Quantum Mechanics PHYS 212B

Problem Set 4
Due Tuesday, February 9, 2016

Exercise 4.1 Consider a potential
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turned on slowly with a factor e®®. Use the perturbation expansion developed in class and take a — 0 to
calculate the first-order transition probability between initial state |0) and |n|), where as before will take
[n|) to be a continuum of states.

Solution 4.1 The first-order perturbation
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Let @ = 0 and the probability is
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Exercise 4.2 We can regard the vector potential as an operator at some spacetime point (rt):
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where k is the wavenumber and € is the polarization vector and we can regard the coefficient Aye, etc. as

operators. Show that [Aye, Axe] =0, [ALE,ALé,} =0, [Aké,AL,é,] = chékkléé’*.

Solution 4.2 The canonical momentum of free EM field is (Derivation can be found |here)
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Based on the fundamental commutation relation

[A(rt), p(x't)] = ihs(x — 1), (1)


https://www.phys.ksu.edu/personal/wysin/notes/quantumEM.pdf

we have

[A(I‘t) (I'/t)] 2 : |:A Aeik'r*iwt . AT s €ik-r+iwt:| w A . ei for' —dwt A'I‘ . €7i " biwt
’ - TR ée y 1g1€ ———— — /gle c -
’ ké : vVol K v Vol 47c? e k Vol k Vol

iw o ’ .
= E E Av: Avia ee’e“‘ rik’r —=2iwt | AT | exerpmikr—ik v 20wt
2 {[ ké; ke Kkeés k’ /
4mc? Vol ooy
’ / ’ /
[Ake,Ak,A,} €€ *ezk r—ik’- { i Ak’ } ¢ 6/e—zk ‘r+ik’-r }
’ ’ ’ ’
= E E {Ake7Ak’ . Ee/elk rtik’ ' —2iwt |: ke’ &re *e—zk r—ik’-r'+2iwt
47rc Vol ol

-2 {Ake,Ak, /] gé‘*ez‘k-pik'.rr}
The RHS of Eq.(T)) doesn’t contains ¢, so the coefficients of e=2** should be zero,
[Ake, Axer] =0
[AL@AL@} = 0.
We know
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substitute it into Eq.(T)), we have
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Replace w = ¢|k|, we have the comutation relation we need,
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Exercise 4.3 A hydrogen atom in its ground state is placed between the plates of a capacitor and at time
t = 0 a time-dependent, but spatially uniform, electric filed E = Ege~*/7 is applied. Take Eq to be in the
positive z-direction. What is the probability for the atom to be found in each of the three 2p states when
t> 17

Solution 4.3 The perturbation Hamiltonian is
H' =er -E =ezEpe t/"
We know [z, L.] = 0, so
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Therefore, the selection rule for z operator is Am = 0,
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The probability to find the 2p states
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where (Ey — E1)/h = 3¢*/8agh.



