
Contents

4 Shock Waves 1

4.1 Nonlinear Chiral Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

4.2 Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.3 Internal Shock Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.3.1 Quadratic J(ρ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.4 Shock Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.4.1 An important caveat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.4.2 Recipe for shock fitting when J ′′′(ρ) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.4.3 Example : shock fitting an inverted parabola . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.5 Long-time Behavior of Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.5.1 Fate of a hump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.5.2 N-wave and P-wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.6 Shock Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.7 Shock Fitting for General J(ρ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.8 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.8.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.8.2 Moving sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.9 Burgers’ Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.9.1 The limit ν → 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.9.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.9.3 Confluence of shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.10 Appendix I : The Method of Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.10.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

i



ii CONTENTS

4.11 Appendix II : Worked Problem in Shock Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.12 Appendix III : The Traffic Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.13 Appendix IV : Characteristics for a Periodic Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.14 Appendix V : Car-Following Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



Chapter 4

Shock Waves

Here we shall follow closely the pellucid discussion in chapter 2 of the book by G. Whitham, beginning with the
simplest possible PDE, describing chiral (unidirectional motion) waves,

ρt + c0 ρx = 0 . (4.1)

The solution to this equation is an arbitrary right-moving wave (assuming c0 > 0), with profile

ρ(x, t) = f(x− c0t) , (4.2)

where the initial conditions on Eqn. 4.1 are ρ(x, t = 0) = f(x). This is even simpler than the Helmholtz equation,
ρtt = c20 ρxx , which is nonchiral, i.e. waves move in either direction. Anyway, nothing to see here, so move along.

4.1 Nonlinear Chiral Wave Equation

The simplest nonlinear PDE is a generalization of Eqn. 4.1,

ρt + c(ρ) ρx = 0 . (4.3)

This equation arises in a number of contexts. One example comes from the theory of vehicular traffic flow along
a single lane roadway. Starting from the continuity equation,

ρt + jx = 0 , (4.4)

one posits a constitutive relation j = J(ρ), in which case c(ρ) = J ′(ρ). If the individual vehicles move with a
velocity v = v(ρ), then

J(ρ) = ρ v(ρ) ⇒ c(ρ) = v(ρ) + ρ v′(ρ) . (4.5)

It is natural to assume a form v(ρ) = c0 (1 − aρ), so that at low densities one has v ≈ c0, with v(ρ) decreasing
monotonically to v = 0 at a critical density ρ = a−1, presumably corresponding to bumper-to-bumper traffic.
The current J(ρ) then takes the form of an inverted parabola. Note the difference between the individual vehicle
velocity v(ρ) and what turns out to be the group velocity of a traffic wave, c(ρ). For v(ρ) = c0 (1 − aρ), one has
c(ρ) = c0 (1 − 2aρ), which is negative for ρ ∈

[

1
2a

−1, a−1
]

. For vehicular traffic, we have c′(ρ) = J ′′(ρ) < 0 but in
general J(ρ) and thus c(ρ) can be taken to be arbitrary.

1



2 CHAPTER 4. SHOCK WAVES

Another example comes from the study of chromatography, which refers to the spatial separation of components
in a mixture which is forced to flow through an immobile absorbing ‘bed’. Let ρ(x, t) denote the density of the
desired component in the fluid phase and n(x, t) be its density in the solid phase. Then continuity requires

nt + ρt + V ρx = 0 , (4.6)

where V is the velocity of the flow, which is assumed constant. The net rate at which the component is deposited
from the fluid onto the solid is given by an equation of the form

nt = F (n, ρ) . (4.7)

In equilibrium, we then have F (n, ρ) = 0, which may in principle be inverted to yield n = neq(ρ). If we as-
sume that the local deposition processes run to equilibrium on fast time scales, then we may substitute n(x, t) ≈
neq

(

ρ(x, t)
)

into Eqn. 4.6 and obtain

ρt + c(ρ) ρx = 0 , c(ρ) =
V

1 + n′
eq(ρ)

. (4.8)

We solve Eqn. 4.3 using the method of characteristics. Suppose we have the solution ρ = ρ(x, t). Consider then the
family of curves obeying the ODE

dx

dt
= c

(

ρ(x, t)
)

. (4.9)

This is a family of curves, rather than a single curve, because it is parameterized by the initial condition x(0) ≡ ζ.
Now along any one of these curves we must have

dρ

dt
=

∂ρ

∂t
+

∂ρ

∂x

dx

dt
=

∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0 . (4.10)

Thus, ρ(x, t) is a constant along each of these curves, which are called characteristics. For Eqn. 4.3, the family of
characteristics is a set of straight lines1,

xζ(t) = ζ + c(ρ) t . (4.11)

The initial conditions for the function ρ(x, t) are

ρ(x = ζ, t = 0) = f(ζ) , (4.12)

where f(ζ) is arbitrary. Thus, in the (x, t) plane, if the characteristic curve x(t) intersects the line t = 0 at x = ζ,
then its slope is constant and equal to c

(

f(ζ)
)

. We then define

g(ζ) ≡ c
(

f(ζ)
)

. (4.13)

This is a known function, computed from c(ρ) and f(ζ) = ρ(x = ζ, t = 0). The equation of the characteristic xζ(t)
is then

xζ(t) = ζ + g(ζ) t . (4.14)

Do not confuse the subscript in xζ(t) for a derivative!

To find ρ(x, t), we follow this prescription:

(i) Given any point in the (x, t) plane, we find the characteristic xζ(t) on which it lies. This means we invert the
equation x = ζ + g(ζ) t to find ζ(x, t).

1The existence of straight line characteristics is a special feature of the equation ρ
t
+ c(ρ) ρ

x
= 0. For more general hyperbolic first order

PDEs to which the method of characteristics may be applied, the characteristics are curves. See the discussion in the Appendix.
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Figure 4.1: Forward and backward breaking waves for the nonlinear chiral wave equation ρt + c(ρ) ρx = 0, with
c(ρ) = 1 + ρ (top panels) and c(ρ) = 2 − ρ (bottom panels). The initial conditions are ρ(x, t = 0) = 1/(1 + x2),
corresponding to a break time of tB = 16

3
√
3

. Successive ρ(x, t) curves are plotted for t = 0 (thick blue), t = 1
2 tB

(dark blue), t = tB (dark green), t = 3
2 tB (orange), and t = 2tB (dark red).

(ii) The value of ρ(x, t) is then ρ = f
(

ζ(x, t)
)

.

(iii) Equivalently, at fixed t, for ζ ∈ (−∞,+∞) plot ρ = f(ζ) vs. x = ζ + g(ζ)t. This obviates the inversion in (i).

(iv) This procedure yields a unique value for ρ(x, t) provided the characteristics do not cross, i.e. provided that
there is a unique ζ such that x = ζ + g(ζ) t. If the characteristics do cross, then ρ(x, t) is either multi-valued,
or else the method has otherwise broken down. As we shall see, the crossing of characteristics, under the
conditions of single-valuedness for ρ(x, t), means that a shock has developed, and that ρ(x, t) is discontinuous.

We can verify that this procedure yields a solution to the original PDE of Eqn. 4.3 in the following manner.
Suppose we invert

x = ζ + g(ζ) t =⇒ ζ = ζ(x, t) . (4.15)

We then have

ρ(x, t) = f
(

ζ(x, t)
)

=⇒











ρt = f ′(ζ) ζt

ρx = f ′(ζ) ζx

(4.16)

To find ζt and ζx, we invoke x = ζ + g(ζ) t, hence

0 =
∂

∂t

[

ζ + g(ζ) t− x
]

= ζt + ζt g
′(ζ) t+ g(ζ)

0 =
∂

∂x

[

ζ + g(ζ) t− x
]

= ζx + ζx g
′(ζ) t − 1 ,

(4.17)
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Figure 4.2: Crossing of characteristics of the nonlinear chiral wave equation ρt + c(ρ) ρx = 0, with c(ρ) = 1 + ρ
and ρ(x, t = 0) = 1/(1 + x2). Within the green hatched region of the (x, t) plane, the characteristics cross, and the
function ρ(x, t) is apparently multivalued.

from which we conclude

ρt = − f ′(ζ) g(ζ)

1 + g′(ζ) t
, ρx =

f ′(ζ)

1 + g′(ζ) t
. (4.18)

Thus, ρt + c(ρ) ρx = 0, since c(ρ) = g(ζ).

As any wave disturbance propagates, different values of ρ propagate with their own velocities. Thus, the solution
ρ(x, t) can be constructed by splitting the curve ρ(x, t = 0) into level sets of constant ρ, and then shifting each such
set by a distance c(ρ) t. For c(ρ) = c0, the entire curve is shifted uniformly. When c(ρ) varies, different level sets
are shifted by different amounts.

We see that ρx diverges when 1 + g′(ζ) t = 0. At this time, the wave is said to break. The break time t
B

is defined
to be the smallest value of t for which ρx = ∞ anywhere. Thus,

t
B
= min

ζ

g′(ζ)<0

(

− 1

g′(ζ)

)

≡ − 1

g′(ζ
B
)
. (4.19)

Breaking can only occur when g′(ζ) < 0, and differentiating g(ζ) = c
(

f(ζ)
)

, we have that g′(ζ) = c′(f) f ′(ζ). We
then conclude

c′ < 0 =⇒ need f ′ > 0 to break

c′ > 0 =⇒ need f ′ < 0 to break .
(4.20)

Thus, if ρ(x = ζ, t = 0) = f(ζ) has a hump profile, then the wave breaks forward (i.e. in the direction of its motion)
if c′ > 0 and backward (i.e. opposite to the direction of its motion) if c′ < 0. In Fig. 4.1 we sketch the breaking of
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Figure 4.3: Crossing of characteristics of the nonlinear chiral wave equation ρt+ c(ρ) ρx = 0, with c(ρ) = 1+ ρ and

ρ(x, t = 0) =
[

x/(1 + x2)
]2

. The wave now breaks in two places and is multivalued in both hatched regions. The
left hump is the first to break.

a wave with ρ(x, t = 0) = 1/(1 + x2) for the cases c = 1 + ρ and c = 2 − ρ. Note that it is possible for different
regions of a wave to break at different times, if, say, it has multiple humps.

