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Starting from the Liouville equation, a chain of equations
is obtained by integrating out the coordinates of all but one,
two, ete., particles. One “test’’ particle is singled out initially.
All other “field”’ particles are assumed to be initially in
thermal equilibrium. In the absence of external fields, the
chain of equations is solved by expanding in terms of the
parameter g = 1/nlp3 For the time evolution of the distri-
bution function of the test particle, an equation is obtained
whose asymptotic form is of the usual Fokker-Planck type.
It is characterized by a frictional-drag force that decelerates
the particle, and a fluctuation tensor that produces accelera-
tion and diffusion in velocity space. The expressions for
these quantities contain contributions from Coulomb colli-
sions and the emission and absorption of plasma waves. By
consideration of a Maxwell distribution of test particles,
the total plasma-wave emission is determined. It is related
to Landau’s damping by Kirchoff’s law. When there is a
constant external magnetic field, the problem is characterized
by the parameter g, and also the parameter A = w./w;. The
calculation is made by expanding in terms of g, but all orders

of A are retained. To the lowest order in g, the frictional
drag and fluctusation tensor are slowly varying funetions of A

When X <« 1, the modification of the collisional-drag
force due to the magnetic field, is negligible. There is a
significant change in the properties of plasma waves of wave-
length greater than the Larmor radius which modifies the
force due to plasma-wave emission. When A 3> 1, the foree
due to plasma-wave emission disappears. The collisional
force is altered to the extent that the maximum impact
parameter is sometimes the Larmor radius instead of the
Debye length, or something in between. In the case of a
slow ion moving perpendicular to the field, the collisional
force is of a qualitatively different form. In addition to the
drag force antiparallel to the velocity of the particle, there
is a collisional force antiparallel to the Lorentz force. The
force arises because the particle and its shield cloud are
spiralling about field lines. The force on the particle is equal
and opposite to the centripetal force acting on the “‘shield
cloud.” It is much smaller than the Lorentz force.

I. INTRODUCTION

HE usual kinetic theory of gases does not apply

to a plasma because of the long-range character
of Coulomb forces. In the treatment of Rosenbluth,
MaeDonald, and Judd,' the infrequent large-angle
scatterings are treated as collisions. The effect of
the many small-angle deflections is accounted for
by means of a macroscopic field. Gasiorowicz,
Neuman, and Riddell® have considered a test-
particle problem. The frictional drag was determined
from the response of the plasma to the test particle.
Collisions between plasma particles that produce
large deflections were neglected. Fluctuation effects
were obtained by a Holtzmark-type calculation.
Plasma-wave effects were not obtained with either
of these methods. Making use of the random-phase

(lgg;s)enbluth, MaeDonald, and Judd, Phys. Rev. 107,
1(1857).

2 Gasiorowicz, Neuman, and Riddell, Phys. Rev.
922 (1956).
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approximation, Bohm and Pines’ obtained a
frictional drag for fast particles that is due to
plasma-wave emission. It is of the same order of
magnitude as the collisional effects.

In this paper an ensemble of plasmas will be
considered. The density in phase space satisfies the
Liouville equation. By integrating out the co-
ordinates of all particles but one, but two, ete,,
one may obtain a chain of equations for the one-
body, two-body, ete., functions. Kadomtsev* and
Chan-Mou Tchen® have previously discussed plasma
kinetics in terms of this chain. They consider the
general problem of transport theory. In this paper
only the test-particle problem will be considered.
The loss in generality is compensated for by a
substantial gain in tractability.

1952).

3D, Pines and D. Bohm, Phys. Rev. 85, 338 519’8)
58).

+ B. B. Kadomtsev, Soviet Phys—~JETP 6, 117
s Chan-Mou Tchen, Phys. Rev. 114, 394 (1959).
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1II. REDUCTION OF THE LIOUVILLE
EQUATION

Consider a gas of electrons and infinite-mass
randomly distributed ions. It is a simple matter to
generalize the results for this model to include
finite-mass ions. Let X; = (x;, v;) be the position
and velocity coordinates of the sth electron. N
electrons and N ions are contained in a volume V.
For an ensemble of similar plasmas, the density in
phase space D(X,, X,, --- Xy; t) satisfies the
Liouville equation,

LI oY I _e._(
{at+ Z[vf.éxi—m E(x‘i)t)

i1
1 9
+C V*XB)'avi:]}D = (), (1
where B is a constant magnetic field applied ex-
ternally.

Only Coulomb forces are considered, so that

B, ) = ¢ 3 L

= ax x, — x;°

2)

where the prime indicates that the term ¢ = j is
to be omitted. The Liouville operator is symmetric
with respeet to the interchange of the coordinates
of any two electrons. Therefore if D is initially
symmetric, it will remain so. In the test-particle
problem, one electron is singled out initially so
that D will not be symmetric with respect to inter-
change of its coordinates with any other electron.
If ions are included, D will not be symmetric with
respect to the inferchange of the coordinates of an
electron and an ion.

