈ 2ǫ

b∫

a

dx
F ′(x)

x
= ǫ ·

[
1
2x

4 − 2 lnx
]b

a
≈ 2.20935 ǫ . (3.225)

(d) Numerically integrate the equation (3.210) starting from several different initial conditions.

Solution : The accompanying Mathematicaplots show x(t) and v(t) for this system for two representative values
of ǫ.
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Figure 3.19: Vector field and phase curves for the oscillator ẍ+ ǫ (x4− 1) ẋ+x = 0, with ǫ = 0.25 and starting from
(x0, v0) = (1, 1). As ǫ→ 0, the limit cycle is a circle of radius A∗ = 81/4 ≈ 1.682.

Figure 3.20: Solution to the oscillator equation ẍ + ǫ (x4 − 1) ẋ + x = 0 with ǫ = 0.25 and initial conditions
(x0, v0) = (1, 3). x(t) is shown in red and v(t) in blue. As ǫ → 0, the amplitude of the oscillations tends to
A∗ = 81/4 ≈ 1.682.