Wave breaking occurs when neighboring characteristic cross. We can see this by comparing two neighboring
characteristics,

xζ(t) = ζ + g(ζ) t (4.21)

and

xζ+δζ(t) = ζ + δζ + g(ζ + δζ) t

= ζ + g(ζ) t+
(

1 + g′(ζ) t
)

δζ + . . . .
(4.22)

For these characteristics to cross, we demand

xζ(t) = xζ+δζ(t) =⇒ t = − 1

g′(ζ)
. (4.23)

Usually, in most physical settings, the function ρ(x, t) is single-valued. In such cases, when the wave breaks,
the multivalued solution ceases to be applicable2. Generally speaking, this means that some important physics
has been left out. For example, if we neglect viscosity η and thermal conductivity κ, then the equations of gas

2This is even true for water waves, where one might think that a multivalued height function h(x, t) is physically possible.
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Figure 4.4: Current conservation in the shock frame yields the shock velocity, vs = ∆j/∆ρ.

dynamics have breaking wave solutions similar to those just discussed. When the gradients are steep – just before
breaking – the effects of η and κ are no longer negligible, even if these parameters are small. This is because
these parameters enter into the coefficients of higher derivative terms in the governing PDEs, and even if they
are small their effect is magnified in the presence of steep gradients. In mathematical parlance, they constitute
singular perturbations. The shock wave is then a thin region in which η and κ are crucially important, and the flow
changes rapidly throughout this region. If one is not interested in this small scale physics, the shock region can be
approximated as being infinitely thin, i.e. as a discontinuity in the inviscid limit of the theory. What remains is a
set of shock conditions which govern the discontinuities of various quantities across the shocks.

4.2 Shocks

We now show that a solution to Eqn. 4.3 exists which is single valued for almost all (x, t), i.e. everywhere with the
exception of a set of zero measure, but which has a discontinuity along a curve x = xs(t). This discontinuity is the
shock wave.

The velocity of the shock is determined by mass conservation, and is most easily obtained in the frame of the
shock. The situation is as depicted in Fig. 4.4. If the density and current are (ρ

−
, j

−
) to the left of the shock and

(ρ+ , j+) to the right of the shock, and if the shock moves with velocity vs, then making a Galilean transformation
to the frame of the shock, the densities do not change but the currents transform as j → j′ = j − ρv. Thus, in the
frame where the shock is stationary, the current on the left and right are j

±
= j

±
− ρ

±
vs. Current conservation

then requires

vs =
j
+
− j

−

ρ
+
− ρ

−

=
∆j

∆ρ
. (4.24)

The special case of quadratic J(ρ) bears mention. Suppose

J(ρ) = αρ2 + βρ+ γ . (4.25)

Then c = 2αρ+ β and

vs = α(ρ+ + ρ
−
) + β

= 1
2

(

c
+
+ c

−

)

.
(4.26)

So for quadratic J(ρ), the shock velocity is simply the average of the flow velocity on either side of the shock.

Consider, for example, a model with J(ρ) = 2ρ(1 − ρ), for which c(ρ) = 2 − 4ρ. Consider an initial condition
ρ(x = ζ, t = 0) = f(ζ) = 3

16 + 1
8 Θ(ζ), so initially ρ = ρ1 = 3

16 for x < 0 and ρ = ρ2 = 5
16 for x > 0. The lower

density part moves faster, so in order to avoid multiple-valuedness, a shock must propagate. We find c
−
= 5

4 and
c
+
= 3

4 . The shock velocity is then vs = 1. Ths situation is depicted in Fig. 4.5.
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Figure 4.5: A resulting shock wave arising from c− = 5
4 and c+ = 3

4 . With no shock fitting, there is a region of
(x, t) where the characteristics cross, shown as the hatched region on the left. With the shock, the solution remains
single valued. A quadratic behavior of J(ρ) is assumed, leading to vs =

1
2 (c+ + c−) = 1.

4.3 Internal Shock Structure

At this point, our model of a shock is a discontinuity which propagates with a finite velocity. This may be less
problematic than a multivalued solution, but it is nevertheless unphysical. We should at least understand how
the discontinuity is resolved in a more complete model. To this end, consider a model where

j = J(ρ, ρx) = J(ρ)− νρx . (4.27)

The J(ρ) term contains a nonlinearity which leads to steepening and broadening of regions where dc
dx > 0 and

dc
dx < 0, respectively. The second term, −νρx, is due to diffusion, and recapitulates Fick’s law, which says that a
diffusion current flows in such a way as to reduce gradients. The continuity equation then reads

ρt + c(ρ) ρx = νρxx , (4.28)

with c(ρ) = J ′(ρ). Even if ν is small, its importance is enhanced in regions where |ρx| is large, and indeed −νρx
dominates over J(ρ) in such regions. Elsewhere, if ν is small, it may be neglected, or treated perturbatively.

General solutions to Eqn. 4.28 are of the form ρ = ρ(x, t). In §4.9 below, we will show how to obtain such
general solutions for the case where c(ρ) is a linear function of the density, i.e. c′′(ρ) = 0, using a nifty nonlinear
transformation. Here, we will content ourselves with obtaining a special class of solution to Eqn. 4.28 by assuming
a form corresponding to front propagation,

ρ(x, t) = ρ(x− vst) ≡ ρ(ξ) ; ξ = x− vst , (4.29)

where the propagation speed vs is a constant to be determined. The above form of solution corresponds to a fixed
shape ρ(ξ) which moves with constant propagation speed. Thus, ρt = −vs ρx and ρx = ρξ , leading to

−vs ρξ + c(ρ) ρξ = νρξξ . (4.30)

By assuming the propagating front form, we have achieved a remarkable simplification, transforming a first order
PDE in two variables to a second order ODE. Moreover, the ODE is simple to integrate. Integrating once, we have

J(ρ)− vs ρ+A = ν ρξ , (4.31)
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where A is a constant. Integrating a second time, we have

ξ − ξ0 = ν

ρ
∫

ρ0

dρ′

J(ρ′)− vs ρ
′ +A

. (4.32)

Suppose ρ interpolates between the values ρ
1

and ρ
2

over the interval ξ ∈ (−∞,+∞). Then we must have

J(ρ
1
)− vs ρ1

+A = 0

J(ρ2)− vs ρ2 +A = 0 ,
(4.33)

which in turn requires

vs =
J

2
− J

1

ρ2 − ρ1

, (4.34)

where J
1,2

= J(ρ
1,2
), exactly as before! We also conclude that the constant A must be

A =
ρ1J2 − ρ2J1

ρ2 − ρ1

. (4.35)

4.3.1 Quadratic J(ρ)

For the special case where J(ρ) is quadratic, with J(ρ) = αρ2 + βρ+ γ, we may write

J(ρ)− vs ρ+A = α(ρ− ρ2)(ρ− ρ1) . (4.36)

We then have vs = α(ρ1 + ρ2) + β, as well as A = αρ1ρ2 − γ. The moving front solution then obeys

dξ =
ν dρ

α(ρ − ρ
2
)(ρ− ρ

1
)
=

ν

α(ρ
2
− ρ

1
)
d ln

(

ρ
2
− ρ

ρ− ρ
1

)

, (4.37)

which is integrated to yield

ρ(x, t) =
ρ

2
+ ρ

1
exp

[

α(ρ
2
− ρ

1
)
(

x− vst
)

/ν
]

1 + exp
[

α(ρ
2
− ρ

1
)
(

x− vst
)

/ν
] . (4.38)

We consider the case α > 0 and ρ
1
< ρ

2
. Then ρ(±∞, t) = ρ

1,2
. Note that

ρ(x, t) =

{

ρ
1

if x− vst ≫ δ

ρ2 if x− vst ≪ −δ ,
(4.39)

where

δ =
ν

α (ρ
2
− ρ

1
)

(4.40)

is the thickness of the shock region. In the limit ν → 0, the shock is discontinuous. All that remains is the shock
condition,

vs = α(ρ1 + ρ2) + β = 1
2

(

c1 + c2
)

. (4.41)

We stress that we have limited our attention here to the case where J(ρ) is quadratic. It is worth remarking that
for weak shocks where ∆ρ = ρ

+
− ρ

−
is small, we can expand J(ρ) about the average 1

2 (ρ+
+ ρ

−
), in which case we

find vs =
1
2 (c+ + c

−
) +O

(

(∆ρ)2
)

.
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4.4 Shock Fitting

When we neglect diffusion currents, we have j = J . We now consider how to fit discontinuous shocks satisfying

vs =
J

+
− J

−

ρ
+
− ρ

−

(4.42)

into the continuous solution of Eqn. 4.3, which are described by

x = ζ + g(ζ) t , ρ = f(ζ) , (4.43)

with g(ζ) = c
(

f(ζ)
)

, such that the multivalued parts of the continuous solution are eliminated and replaced with
the shock discontinuity. The guiding principle here is number conservation:

d

dt

∞
∫

−∞

dx ρ(x, t) = 0 . (4.44)

We’ll first learn how do fit shocks when J(ρ) is quadratic, with J(ρ) = αρ2 + βρ + γ. We’ll assume α > 0 for the
sake of definiteness.

4.4.1 An important caveat

Let’s multiply the continuity equation ρt + c(ρ) ρx = 0 by c′(ρ). Thus results in

ct + c cx = 0 . (4.45)

If we define q = 1
2c

2, then this takes the form of a continuity equation:

ct + qx = 0 . (4.46)

Now consider a shock wave. Invoking Eqn. 4.24, we would find, mutatis mutandis, a shock velocity

us =
q
+
− q

−

c+ − c
−

= 1
2 (c+ + c

−
) . (4.47)

This agrees with the velocity vs = ∆j/∆ρ only when J(ρ) is quadratic. Something is wrong – there cannot be two
velocities for the same shock.