The s-body function is defined as
(X, Xy - Xy ) = V° f DdX.., -+ dXx. 3)

When moments of Eq. (1) are taken, a chain of
equations is obtained. Assuming D has complete
symmetry, it is

{ +Z( "‘“——izv;

3
~ xB"av,)

__9_2, - i_.__l_....k__,_i}f

m ;i=1 0x; lX* — X‘I av;

—_"Ef(ax x; —

where n = N/V and both N and V are large. In
the limit that |x, — x;| — «, the third term becomes
negligible. If this term is omitted, it can be verified
by direct substitution that a solution of Eq. (4) is

afrl—l
s+ll> V, dXs+1 = O (4)
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T ) ®
where
and

Ey = e [ (:X = l)f“”(x” ) dX’
is the macroscopic field. If, instead of taking this
limit, we take the limit ¢ — 0, m — 0, n — « such
that e/m and ne remain constant, the result is the
same. In this limit the plasma becomes a continuous
fluid. Equation (6), which is the collisionless Boltz-
mann equation, is then a precise description. If the
effects due to particle individuality are small, a suita-
ble calculation procedure is to make an expansion in
terms of some parameter proportional to e, where
m and 1/n are considered to be of the same order.
The natural units of the problem are 1/w, for time
and Lp for length, where w, = (dwne’/m)} is the
plasma frequency and L, (©/4rne®)t is the
Debye length. The mean energy per electron is
38/2.

If Eq. (4) is rewritten in these units, the significant
dimensionless parameters of the problem are self-

evident:
I |~ K3 a)
[at + Z; (V" ox, s
a3 1 3

g —
. et I%; ]x—xlav]f

4r
~ f (ax jx; — xm)

a—;f;- dX,.: = 0,
where e, is a unit vector in the direction of B;
A = w./w, where w, = eB/me is the cyclotron fre-
quency; and g = 1/nLp* = Ole]. The calculation
procedure is to expand in powers of g and retain
X to all orders.
The expansion in powers of g is similar to the
Mayer® cluster expansion of equilibrium statistical
mechanies,

= T #x., 0

i=1

+ 2T #X, 91PXG, Xos O

s . Mayer and M. G. Mayer, Statistical Mechanics
{John Wﬂey & Sons, Inc., New York, 1940).

(4a)
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+ Z H f(Xu t)}P(Xn Xk; t)P(le ms )
+ ;: (T 1X 0 OITX s Xy X5 ) + -0 (D)

The second term is summed over pairs, the third
over pairs of pairs, and the fourth over triplets. In
the present treatment the series will be terminated
after the second term, or up to second order in g.
In the lowest order, the solution of Eq. (4) is such
that the s-body function can be expressed in terms
of one-body functions. In the next order, the
s-body function can be expressed in terms of one-
and two-body functions. We substitute,

= 111, 0 + T T/, 0]

PX;, X ) + - - ®

into Eq. (5}, and retain only terms of order less than
g°. Here P is of order g and f = {° + f', where f' is
of order g. The result is

5 (T, of[ & 4 vl
_ w(EM(x., 1) + \2 xB) ]f(X,, 9
_ @fE(x,.,x)-—-_mXi,X; ) dX}

+ > (11, t)){ P(X, X3 1)

i,§=1

+ [v‘.ax- :n (EM(O)(XU t) + c— v "B)

0 p _medf”

“ov, m av; f B(x:, x)

P, X5 4) X — = fO(X;, OE(x;, x)

5o 170K, t)] [;:ﬂ} =0, ©
Where ‘
Nood 1
E(x, x) = - k=]’

and

Eu(x, ) = n f E(x, X)f(X’, §) dX".

The cases s = 1 and s = 2 give equations that
define f(X, t) and P(X, X’; t). Because of the
interchangeability of particle coordinates, it is clear
that Eq. (8) satisfies Eq.-(4) for s > 2. Because
the only restriction on f°(X, #) is that it satisfy Eq.
(6), the equation for P(X, X'; ) is not very tractable.
Some progress has been made in obtaining physically
meaningful solutions for B = 0.*°
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If one particle is singled out, the reduction of the
Liouville equation can be accomplished in a similar
way. There will be two kinds of s-body distribution
functions according to whether or not the test
particle is included. The two coupled chains of
equations have been solved up to second order in g.
To this order, the solutions for both kinds of s-body
functions may be expressed in terms of one- and
two-body functions only; i.e., closure is achieved as
in the case where D has full symmetry. The results
will be stated in terms of the equations that define
the one- and two-body functions. In addition, ions
of finite mass have been included.