The problem is that Eqn. 4.45 is not valid across the shock and cannot be used to determine the shock velocity.
There is no conservation law for c as there is for ρ. One way we can appreciate the difference is to add diffusion
into the mix. Multiplying Eqn. 4.28 by c′(ρ), and invoking cxx = c′(ρ) ρxx + c′′(ρ) ρ2x, we obtain

ct + c cx = νcxx − νc′′(ρ) ρ2x . (4.48)

We now see explicitly how nonzero c′′(ρ) leads to a different term on the RHS. When c′′(ρ) = 0, the above equation
is universal, independent of the coefficients in the quadratic J(ρ), and is known as Burgers’ equation,

ct + c cx = νcxx . (4.49)

Later on we shall see how this nonlinear PDE may be linearized, and how we can explicitly solve for shock
behavior, including the merging of shocks.
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Figure 4.6: Shock fitting for quadratic J(ρ).

4.4.2 Recipe for shock fitting when J ′′′(ρ) = 0

Number conservation means that when we replace the multivalued solution by the discontinuous one, the area
under the curve must remain the same. If J(ρ) is quadratic, then we can base our analysis on the equation
ct+ c cx = 0, since it gives the correct shock velocity vs =

1
2 (c++ c

−
). We then may then follow the following rules:

(i) Sketch c(ζ) = c(x = ζ, t = 0).

(ii) Draw a straight line connecting two points on this curve at ζ
−

and ζ+ which obeys the equal area law, i.e.

1
2 (ζ+ − ζ

−
)
(

c(ζ+) + c(ζ
−
)
)

=

ζ+
∫

ζ
−

dζ c(ζ) . (4.50)

(iii) This line evolves into the shock front after a time t such that

xs(t) = ζ
−
+ c(ζ

−
) t = ζ

+
+ c(ζ

+
) t . (4.51)

Thus,

t =
ζ+ − ζ

−

c(ζ
−
)− c(ζ

+
)
. (4.52)

Alternatively, we can fix t and solve for ζ
±

. See Fig. 4.6 for a graphical description.

(iv) The position of the shock at this time is x = xs(t). The strength of the shock is ∆c = c(ζ
−
) − c(ζ

+
). Since

J(ρ) = αρ2+βρ+γ, we have c(ρ) = 2αρ+β and hence the density discontinuity at the shock is ∆ρ = ∆c/2α.

(v) The break time, when the shock first forms, is given by finding the steepest chord satisfying the equal area
law. Such a chord is tangent to c(ζ) and hence corresponds to zero net area. The break time is

tB = min
ζ

c′(ζ)>0

(

− 1

c′(ζ)

)

≡ − 1

c′(ζB)
. (4.53)
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(vi) If c(∞) = c(−∞), the shock strength vanishes as t → ∞. If c(−∞) > c(+∞) then asymptotically the shock
strength approaches ∆c = c(−∞)− c(+∞).

(vii) To plot c(x, t) versus x at fixed t: If t ≤ tB, plot c(ζ) versus x = ζ + c(ζ) t for ζ ∈ (−∞,+∞). If t > t
B

, plot c(ζ)
versus x = ζ + c(ζ) t separately for ζ ∈ (−∞, ζ−] and ζ ∈ [ζ+,+∞).

4.4.3 Example : shock fitting an inverted parabola

Consider the shock fitting problem for the initial condition

c(x, t = 0) = c0

(

1− x2

a2

)

Θ(a2 − x2) , (4.54)

which is to say a truncated inverted parabola. We assume J ′′′(ρ) = 0. Clearly −cx(x, 0) is maximized at x = a,
where −cx(a, 0) = 2c0/a, hence breaking first occurs at

(

x
B
, t

B

)

=
(

a ,
a

2c0

)

. (4.55)

Clearly ζ+ > a, hence c+ = 0. Shock fitting then requires

1
2 (ζ+ − ζ

−
)(c

+
+ c

−
) =

ζ+
∫

ζ
−

dζ c(ζ) =
c0
3a2

(2a+ ζ
−
)(a− ζ

−
)2 . (4.56)

Since c
+
+ c

−
=

c0
a2 (a

2 − ζ2
−
) , we have

ζ+ − ζ
−
= 2

3 (2a+ ζ
−
)

(

a− ζ
−

a+ ζ
−

)

. (4.57)

The second shock-fitting equation is ζ+ − ζ
−
= (c

−
− c+) t . Eliminating ζ+ from the two shock-fitting equations,

and invoking c
+
= 0, we have

t =
2a2

3c0
· 2a+ ζ

−

(a+ ζ
−
)2

. (4.58)

Inverting to find ζ
−
(t), we obtain

ζ
−
(t)

a
=

a

3c0t
− 1 +

a

3c0t

√

1 +
6c0t

a
. (4.59)

The shock position is then xs(t) = ζ
−
(t) + c

−

(

ζ
−
(t)

)

t = ζ+(t) .

It is convenient to rescale lengths by a and times by tB = a/2c0 , defining q and τ from x ≡ aq and t ≡ aτ/2c0.
Then we have, for q±(τ) = ζ±(t)/a ,

q
−
(τ) =

2

3τ
− 1 +

2

3τ

√
1 + 3τ

qs(τ) = q
+
(τ) =

2

9τ
− 1 +

2

9τ
(1 + 3τ)3/2 .

(4.60)

The dimensionless break time is τ
B
= 1. Note that q

−
(1) = q

+
(1) = 1, i.e. the wave starts breaking at q

B
= 1. The

dimensionless shock discontinuity is given by

∆c(τ)

c0
= 1− q2

−
= − 8

9τ2

[

1 +
√
1 + 3τ

]

+
4

3τ

√
1 + 3τ . (4.61)
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Figure 4.7: Evolution of the inverted parabola profile for τ = 0 (black), τ = 0.5 (blue), τ = 1 (red), τ = 1.25
(magenta), τ = 2.0 (green), and τ = 6.0 (navy blue). The wave first breaks at time τ = τB = 1.

Note also that ∆c(τB) = 0. The dimensionless shock velocity is

q̇s = − 2

9τ2

[

1 + (1 + 3τ)3/2
]

+
1

τ
(1 + 3τ)1/2

= 3
4 (τ − 1) + 81

64 (τ − 1)2 + . . . ,
(4.62)

with vs = 2c0 q̇s =
1
2c− , if we restore units. Note that q̇s(τ = 1) = 0, so the shock curve initially rises vertically in

the (x, t) plane. In Fig. 4.7 we plot the evolution of c(x, t). Another example of shock fitting is worked out in the
appendix §4.11 below. Interestingly, vs ∝ (τ − 1) here, while for the example in §4.11, where c(x, 0) has a similar
profile, we find vs ∝ (τ − 1)1/2 (see Eqn. 4.170).

4.5 Long-time Behavior of Shocks

Starting with an initial profile ρ(x, t), almost all the original details are lost in the t → ∞ limit. What remains is a
set of propagating triangular waves, where only certain gross features of the original shape, such as its area, are
preserved.

4.5.1 Fate of a hump

Once again, we consider the case c′′(ρ) = 0 and analyze the equation ct + c cx = 0. The late time profile of c(x, t)
in Fig. 4.14 is that of a triangular wave. This is a general result. Following Whitham, we consider the late time
evolution of a hump profile c(ζ) = c(x = ζ, t = 0). We assume c(ζ) = c0 for |ζ| > L. Shock fitting requires

1
2

[

c(ζ+) + c(ζ
−
)− 2c0

]

(ζ+ − ζ
−
) =

ζ+
∫

ζ
−

dζ
(

c(ζ)− c0
)

. (4.63)
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Figure 4.8: Initial and late time configurations for a hump profile. For late times, the profile is triangular, and all
the details of the initial shape are lost, save for the area A.

Eventually the point ζ+ must pass x = L, in which case c(ζ+) = c0. Then

1
2

[

c(ζ
+
)− c0

]

(ζ
+
− ζ

−
) =

L
∫

ζ
−

dζ
(

c(ζ) − c0
)

(4.64)

and therefore

t =
ζ
+
− ζ

−

c(ζ
−
)− c0

. (4.65)

Using this equation to eliminate ζ+, we have

1
2

(

c(ζ
−
)− c0

)2
t =

L
∫

ζ
−

dζ
(

c(ζ)− c0
)

. (4.66)

As t → ∞ we must have ζ
−
→ −L, hence

1
2

(

c(ζ
−
)− c0

)2
t ≈

L
∫

−L

dζ
(

c(ζ) − c0
)

≡ A , (4.67)

where A is the area under the hump to the line c = c0. Thus,

c(ζ
−
)− c0 ≈

√

2A

t
, (4.68)

and the late time motion of the shock is given by

xs(t) = −L+ c0t+
√
2At

vs(t) = c0 +

√

A

2t
.

(4.69)

The shock strength is ∆c = c(ζ
−
)− c0 =

√

2A/t. Behind the shock, we have c = c(ζ) and x = ζ + c(ζ) t, hence

c =
x+ L

t
for − L+ c0t < x < −L+ c0t+

√
2At . (4.70)

As t → ∞, the details of the original profile c(x, 0) are lost, and all that remains conserved is the area A. Both
shock velocity and the shock strength decrease as t−1/2 at long times, with vs(t) → c0 and ∆c(t) → 0.
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Figure 4.9: Top panels : An N-wave, showing initial (left) and late time (right) profiles. As the N-wave propagates,
the areas A and B are preserved. Bottom panels : A P-wave. The area D eventually decreases to zero as the shock
amplitude dissipates.

4.5.2 N-wave and P-wave

Consider the initial profile in the top left panel of Fig. 4.9. Now there are two propagating shocks, since there
are two compression regions where g′(ζ) < 0. As t → ∞, we have (ζ

−
, ζ+)A → (0 , ∞) for the A shock, and

(ζ
−
, ζ

+
)
B
→ (−∞ , 0) for the B shock. Asymptotically, the shock strength

∆c(t) ≡ c
(

x−
s (t), t

)

− c
(

x+
s (t), t

)

(4.71)

for the two shocks is given by

xA

s (t) ≈ c0t+
√
2At , ∆c

A
≈ +

√

2A

t

xB

s (t) ≈ c0t−
√
2Bt , ∆cB ≈ −

√

2B

t
,

(4.72)

where A and B are the areas associated with the two features This feature is called an N-wave, for its N (or
inverted N) shape.

The initial and late stages of a periodic (P) wave, where g(ζ+λ) = g(ζ), are shown in the bottom panels of Fig. 4.9.
In the t → ∞ limit, we evidently have ζ

+
− ζ

−
= λ, the wavelength. Asymptotically the shock strength is given by

∆c(t) ≡ g(ζ
−
)− g(ζ+) =

ζ
+
− ζ

−

t
=

λ

t
, (4.73)

where we have invoked Eqn. 4.52. In this limit, the shock train travels with constant velocity c0, which is the
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spatial average of c(x, 0) over one wavelength:

c0 =
1

λ

λ
∫

0

dζ g(ζ) . (4.74)

4.6 Shock Merging

It is possible for several shock waves to develop, and in general these shocks form at different times, have different
strengths, and propagate with different velocities. Under such circumstances, it is quite possible that one shock
overtakes another. These two shocks then merge and propagate on as a single shock. The situation is depicted in
Fig. 4.10. We label the shocks by A and B when they are distinct, and the late time single shock by C. We must
have

vA

s = 1
2 g

(

ζA

+

)

+ 1
2 g

(

ζA

−

)

vB

s = 1
2 g

(

ζB

+

)

+ 1
2 g

(

ζB

−

)

.

(4.75)

The merging condition requires
ζA

+ = ζB

−
≡ ξ (4.76)

as well as
ζC

+ = ζB

+ , ζC

−
= ζA

−
. (4.77)

Figure 4.10: Merging of two shocks. The shocks initially propagate independently (upper left), and then merge
and propagate as a single shock (upper right). Bottom : characteristics for the merging shocks.
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The merge occurs at time t, where

t =
ζ
+
− ξ

g(ξ)− g(ζ
+
)
=

ξ − ζ
−

g(ζ
−
)− g(ξ)

. (4.78)

Thus, the slopes of the A and B shock construction lines are equal when they merge.

4.7 Shock Fitting for General J(ρ)

When J(ρ) is quadratic, we may analyze the equation ct + c cx, as it is valid across any shocks in that it yields
the correct shock velocity. If J ′′′(ρ) 6= 0, this is no longer the case, and we must base our analysis on the original
equation ρt + c(ρ) ρx = 0.

The coordinate transformation

(x, c) −→ (x + ct , c) (4.79)

preserves areas in the (x, c) plane and also maps lines to lines. However, while

(x, ρ) −→ (x+ c(ρ) t , ρ) (4.80)

does preserve areas in the (x, ρ) plane, it does not map lines to lines. Thus, the ‘pre-image’ of the shock front in
the (x, ρ) plane is not a simple straight line, and our equal area construction fails. Still, we can make progress. We
once again follow Whitham, §2.9.

Let x(ρ, t) be the inverse of ρ(x, t), with ζ(ρ) ≡ x(ρ, t = 0). Then

x(ρ, t) = ζ(ρ) + c(ρ) t . (4.81)

Note that ρ(x, t) is in general multi-valued. We still have that the shock solution covers the same area as the
multivalued solution ρ(x, t). Let ρ

±
denote the value of ρ just to the right (+) or left (−) of the shock. For purposes

of illustration, we assume c′(ρ) > 0, which means that ρx < 0 is required for breaking, although the method works
equally well for c′(ρ) < 0. Assuming a hump-like profile, we then have ρ

−
> ρ

+
, with the shock breaking to the

right. Area conservation requires

ρ−
∫

ρ+

dρ x(ρ, t) =

ρ−
∫

ρ+

dρ
[

ζ(ρ) + c(ρ) t
]

= (ρ
−
− ρ

+
)xs(t) . (4.82)

Since c(ρ) = J ′(ρ), the above equation may be written as

(J+ − J
−
) t− (ρ+ − ρ

−
)xs(t) =

ρ−
∫

ρ+

dρ ζ(ρ) = ρ
−
ζ
−
− ρ+ ζ+ −

ζ−
∫

ζ+

dζ ρ(ζ) , (4.83)

where we have integrated by parts in obtaining the RHS, writing ζ dρ = d(ρ ζ) − ρ dζ. Next, the shock position
xs(t) is given by

xs(t) = ζ
−
+ c

−
t = ζ+ + c+t , (4.84)

which yields

t =
ζ− − ζ+
c+ − c−

, (4.85)



4.8. SOURCES 17

and therefore

[

(J
+
− ρ

+
c
+
)− (J

−
− ρ

−
c
−
)
]

= −c
+
− c

−

ζ
+
− ζ

−

ζ+
∫

ζ
−

dζ ρ(ζ) . (4.86)

This is a useful result because J
±

, ρ
±

, and c
±

are all functions of ζ
±

, hence what we have here is a relation between
ζ
+

and ζ
−

. When J(ρ) is quadratic, this reduces to our earlier result in Eqn. 4.50. For a hump, we still have

xs ≈ c0t+
√
2At and c− c0 ≈

√

2A/t as before, with

A = c′(ρ0)

∞
∫

−∞

dζ
[

ρ(ζ)− ρ0
]

. (4.87)

4.8 Sources

Consider the continuity equation in the presence of a source term,

ρt + c ρx = σ , (4.88)

where c = c(x, t, ρ) and σ = σ(x, t, ρ). Note that we are allowing for more than just c = c(ρ) here. According to
the discussion in the Appendix, the characteristic obey the coupled ODEs3,

dx

dt
= c(x, t, ρ) ,

dρ

dt
= σ(x, t, ρ) . (4.89)

In general, the characteristics no longer are straight lines.

4.8.1 Examples

Whitham analyzes the equation
ct + c cx = −αc , (4.90)

so that the characteristics obey
dc

dt
= −α c ,

dx

dt
= c . (4.91)

The solution is

cζ(t) = e−αt g(ζ)

xζ(t) = ζ +
1

α

(

1− e−αt
)

g(ζ) ,
(4.92)

where ζ = xζ(0) labels the characteristics. Clearly xζ(t) is not a straight line. Neighboring characteristics will
cross at time t if

∂xζ(t)

∂ζ
= 1 +

1

α

(

1− e−αt
)

g′(ζ) = 0 . (4.93)

Thus, the break time is

tB = min
ζ

t
B

>0

[

− 1

α
ln

(

1 +
α

g′(ζ)

)

]

. (4.94)

3We skip the step where we write dt/ds = 1 since this is immediately integrated to yield s = t.
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This requires g′(ζ) < −α in order for wave breaking to occur.

For another example, consider

ct + c cx = −α c2 , (4.95)

so that the characteristics obey

dc

dt
= −α c2 ,

dx

dt
= c . (4.96)

The solution is now

cζ(t) =
g(ζ)

1 + α g(ζ) t

xζ(t) = ζ +
1

α
ln
(

1 + α g(ζ) t
)

.

(4.97)

4.8.2 Moving sources

Consider a source moving with velocity u. We then have

ct + c cx = σ(x− ut) , (4.98)

where u is a constant. We seek a moving wave solution c = c(ξ) = c(x− ut). This leads immediately to the ODE

(c− u) cξ = σ(ξ) . (4.99)

This may be integrated to yield

1
2 (u− c∞)2 − 1

2 (u − c)2 =

∞
∫

ξ

dξ′ σ(ξ′) . (4.100)

Consider the supersonic case where u > c. Then we have a smooth solution,

c(ξ) = u−
[

(u − c∞)2 − 2

∞
∫

ξ

dξ′ σ(ξ′)

]1/2

, (4.101)

provided that the term inside the large rectangular brackets is positive. This is always the case for σ < 0. For
σ > 0 we must require

u− c∞ >

√

√

√

√

√
2

∞
∫

ξ

dξ′ σ(ξ′) (4.102)

for all ξ. If σ(ξ) is monotonic, the lower limit on the above integral may be extended to −∞. Thus, if the source
strength is sufficiently small, no shocks are generated. When the above equation is satisfied as an equality, a shock
develops, and transients from the initial conditions overtake the wave. A complete solution of the problem then
requires a detailed analysis of the transients. What is surprising here is that a supersonic source need not produce
a shock wave, if the source itself is sufficiently weak.



4.9. BURGERS’ EQUATION 19

4.9 Burgers’ Equation

The simplest equation describing both nonlinear wave propagation and diffusion equation is the one-dimensional
Burgers’ equation,

ct + c cx = ν cxx . (4.103)

As we’ve seen, this follows from the continuity equation ρt+jx when j = J(ρ)−νρx, with c = J ′(ρ) and c′′(ρ) = 0.

We have already obtained, in §4.3.1, a solution to Burgers’ equation in the form of a propagating front. However,
we can do much better than this; we can find all the solutions to the one-dimensional Burgers’ equation. The trick
is to employ a nonlinear transformation of the field c(x, t), known as the Cole-Hopf transformation, which linearizes
the PDE. Once again, we follow the exceptionally clear discussion in the book by Whitham (ch. 4).

The Cole-Hopf transformation is defined as follows:

c ≡ −2ν
ϕx

ϕ
=

∂

∂x

(

− 2ν lnϕ
)

. (4.104)

Plugging into Burgers’ equation, one finds that ϕ(x, t) satisfies the linear diffusion equation,

ϕt = ν ϕxx . (4.105)

Isn’t that just about the coolest thing you’ve ever heard?

Suppose the initial conditions on ϕ(x, t) are

ϕ(x, 0) = Φ(x) . (4.106)

We can then solve the diffusion equation 4.105 by Laplace transform. The result is

ϕ(x, t) =
1√
4πνt

∞
∫

−∞

dx′ e−(x−x′)2/4νt Φ(x′) . (4.107)

Thus, if c(x, t = 0) = g(x), then the solution for subsequent times is

c(x, t) =

∞
∫

−∞
dx′ (x− x′) e−H(x,x′,t)/2ν

t
∞
∫

−∞
dx′ e−H(x,x′,t)/2ν

, (4.108)

where

H(x, x′, t) =

x′
∫

0

dx′′ g(x′′) +
(x − x′)2

2t
. (4.109)

4.9.1 The limit ν → 0

In the limit ν → 0, the integrals in the numerator and denominator of Eqn. 4.108 may be computed via the method
of steepest descents. This means that extremize H(x, x′, t) with respect to x′, which entails solving

∂H

∂x′ = g(x′)− x− x′

t
. (4.110)
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Let ζ = ζ(x, t) be a solution to this equation for x′, so that

x = ζ + g(ζ) t . (4.111)

We now expand about x′ = ζ, writing x′ = ζ + s, in which case

H(x′) = H(ζ) + 1
2H

′′(ζ) s2 +O(s3) , (4.112)

where the x and t dependence is here implicit. If F (x′) is an arbitrary function which is slowly varying on distance
scales on the order of ν1/2, then we have

∞
∫

−∞

dx′ F (x′) e−H(x′)/2ν ≈
√

4πν

H ′′(ζ)
e−H(ζ)/2ν F (ζ) . (4.113)

Applying this result to Eqn. 4.108, we find

c ≈ x− ζ

t
, (4.114)

which is to say

c = g(ζ)

x = ζ + g(ζ) t . (4.115)

This is precisely what we found for the characteristics of ct + c cx = 0.