The zero-order one-body functions are solutions
of the equation

d ad
{5_3+v'8_£+

where

B« = 3 [ B, 0O, § ax;

g: w 4 1 )
oy (E,,{ —{-Cva

9 \ o -
5}# X,H=0, (10

E; (x, x) i3 the Coulomb electric field at x from a
particle of species j at x’; j = 1 means electrons,
and § = 2 means ions; ¢; is the charge of a particle;
m; is its mass, and f;‘” (X, £), means the zero-order
one-body distribution for a field particle.
We shall assume that the field particles are
Initially in thermal equilibrium, so
X, 0 =

G P (—0/27),  (1D)

0)
E,},{ = O,

and mup;” = O defines the thermal velocities. The
zero-order one-body distribution for the test particle
is designated by w. (X, £). It also satisfies Eq. (10).
The general solution is

w2, 4 = [ QXY 8[X — X,(0] dXo, (1)

where X, means the initial position and velocity
coordinates and Q(X,) is an arbitrary function
normalized such that (1/V) fQ(X,)dX, = 1. The
X,o(f) are the time-dependent orbits in a magnetic
field. If we assume the magnetic field in the 2
direction,
Xo(t) = e,[ﬁCQ + (U,o/w‘-) Sin w;t
+ @uo/w)(1 — coswd)] + e,[ye + (,0/w)) sin w,t
bl (vzo/&)i)(l — COS w,t)] + e,[ZO + vzot],
and vo(¢) = dx,(¢)/dt.
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There are two kinds of two-body correlation
functions. For the field particles, P;; (X, X'; ©)
satisfies the equation,

D . ng;
DtP”(X X0+ m,

>
av

> f E.(x, x'")P, (X', X'") dX"’

(0)

+if o ZfE(x x")P, (X, X'y dX"’
+ 24O OB, X) s
+ L OB, %) 5 L1 =0, (13)
where
3%_(% a+"a_"+“’v"ea%
+w,-v’xe,-w,

and w; = ¢.B/mc is the cyclotron frequency.
If the field particles are initially in thermal
equilibrium, the solution of Eq. (13) is

Py(X, X3 ) = =L 1,001 70)3(x, x), (19
where
di(x, x') = [x q ,eXp( IX_ZDEJ.),

l/LD = Zl/sz,

I/Li2 = 47""(1i2/mi0i2~

If the particle of species ¢ is the test particle, the
equation for P;; (X, X’; ¢t) is

(®

5> f E(x', x")P (X, X"'; §) dX"*
1

aP; (x x) ow,”
BV

= 2100 (15)

To solve this equation, it is convenient to introduce
the Green’s function G.; (X, X'; t), defined by

PuX, X5 0 = [ 9(X)6(X, X' 0

a
oy X — Xo(9]dXe.  (16)

Equation (15) thus can be transformed to a set of
coupled equations for G,

G,, + wile, xG,;) = L& f“”(v’) —-313 (x, x’)

Bf, (0) 3 ) ..
+ == ( v o /A X5 D),
and

V'zAi(X, x50

= —dm X g f G.(X, X0 dv. (17)
11
The one-body function up to order ¢g* for field
particles may be expressed as

LX, 8 = £,°0)

+ 3 [wX, § 81X, X750 X, (18)
where 8f,; (X, X’; ) is also of the nature of a Green’s
function. It means the change in the distribution
function at X’, ¢t due to a test particle at X. It
satisfies the set of coupled equations:

D &f.; . 81, Y o,
Dﬁ = 51 gv S, 250, (19)
and
V738,(X,x'; 1) = —dnq; §(x' — X)
—4m X a [ X, X508v.  (19b)
i

Equations (17) and (19) are similar in type. They
can be solved in a straightforward fashion by taking
Fourier and Laplace transforms. It is only necessary
to specify initial conditions. We shall assume that
G;; (X, X’;0) = §f;; (X, X’; 0) = 0, which means
that initially the test particle is not correlated with
any other particle and does not possess a shield
cloud.

The equatlon for the test-particle one-body func-
tion to order ¢° is of the Fokker-Planck type,

vxB: ),;

(0)) +

LR I
(6t+v3x+

m.c

+ 12w O (T, ®) =

m, av 0. (20)

m; 6V v
The frictional drag force F,” and the fluctuation
tensor T; are completely determined by the Green’s
functions,

9

! = [ — T .
F/ = F - =T, (@)
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F,

ng: T [ Bix, ) ofulX, X509 aX/,  (22)

T =ng; 3 f E(x, ¥)G(X, X'; ) dX’.  (23)
The starting point of this caleculation is the Liouville
equation. It possesses the property of time-reversal
invariance. The expansion procedure preserves this
property. Equation (20) differs from the usual
Fokker-Planck equation because F,” and T, are
funections of time, and the equation has the property
of time-reversal invariance. If instead of the correct
values of F; and T, the asymptotic values as { — «
are substituted, Eq. (20) will be a conventional
Fokker-Planck equation. The time reversal invari-
ance will then be destroyed.