What about multivaluedness? This is obviated by the presence of an additional saddle point solution. I.e. beyond
some critical time, we have a discontinuous change of saddles as a function of x:

x = ζ
±
+ g(ζ

±
) t −→ ζ

±
= ζ

±
(x, t) . (4.116)

Then

c ∼ 1

t
·

x−ζ−√
H′′(ζ

−
)
e−H(ζ−)/2ν +

x−ζ+√
H′′(ζ+)

e−H(ζ+)/2ν

1√
H′′(ζ

−
)
e−H(ζ

−
)/2ν + 1√

H′′(ζ+)
e−H(ζ+)/2ν

. (4.117)

Thus,

H(ζ
+
) > H(ζ

−
) ⇒ c ≈ x− ζ

−

t

H(ζ
+
) < H(ζ

−
) ⇒ c ≈ x− ζ

+

t
.

(4.118)

At the shock, these solutions are degenerate:

H(ζ
+
) = H(ζ

−
) ⇒ 1

2 (ζ+ − ζ
−
)
(

g(ζ
+
) + g(ζ

−
)
)

=

ζ+
∫

ζ
−

dζ g(ζ) , (4.119)

which is again exactly as before. We stress that for ν small but finite the shock fronts are smoothed out on a
distance scale proportional to ν.

What does it mean for ν to be small? The dimensions of ν are [ν] = L2/T , so we must find some other quantity in
the problem with these dimensions. The desired quantity is the area,

A =

∞
∫

−∞

dx
[

g(x)− c0
]

, (4.120)
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where c0 = c(x = ±∞). We can now define the dimensionless ratio,

R ≡ A

2ν
, (4.121)

which is analogous to the Reynolds number in viscous fluid flow. R is proportional to the ratio of the nonlinear
term (c− c0) cx to the diffusion term νcxx.

4.9.2 Examples

Whitham discusses three examples: diffusion of an initial step, a hump, and an N-wave. Here we simply repro-
duce the functional forms of these solutions. For details, see chapter 4 of Whitham’s book.

For an initial step configuration,

c(x, t = 0) =

{

c1 if x < 0

c2 if x > 0 .
(4.122)

We are interested in the case c1 > c2. Using the Cole-Hopf transformation and applying the appropriate initial
conditions to the resulting linear diffusion equation, one obtains the complete solution,

c(x, t) = c2 +
c1 − c2

1 + h(x, t) exp
[

(c1 − c2)(x − vst)/2ν
] , (4.123)

where
vs =

1
2 (c1 + c2) (4.124)

and

h(x, t) =
erfc

(

−x−c2t√
4νt

)

erfc
(

+
x−c1t√

4νt

) . (4.125)

Recall that erfc(z) is the complimentary error function:

erf(z) =
2√
π

z
∫

0

du e−u2

erfc(z) =
2√
π

∞
∫

z

du e−u2

= 1− erf(z) .

(4.126)

Note the limiting values erfc(−∞) = 2, erfc(0) = 1 and erfc(∞) = 0. If c2 < x/t < c1, then h(x, t) → 1 as t → ∞,
in which case the solution resembles a propagating front. It is convenient to adimensionalize (x, t) → (y, τ) by
writing

x =
ν y

√

c1c2
, t =

ν τ

c1c2
, r ≡

√

c1
c2

. (4.127)

We then have
c(z, τ)
√

c1c2
= r−1 +

2α

1 + h(z, τ) exp(αz)
, (4.128)

where

h(z, τ) = erfc

(

− z + ατ

2
√
τ

)

/

erfc

(

+
z − ατ

2
√
τ

)

(4.129)
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Figure 4.11: Evolution of profiles for Burgers’ equation. Top : a step discontinuity evolving into a front at times
τ = 0 (blue), τ = 1

5 (green), and τ = 5 (red).. Middle : a narrow hump c0 +Aδ(x) evolves into a triangular wave.
Bottom : dissipation of an N-wave at times τ = 1

4 (blue), τ = 1
2 (green), and τ = 1 (red).

and
α ≡ 1

2

(

r − r−1
)

, z ≡ y − 1
2

(

r + r−1
)

τ . (4.130)

The second example involves the evolution of an infinitely thin hump, where

c(x, t = 0) = c0 +Aδ(x) . (4.131)

The solution for subsequent times is

c(x, t) = c0 +

√

ν

πt
·

(eR − 1) exp
(

−x−c0t
4νt

)

1 + 1
2 (e

R − 1) erfc
(

x−c0t√
4νt

) , (4.132)

where R = A/2ν. Defining

z ≡ x− c0t√
2At

, (4.133)

we have the solution

c = c0 +

(

2A

t

)1/2
1√
4πR

· (eR − 1) e−Rz2

1 + 1
2 (e

R − 1) erfc(
√
R z)

. (4.134)



4.9. BURGERS’ EQUATION 23

Asymptotically, for t → ∞ with x/t fixed, we have

c(x, t) =

{

x/t if 0 < x <
√
2At

0 otherwise .
(4.135)

This recapitulates the triangular wave solution with the two counterpropagating shock fronts and dissipating
shock strengths.

Finally, there is the N-wave. If we take the following solution to the linear diffusion equation,

ϕ(x, t) = 1 +

√

a

t
e−x2/4νt , (4.136)

then we obtain

c(x, t) =
x

t
· e−x2/4νt

√

t
a + e−x2/4νt

. (4.137)

In terms of dimensionless variables (y, τ), where

x =
√
aν y , t = aτ , (4.138)

we have

c =

√

ν

a

y

τ
· e−y2/4τ

√
τ + e−y2/4τ

. (4.139)

The evolving profiles for these three cases are plotted in Fig. 4.11.

4.9.3 Confluence of shocks

The fact that the diffusion equation 4.105 is linear means that we can superpose solutions:

ϕ(x, t) = ϕ1(x, t) + ϕ2(x, t) + . . .+ ϕN (x, t) , (4.140)

where
ϕj(x, t) = e−cj(x−bj)/2ν e+c2j t/4ν . (4.141)

We then have

c(x, t) = −2νϕx

ϕ
=

∑

i ci ϕi(x, t)
∑

i ϕi(x, t)
. (4.142)

Consider the case N = 2, which describes a single shock. If c1 > c2, then at a fixed time t we have that ϕ1

dominates as x → −∞ and ϕ2 as x → +∞. Therefore c(−∞, t) = c1 and c(+∞) = c2. The shock center is defined
by ϕ1 = ϕ2, where x = 1

2 (c1 + c2) t.

Next consider N = 3, where there are two shocks. We assume c1 > c2 > c3. We identify regions in the (x, t) plane
where ϕ1, ϕ2, and ϕ3 are dominant. One finds

ϕ1 > ϕ2 : x < 1
2 (c1 + c2) t+

b1c1 − b2c2
c1 − c2

ϕ1 > ϕ3 : x < 1
2 (c1 + c3) t+

b1c1 − b3c3
c1 − c3

ϕ2 > ϕ3 : x < 1
2 (c2 + c3) t+

b2c2 − b3c3
c2 − c3

.

(4.143)
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Figure 4.12: Merging of two shocks for piecewise constant initial data. The (x, t) plane is broken up into regions
labeled by the local value of c(x, t). For the shocks to form, we require c1 > c2 > c3. When the function ϕj(x, t)
dominates over the others, then c(x, t) ≈ cj .

These curves all meet in a single point at (xm, tm), as shown in Fig. 4.12. The shocks are the locus of points along
which two of the ϕj are equally dominant. We assume that the intercepts of these lines with the x-axis are ordered
as in the figure, with x∗

12 < x∗
13 < x∗

23, where

x∗
ij ≡

bici − bjcj
ci − cj

. (4.144)

When a given ϕi(x, t) dominates over the others, we have from Eqn. 4.142 that c ≈ ci. We see that for t < t∗

one has that ϕ1 is dominant for x < x∗
12, and ϕ3 is dominant for x > x∗

23, while ϕ2 dominates in the intermediate
regime x∗

12 < x < x∗
23. The boundaries between these different regions are the two propagating shocks. After the

merge, for t > tm, however, ϕ2 never dominates, and hence there is only one shock.

4.10 Appendix I : The Method of Characteristics

Consider the quasilinear PDE

a1(x, φ)
∂φ

∂x1

+ a2(x, φ)
∂φ

∂x2

+ . . .+ aN (x, φ)
∂φ

∂xN

= b(x, φ) . (4.145)

This PDE is called ‘quasilinear’ because it is linear in the derivatives ∂φ/∂xj . The N independent variables are
the elements of the vector x = (x1, . . . , xN ). A solution is a function φ(x) which satisfies the PDE.

Now consider a curve x(s) parameterized by a single real variable s satisfying

dxj

ds
= aj

(

x, φ(x)
)

, (4.146)

where φ(x) is a solution of Eqn. 4.145. Along such a curve, which is called a characteristic, the variation of φ is

dφ

ds
=

N
∑

j=1

∂φ

∂xj

dxj

ds
= b

(

x(s), φ
)

. (4.147)
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Thus, we have converted our PDE into a set of (N+1) ODEs. To integrate, we must supply some initial conditions
of the form

g
(

x, φ)
∣

∣

∣

s=0
= 0 . (4.148)

This defines an (N − 1)-dimensional hypersurface, parameterized by {ζ1, . . . , ζN−1}:

xj(s = 0) = hj(ζ1, . . . , ζN−1) , j = 1, . . . , N

φ(s = 0) = f(ζ1, . . . , ζN−1) .
(4.149)

If we can solve for all the characteristic curves, then the solution of the PDE follows. For every x, we identify the
characteristic curve upon which x lies. The characteristics are identified by their parameters (ζ1, . . . , ζN−1). The
value of φ(x) is then φ(x) = f(ζ1, . . . , ζN−1). If two or more characteristics cross, the solution is multi-valued, or
a shock has occurred.

4.10.1 Example

Consider the PDE

φt + t2 φx = −xφ . (4.150)

We identify a1(t, x, φ) = 1 and a2(t, x, φ) = t2, as well as b(t, x, φ) = −xφ. The characteristics are curves
(

t(s), x(s)
)

satisfing

dt

ds
= 1 ,

dx

ds
= t2 . (4.151)

The variation of φ along each of the characteristics is given by

dφ

ds
= −xφ . (4.152)

The initial data are expressed parametrically as

t(s = 0) = 0 , x(s = 0) = ζ , φ(s = 0) = f(ζ) . (4.153)

We now solve for the characteristics. We have

dt

ds
= 1 ⇒ t(s, ζ) = s . (4.154)

It then follows that
dx

ds
= t2 = s2 ⇒ x(s, ζ) = ζ + 1

3s
3 . (4.155)

Finally, we have

dφ

ds
= −xφ = −

(

ζ + 1
3s

3
)

φ ⇒ φ(s, ζ) = f(ζ) exp
(

− 1
12s

4 − sζ
)

. (4.156)

We may now eliminate (ζ, s) in favor of (x, t), writing s = t and ζ = x− 1
3 t

3, yielding the solution

φ(x, t) = f
(

x− 1
3 t

3
)

exp
(

1
4 t

4 − xt
)

. (4.157)
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4.11 Appendix II : Worked Problem in Shock Fitting

Consider the equation ct + c cx = 0. Suppose the c(ρ) and ρ(x, t = 0) are such that c(x, t = 0) is given by

c(x, 0) = c0 cos
(πx

2ℓ

)

Θ
(

ℓ− |x|
)

, (4.158)

where Θ(s) is the step function, which vanishes identically for negative values of its argument. Thus, c(x, 0) = 0
for |x| ≥ ℓ.

(a) Find the time tB at which the wave breaks and a shock front develops. Find the position of the shock xs(tB) at
the moment it forms.

Solution : Breaking first occurs at time

tB = min
x

(

− 1

c′(x, 0)

)

. (4.159)

Thus, we look for the maximum negative slope in g(x) ≡ c(x, 0), which occurs at x = ℓ, where c′(ℓ, 0) = −πc0/2ℓ.
Therefore,

tB =
2ℓ

πc0
, xB = ℓ . (4.160)

(b) Use the shock-fitting equations to derive ζ±(t).

Solution : The shock fitting equations are

1
2 (ζ+ − ζ−)

(

g(ζ+) + g(ζ−)
)

=

ζ+
∫

ζ−

dζ g(ζ) (4.161)

and

t =
ζ+ − ζ−

g(ζ−)− g(ζ+)
. (4.162)

Clearly ζ+ > ℓ, hence g(ζ+) = 0 and

ζ+
∫

ζ−

dζ g(ζ) = c0 ·
2ℓ

π

π/2
∫

πζ−/2ℓ

dz cos z =
2ℓ c0
π

{

1− sin

(

πζ−
2ℓ

)

}

. (4.163)

Thus, the first shock fitting equation yields

1
2 (ζ+ − ζ−) c0 cos

(

πζ−
2ℓ

)

=
2ℓ c0
π

{

1− sin

(

πζ−
2ℓ

)

}

. (4.164)

The second shock fitting equation gives

t =
ζ+ − ζ−

c0 cos
(πζ−

2ℓ

)
. (4.165)

Eliminating ζ+ − ζ−, we obtain the relation

sin

(

πζ−
2ℓ

)

=
4ℓ

πc0t
− 1 . (4.166)
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Figure 4.13: Top : crossing characteristics (purple hatched region) in the absence of shock fitting. Bottom : charac-
teristics in the presence of the shock.

Thus,

ζ
−
(t) =

2ℓ

π
sin−1

(

4ℓ

πc0t
− 1

)

(4.167)

and

ζ
+
(t) = ζ

−
+

4ℓ

π
· 1− sin(πζ−/2ℓ)

cos(πζ−/2ℓ)

=
2ℓ

π

{

sin−1

(

4ℓ

πc0t
− 1

)

+ 2

√

πc0t

2ℓ
− 1

}

,

(4.168)

where t ≥ tB = 2ℓ/πc0.

(c) Find the shock motion xs(t).

Solution : The shock position is

xs(t) = ζ
−
+ g(ζ

−
) t

=
2ℓ

π
sin−1

(

2

τ
− 1

)

+
4ℓ

π

√
τ − 1 , (4.169)
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Figure 4.14: Evolution of c(x, t) for a series of time values.

where τ = t/tB = πc0t/2ℓ, and τ ≥ 1.

(d) Sketch the characteristics for the multivalued solution with no shock fitting, identifying the region in (x, t)
where characteristics cross. Then sketch the characteristics for the discontinuous shock solution.

Solution : See Fig. 4.13.

(e) Find the shock discontinuity ∆c(t).

Solution : The shock discontinuity is

∆c(t) = g
(

ζ
−

)

− g
(

ζ
+

)

= c0 cos

(

πζ−
2ℓ

)

=

√

8ℓ c0
πt

(

1− 2ℓ

πc0t

)

= 2c0

√
τ − 1

τ
. (4.170)

(f) Find the shock velocity vs(t).

Solution : The shock wave velocity is

cs(t) =
1
2

[

g
(

ζ−
)

+ g
(

ζ
+

)

]

= 1
2 ∆c(t)

=

√

2ℓ c0
πt

(

1− 2ℓ

πc0t

)

.

(4.171)

(g) Sketch the evolution of the wave, showing the breaking of the wave at t = tB and the subsequent evolution of
the shock front.

Solution : A sketch is provided in Fig. 4.14.
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4.12 Appendix III : The Traffic Light

Problem : Consider vehicular traffic flow where the flow velocity is given by

u(ρ) = u0

(

1− ρ2

ρ2BB

)

. (4.172)

Solve for the density ρ(x, t) with the initial conditions appropriate to a green light starting at t = 0, i.e. ρ(x, 0) =

ρBB Θ(−x). Solve for the motion of a vehicle in the flow, assuming initial position x(0) = x0 < 0. How long does
it take the car to pass the light?

Solution : Consider the one-parameter family of velocity functions,

u(ρ) = u0

(

1− ρα

ρα
BB

)

, (4.173)

where α > 0. The speed of wave propagation is

c(ρ) = u(ρ) + ρ u′(ρ)

= u0

(

1− (1 + α)
ρα

ρα
BB

)

.
(4.174)

The characteristics are shown in figure 4.15. At t = 0, the characteristics emanating from the x-axis have slope

−1/(αu0) for x < 0 and slope +1/u0 for x > 0. This is because the slope is 1/c (we’re plotting t on the y-axis),

and c(0) = u0 while c(ρBB) = −αu0. Interpolating between these two sets is the fan region, shown in blue in the
figure. All characteristics in the fan emanate from x = 0, where the density is discontinuous at t = 0. Hence, the

entire interval [0, ρBB] is represented at t = 0.

For the fan region, the characteristics satisfy

c(ρ) =
x

t
⇒ ρα

ραBB

=
1

1 + α

(

1− x

u0 t

)

. (4.175)

This is valid throughout the region −αu0 < x/t < u0. The motion of a vehicle in this flow is determined by the
equation

dx

dt
= u(ρ) =

αu0

1 + α
+

1

1 + α

x

t
, (4.176)

Figure 4.15: Characteristics for the green light problem. For x < 0, the density at t = 0 is ρ = ρBB, and c(x < 0, t =
0) = −αu0. For x > 0, the density at t = 0 is ρ = 0 and c(x > 0, t = 0) = u0.
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Figure 4.16: Density versus position for the green light problem at three successive times. The initial discontinuity
at x = 0 is smoothed into a straight line interpolating between ρ = ρBB and ρ = 0. Because dc/dx > 0 for this
problem, the initial profile smooths out. When dc/dx < 0, the wave steepens.

which is obtained by eliminating ρ in terms of the ratio x/t. Thus, we obtain the linear, non-autonomous, inho-
mogeneous equation

t
dx

dt
− x

1 + α
=

αu0t

1 + α
, (4.177)

whose solution is
x(t) = C t1/(1+α) + u0t , (4.178)

where C is a constant, fixed by the initial conditions.

What are the initial conditions? Consider a vehicle starting at x(t = 0) = −|x0|. It remains stationary until a time

t∗ = |x0|/αu0, at which point x/t∗ = −αu0, and it enters the fan region. At this point (see figure 4.16), the trailing
edge of the smoothing front region, which was absolutely sharp and discontinuous at t = 0, passes by the vehicle,

the local density decreases below ρBB, and it starts to move. We solve for C by setting

x(t∗) = −|x0| ⇒ C = −(1 + α)α−α/(1+α) |x0|α/(1+α) u
1/(1+α)
0 . (4.179)

Thus,

x(t) = − |x0| (t < t∗ = |x0|/αu0)

= u0t− (1 + α)α−α/(1+α) |x0|α/(1+α) (u0 t)
1/(1+α) (t > t∗) .

(4.180)

Finally, we set x(t
c
) = 0 to obtain

x(tc) = 0 ⇒ tc =
1

α
(1 + α)1+α−1 · |x0|

u0
. (4.181)

For α = 2, find tc =
3
√
3

2 |x0|/u0.

4.13 Appendix IV : Characteristics for a Periodic Signal

Problem : Consider traffic flow in the presence of a signal on a single-lane roadway. Assume initial conditions

ρ(x, 0) = ρ1. At time t = 0, the signal turns red for an interval Tred = r T , after which the signal is green for
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Figure 4.17: Evolution of traffic density before, during, and after a red light.

Tgreen = g T , with r+ g = 1. The cycle length is T . (Traffic engineers call g the ‘green-to-cycle ratio’.) It is useful to
work with dimensionless quantities,

ρ̄ ≡ ρ/ρBB c̄ ≡ c/u0 x̄ ≡ x/u0T (4.182)

j̄ ≡ j/u0 ρBB ū ≡ u/u0 τ ≡ t/T .

The continuity equation is then
∂ρ̄

∂τ
+ c̄(ρ̄)

∂ρ̄

∂x̄
= 0 . (4.183)

Note : Assume j̄(ρ̄) = ρ̄(1 − ρ̄), so

ū(ρ̄) = 1− ρ̄ , c̄(ρ̄) = 1− 2ρ̄ . (4.184)

(a) During the red phase, two shocks propagate – one behind the light (i.e. x̄−
s < 0) and one ahead of the light (i.e.

x̄+
s > 0). Find the velocities and discontinuities at these shocks.

Solution : During the red phase, 0 ≤ τ ≤ r, a shock is formed behind the light at the boundary of the ρ̄ = ρ̄1 and
ρ̄ = 1 regions. The velocity of this shock is

vs =
j̄(1)− j̄(ρ̄1)

1− ρ̄1
= −ρ̄1 . (4.185)

This shock forms immediately upon the appearance of the red light, hence x̄−
s (τ) = −ρ̄1 τ . Another shock forms

ahead of the light, at the boundary between ρ̄ = 0 and ρ̄ = ρ̄1 regions. There,

vs =
j̄(ρ̄1)− j̄(0)

ρ̄1 − 0
= 1− ρ̄1 . (4.186)

Thus, x̄+
s (τ) = (1− ρ̄1) τ .

(b) When the light changes to green, the characteristics develop a fan, and the discontinuity at x = 0 starts to

spread. Let x̄>(τ) denote the minimum value of x̄ for which ρ̄(τ) = 0, and x̄<(τ) the maximum value of x̄ for

which ρ̄(τ) = 1. Show that x̄> overtakes x̄+
s after a time τ+ and that x̄< overtakes x̄−

s after a time τ−. Compute τ±.

Solution : The situation is depicted in figure 4.17. At τ = r, the light turns green, and the queue behind the
light is released. The discontinuity at x̄ = 0 spreads as shown in the figure. (Recall that regions with dc/dx > 0

spread while those with dc/dx < 0 steepen.) The boundaries of the spreading region are x̄>(τ) = τ − r and

x̄<(τ) = r − τ , and travel at speeds c̄> = +1 and c̄< = −1. Setting x̄+
s (τ+) = x̄>(τ+) gives τ+ = r/ρ̄1. Similarly,

setting x̄−
s (τ−) = x̄<(τ−) gives τ− = r/(1− ρ̄1). For light traffic (ρ̄1 < 1

2 ), we have τ− < τ+, while for heavy traffic

(ρ̄1 > 1
2 ), τ− > τ+.



32 CHAPTER 4. SHOCK WAVES

(c) Impose the proper shock conditions at x̄±
s for τ > τ±, respectively. Show that each shock obeys the equation

dx̄s

dτ
= 1

2 − ρ̄1 +
x̄s

2(τ − r)
.

Apply the proper boundary conditions for the ahead and behind shocks and obtain explicit expressions for x̄±
s (τ)

for all τ ≥ 0. (You will have to break up your solution into different cases, depending on τ .)

Solution : For a shock discontinuity between ρ̄ = ρ̄− and ρ̄ = ρ̄+, we have in general

vs =
j̄+ − j̄−
ρ̄+ − ρ̄−

= 1− ρ̄+ − ρ̄− . (4.187)

Let’s first apply this at the shock x̄+
s for τ > τ+. For x < x̄+

s , we are in a fan region of the characteristics, with

x̄(τ) = c̄(ρ̄)(τ − r) = (1 − 2ρ̄) (τ − r) . (4.188)

Thus,

ρ̄ = 1
2

(

1− x̄

τ − r

)

. (4.189)

Now invoke the shock condition at x̄ = x̄+
s :

dx̄+
s

dτ
= 1− ρ̄1 − 1

2

(

1− x̄+
s

τ − r

)

= 1
2 − ρ̄1 −

x̄+
s

2(τ − r)
,

(4.190)

the solution of which is
x̄+
s (τ) = A+ (τ − r)1/2 + (1− 2ρ̄1) (τ − r) . (4.191)

The constant A+ is determined by setting

x̄+
s (τ+) = x̄>(τ+) =

ρ̄1 r

1− ρ̄1
⇒ A+ = 2

√

rρ̄1(1 − ρ̄1) . (4.192)

Putting this all together, we have

x̄+
s (τ) =











(1− ρ̄1) τ for τ < r
ρ̄1

√

4rρ̄1(1− ρ̄1) (τ − r)1/2 + (1− 2ρ̄1) (τ − r) for τ > r
ρ̄1

.

(4.193)

The identical analysis can be applied to the shock at x̄−
s for τ > τ−. The solution is once again of the form

x̄−
s (τ) = A− (τ − r)1/2 + (1− 2ρ̄1) (τ − r) , (4.194)

now with A− chosen to satisfy

x̄−
s (τ−) = x̄<(τ−) = − ρ̄1 r

1− ρ̄1
⇒ A− = −2

√

rρ̄1(1 − ρ̄1) = −A+ . (4.195)

Thus,

x̄−
s (τ) =











−ρ̄1 τ for τ < r
1−ρ̄1

−
√

4rρ̄1(1 − ρ̄1) (τ − r)1/2 + (1− 2ρ̄1) (τ − r) for τ > r
1−ρ̄1

.

(4.196)
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(d) Compute the discontinuity ∆ρ̄±(τ) at the shocks.

Solution : For the shock at x̄+
s , we have

∆ρ̄+(τ) = ρ̄1 − 1
2

(

1− x̄+
s

τ − r

)

=
√

rρ̄1(1− ρ̄1) (τ − r)−1/2 ,

(4.197)

which is valid for τ > τ+ = r/ρ̄1. For the shock at x̄−
s ,

∆ρ̄−(τ) = 1
2

(

1− x̄−
s

τ − r

)

− ρ̄1

=
√

rρ̄1(1 − ρ̄1) (τ − r)−1/2 ,

(4.198)

which is valid for τ > τ− = r/(1− ρ̄1). Note ∆ρ̄+(τ) = ∆ρ̄−(τ) for τ > max(τ+, τ−).

(e) If ρ̄1 < 1
2 , show that the shock which starts out behind the light passes the light after a finite time τ∗. What

is the condition that the shock passes the light before the start of the next red phase? Show that this condition is
equivalent to demanding that the number of cars passing the light during the green phase must be greater than
the incoming flux at x̄ = −∞, integrated over the cycle length, under the assumption that the shock just barely
manages to pass through before the next red.

Solution : For light traffic with ρ̄1 < 1
2 , the shock behind the light passes the signal at time τ∗, where x̄−

s (τ
∗) = 0,

i.e.
x̄−
s (τ

∗) = (1− 2ρ̄1) (τ
∗ − r)−

√

4rρ̄1(1− ρ̄1) (τ
∗ − r)1/2 = 0 . (4.199)

Solving for τ∗, we have

τ∗ = r +
4rρ̄1(1 − ρ̄1)

(1− 2ρ̄1)2
=

r

(1− 2ρ̄1)2
. (4.200)

Similarly, if ρ̄1 > 1
2 , the shock ahead of the light reverses direction and passes behind the signal at time τ∗ =

r/(2ρ̄1 − 1)2.

For the case of light traffic, we see that if r > (1 − 2ρ̄1)
2, the trailing shock remains behind the signal when the

next green phase starts – the shock never clears the signal. In traffic engineering parlance, the capacity of the
intersection is insufficient, and the traffic will back up. We can derive the result in a very simple way. Until the
trailing shock at x̄−

s passes the signal, the density of vehicles at the signal is fixed at ρ̄ = 1
2 . Hence the flux of

vehicles at the signal is maximum, and equal to j̄(ρ̄ = 1
2 ) =

1
4 . The maximum number of vehicles that the signal

can clear is therefore 1
4 g = 1

4 (1 − r), which pertains when the trailing shock just barely passes the signal before
the start of the next red phase. We now require that the incident flux of cars from x̄ = −∞, integrated over the
entire cycle, is less than this number:

j̄(ρ̄1)× 1 = ρ̄1(1 − ρ̄1) <
1
4 (1− r) ⇒ r < (1− 2ρ̄1)

2 . (4.201)

Merging shocks : So far, so good. We now ask: does the shock at x̄−
s (τ) ever catch up with the shock at x̄+

s (τ − 1)
from the next cycle? Let’s assume that the equation x̄−

s (τ) = x̄+
s (τ − 1) has a solution, which means we set

−a
√
τ − r + b (τ − r) =











a
√
τ − 1− r + b (τ − 1− r) if τ > 1 + r

ρ̄1

(1− ρ̄1) (τ − 1) if 1 < τ < 1 + r
ρ̄1

(4.202)

with
a ≡

√

4rρ̄1(1− ρ̄1) , b ≡ 1− 2ρ̄1 . (4.203)
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Figure 4.18: Phase diagram for the shock merge analysis. For r > (1− 2ρ̄1)
2 (red line), the signal is congested, and

the trailing shock does not clear the signal before the start of the following red phase. In case II, the shocks merge
when the leading shock is still in its constant velocity phase. In case I, the shocks merge after the leading shock
has already begun to decelerate.

We first look for a solution satisfying τ > 1+ τ+ = 1+ r
ρ̄1

. Let us call this a ‘case I merge’. It is convenient to define

s = τ − 1
2 − r, in which case

a
√

s− 1
2 + a

√

s+ 1
2 = b , (4.204)

which is solved by

s = 1
4

(

a2

b2
+

b2

a2

)

. (4.205)

Note s > 1
2 , so τ > 1 + r. Solving for τ , we obtain

τ = τ
I
≡ 1 + r + 1

4

(

a

b
− b

a

)2

. (4.206)

We must now check that τ > 1 + r
ρ̄1

. We have

0 > f(r) ≡ 1 +
r

ρ̄1
− τI

=
(1− ρ̄1)

2(1− 3ρ̄1)

(1− 2ρ̄1)2ρ̄1
r +

1

2
− (1− 2ρ̄1)

2

16rρ̄1(1− ρ̄1)

≡ (1− ρ̄1)
2(1− 3ρ̄1)

(1− 2ρ̄1)2ρ̄1 r
(r − r1)(r − r2)

(4.207)

with

r1 =

(

1− 2ρ̄1
2− 2ρ̄1

)2

, r2 = − (1− 2ρ̄1)
2

4(1− ρ̄1)(1 − 3ρ̄1)
. (4.208)

When ρ̄1 < 1
3 , we have r2 > 0 > r1, and we require 0 < r < r2. When ρ̄1 > 1

3 , r1 > r2 so again we require

0 < r < r2.
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Now let’s solve for the merging shocks. We write the condition that two characteristics meet. Thus,

α (τ − r) = β (τ − 1− r) (4.209)

with x̄ = α (τ − r). Let σ = τ − r. Then x̄ = ασ = β (σ − 1), which yields

α =
x̄

σ
, β =

x̄

σ − 1
. (4.210)

The combined shock moves at velocity vs, where

vs = ˙̄x = 1
2 (α+ β) =

x̄

2σ
+

x̄

2(σ − 1)
. (4.211)

This equation is easily integrated to yield

x̄I(σ) = C
√

σ(σ − 1) . (4.212)

The constant C is fixed by the initial conditions at time τI, when the shocks merge. We have

τ
I
− r = 1

4

(

a

b
+

b

a

)2

x̄(τ
I
) = −a

√
τI − r + b (τI − r)

= 1
4

(

b2

a2
− a2

b2

)

b .

(4.213)

We then have

σ (σ − 1) = 1
16

(

a2

b2
− b2

a2

)2

,

and we set
1
4

(

a2

b2
− b2

a2

)

C = 1
4

(

b2

a2
− a2

b2

)

b ,

which simply yields C = b = 1− 2ρ̄1.

Finally, consider the ‘case II merge’ where x̄−
s (τ) = x̄+

s (τ − 1) requires τ < 1 + r
ρ̄1

. We now must solve

−a
√
τ − r + b (τ − r) = (1 − ρ̄1) (τ − 1) , (4.214)

the solution of which is

τ
II
= r +

(

1−
√
r
)2 1− ρ̄1

ρ̄1
. (4.215)

One can check that τII < 1 + r
ρ̄1

is equivalent to r > r2. In this case, the characteristics to the right of the shock all

have slope 1, corresponding to ρ̄ = 0, and are not part of the fan. Thus, the shock condition becomes

˙̄x = 1
2

(

1 +
x̄

σ

)

(4.216)

with σ = τ − r as before. The solution here is

x̄II = C′ √σ + σ . (4.217)
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Figure 4.19: Characteristics for the light cycle problem. Red interval signifies red light; green interval signifies
green light. Red characteristics correspond bumper-to-bumper traffic, i.e. ρ̄ = 1. Dotted line characteristics corre-
spond to ρ̄ = 0. Note the merging of shocks. Congested regions are those with negatively-sloped characteristics,
since c̄ < 0 for ρ̄ > 1

2 .

Again, C′ is determined by the merging shock condition, x̄−
s (τ) = x̄+

s (τ − 1). We therefore set

C′ (1−
√
r
)

√

1− ρ̄1
ρ̄1

+
(

1−
√
r
)2 1− ρ̄1

ρ̄1
= (1− ρ̄1)

{

r +
(

1−
√
r
)2 1− ρ̄1

ρ̄1
− 1

}

, (4.218)

yielding

C′ = −
√

4ρ̄1(1− ρ̄1) = − a√
r
. (4.219)

This solution is valid until the characteristics on the right side of the shock extrapolate back to the x̄ axis at time
τ = 1 + r, when the fan begins. Thus,

x̄ = τ − 1− r = σ − 1 = C′ √σ + σ , (4.220)

which yields σ = σ
m
≡ 1

4ρ̄1(1−ρ̄1)
.
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For σ > σ
m

, we match with the profile C′′ √σ(σ − 1), which we obtained earlier. Thus,

C′′
√

σm(σm − 1) = σm −
√

4ρ̄1(1− ρ̄1)
√

σm , (4.221)

which yields C′′ = b = 1− 2ρ̄1, as before.

Putting this all together, we plot the results in figure 4.19. The regions with negatively-sloped characteristics are
regions of local congestion, since c̄ < 0 implies ρ̄ > 1

2 . Note that the diagram is periodic in time, and it is presumed
that several cycles have passed in order for the cycle to equilibrate. I.e. the conditions at t = 0 in the diagram do
not satisfy ρ̄(x) = ρ̄1 for x > 0.

4.14 Appendix V : Car-Following Models

So-called ‘car-following’ models are defined by equations of motion for individual vehicles. Let xn(t) be the

motion of the nth vehicle in a group, with xn+1 < xn, so that the lead vehicle (n = 0) is the rightmost vehicle.
Three classes of models have traditionally been considered in the literature:

• Traditional car-following model (CFM) – Cars accelerate (or decelerate) in an attempt to match velocity with
the car ahead, subject to a delay time τ :

ẍn(t+ τ) = α
{

ẋn−1(t)− ẋn(t)
}

.

• Optimal velocity model (OVM) – Drivers instantaneously accelerate in order to maintain a velocity which is
optimally matched to the distance to the next car. (The distance to the next vehicle is known as the headway
in traffic engineering parlance.) Thus,

ẍn = α
{

V (xn−1 − xn)− ẋn

}

, (4.222)

where V (∆x) is the optimum velocity function.

• Optimal headway model (OHM) – Drivers instantaneously accelerate in order to maintain an optimal headway,
given their current velocity:

ẍn = α
{

H(ẋn)− (xn−1 − xn)
}

. (4.223)

The optimal headway function is just the inverse of the optimal velocity function of the OVM: H = V −1.

(a) The CFM equation above is a linear equation. Solve it by Fourier transforming the function vn(t) = ẋn(t).
Show that

v̂n(ω) = r(ω) eiθ(ω) v̂n−1(ω) . (4.224)

Thus, given the velocity v0(t) of the lead vehicle, the velocity of every other vehicle is determined, since v̂n(ω) =

rn(ω) einθ(ω) v̂0(ω). Derive the stability criterion |r| < 1 in terms of ω, τ , and α. Show that, if the motion is stable,
no matter how erratic the lead vehicle moves, for n → ∞ the variations in vn(t) are damped out and the velocity
approaches a constant.

Solution : We have the linear equation

v̇n(t+ τ) = α
{

vn−1(t)− vn(t)
}

. (4.225)
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Solve by Fourier transform:

vn(t) =

∞
∫

−∞

dω

2π
v̂n(ω) e

−iωt . (4.226)

This yields

v̂n(ω) = z(ω) v̂n−1(ω) (4.227)

with
z(ω) =

α

α− iω exp(−iωτ)
. (4.228)

Thus, writing z = r eiθ , we have

θ(ω) = tan−1

(

ω cosωτ

α− ω sinωτ

)

(4.229)

and
r(ω) =

α
√

α2 + ω2 − 2αω sin(ωτ)
. (4.230)

The velocity of the nth vehicle is now given in terms of that of the lead vehicle, according to the relation

v̂n(ω) = rn(ω) einθ(ω) v̂0(ω) . (4.231)

For ω = 0 we have z(ω) = 1, which says that the time-averaged velocity of each vehicle is the same. For v̂n→∞(ω)
to be bounded requires r(ω) ≤ 1, which gives

r(ω) ≤ 1 ⇐⇒ 2ατ · sinωτ
ωτ

≤ 1 . (4.232)

The maximum of the function x−1 sinx is unity, for x = 0. This means that the instability first sets in for infinitesi-
mal ω. We can ensure that every frequency component is stable by requiring

α τ < 1
2 . (4.233)

The interpretation of this result is straightforward. The motion is stable if the product of the response time τ and
the sensitivity α is sufficiently small. Slow response times and hypersensitive drivers result in an unstable flow.
This is somewhat counterintuitive, as we expect that increased driver awareness should improve traffic flow.

(b) Linearize the OVM about the steady state solution,

x0
n(t) = −na+ V (a)t , (4.234)

where a is the distance between cars. Write xn(t) = x0
n(t) + δxn(t) and find the linearized equation for δxn(t).

Then try a solution of the form
δxn(t) = Aeikna e−βt , (4.235)

and show this solves the linearized dynamics provided β = β(k). What is the stability condition in terms of α, k,
and a? Show that all small perturbations about the steady state solution are stable provided V ′(a) < 1

2 α. Interpret
this result physically. If you get stuck, see M. Bando et al., Phys. Rev. E 51, 1035 (1995).

Solution : Writing xn = −na+ V (a)t+ δxn, we linearize the OVM and obtain

δẍn = α
{

V ′(a)
(

δxn−1 − δxn

)

− δẋn

}

+ . . . . (4.236)

We now write
δxn(t) = Aeinka e−βt , (4.237)
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and obtain the equation
β2 − αβ + αV ′(a) (1− e−ika) = 0 . (4.238)

This determines the growth rate β(k) for each wavelength k. Solving the quadratic equation,

β(k) = 1
2α± 1

2

√

α2 − 4αV ′(a) (1− e−ika) . (4.239)

Let us separate β into its real and imaginary parts: β ≡ µ+ iν. Then

µ− 1
2α+ iν = ± 1

2

√

α2 − 4αV ′(a) (1 − e−ika) (4.240)

which, when squared, gives two equations for the real and imaginary parts:

ν2 + µα− µ2 = αV ′(a) (1 − cos ka)

αν − 2µν = αV ′(a) sin ka . (4.241)

We set µ = Re β = 0 to obtain the stability boundary. We therefore obtain

V ′(a) <
α

2 cos2 1
2ka

⇔ Reβ(k) > 0 . (4.242)

The uniform k = 0 mode is the first to go unstable. We therefore have that all k modes are linearly stable provided

V ′(a) < 1
2α . (4.243)

This says that the stability places a lower limit on the sensitivity α – exactly the opposite of what we found for the
CFM. The OVM result is more intuitive. Physically, we expect that the OVM is more realistic as well, since drivers
generally find it easier to gauge the distance to the next car than to gauge the difference in velocity.