III. TEST-PARTICLE CALCULATIONS FOR B =

To solve Egs. (19), Fourier and Laplace trans-
forms are introduced. For example,

B.(X, 25 1) = (-2# f dk (F®),., exp [ik-(x' — %)],

and
(LF@)e, = [ dt (P8 )u.. exp (~p).
0

The first of Egs. (19) can be integrated along the
unperturbed orbits which are linear trajectories for
B =0

q; af'(O)

6fii(X; XI; t) = m. oV

11

9%,
dr T E—vr,vx =V t— 1.

=0

After Fourier transforms have been taken, this
equation becomes

(F 8. = 1 ik fw)f dr (F® )y ..
-exp [tk-(v — v')7].

The Laplace transform of this equation can be taken
by making use of the “Faltung theorem”

L / :0 dr A(DB(t — 1) dr = (LAYLB),

(LF 8fiiden =

0) ]
_nq’:_ 'Zk'afi (Lﬁ ¢i)k.ﬂ . (lga)

v’ [p + k- (v — v)]
Similarly, the second of Eqs. (19) becomes

W(LE®), , = 4—’%

+4m 3 f (LF of.)e., dv'.  (19b)

We may now substitute Eq. (19a) into Eq. (19b)
and solve for (LF®,). The result is

47"Qi
plE* + (1/Lo)YW]’

LF® )., = (24)

where

A, v’
W = 4anL, Z m; f p + k(v — v)] &

Aoy = [ aewi= fp — it
a (kv;8)°
dt X p[ 2 ]

Then (LFéf;;) can be obtained by substituting this
expression into Eq. (19a),

(_1)i+i+1
2np

, ilk-v)f,"” ') ‘
o + k(v — WIkL) + W]

The denominator of Eq. (25) has poles at p = 0,

= ik+(v — v'), and at the roots of (kL,)> + W = 0.
The p = 0 pole yields the asymptotic solution. The
pole p = ik-(v — v') produces a term that describes
the removal of depleted charge from the vicinity of
the test particle to infinity. Field particles move
away from the test charge with their unperturbed
velocities relative to the test charge. Ultimately,
the field particle distribution achieves a permanent
charge depletion around the test charge.

The equation (kLp)® + W(k, p) = 0 has an
infinite set of roots that have been discussed by
Landau.” All but one root produce terms that damp
out in a negligible time. The last of the “Mohicans”
is for

(LF 5f-'i)k,p =

(25)

p = ifk-v + k)] — k), (26)

where

w(k) = w,[1 + 3(kLy)* + ---],

= 1

“® =5 GL.y o [4(kL Y ]
The term from this pole damps rapidly for kL, > 1
and very slowly for kL, < 1. If the Laplace and
Fourier inversions of Eq. (25) are carried out, a
term obtains that decays like 1/(w,f)!. The cause
of this decay is the dispersion of w(k). In the rest
of this paper we shall consider only the asymptotic
solutions as £ — .

Equations (17) are of the same type as Eqgs. (19)

7 L. Landau, J. Phys. (U.S.S.R.) 10, 25 (1946).
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and may be solved in the same way. The solution is
_ (_1)i+:'+1
(LFGxy =~ —

) ko *f; V(")

[(kLp)® + 1]lp + & (v' — v)]

o v /) Ulp ~ ek-v)/v:kvzl}
{1 BKLo) + W] , @)

where
Ulx) = z.f exp (— £2/2) exp (— ixt) di.
L

The asymptotic solutions as ¢ — =, 8f;; (X, X'),
and G;; (X, X’} must satisfy a detailed balance
condition. This condition becomes apparent if we
consider a Maxwell distribution for the test particle,
ie., QX,) = ;' (v) and w,"(X, 1) = () =
w,; (X, £). In this case the two-body function,

wi(X)[f;(°’(X') + %,fwi“”(X) 8f+(X, X') dX]

n. 9 _
+ [ X6, X5 81X — X()] X,
must be the thermal equilibrium two-body function

1Y 0) + P.(X, X'). The detailed balance
condition is therefore

fs"”(v)[éf.-f(X, X’ — ,fa-G.-,-(X, X’)]
= P;,-(X, X,):
lim {P[(LF o iide» — 55'(LFGii)k,r:]}

b ndi]
(__]})i-:-jﬂ fi(())(v/) .
2n [(kLp)* + 1}
That Eqs. (25) and (27) satisfy this condition can
be verified by direct substitution. Equation (28)

(28)

0.5
0.4

0_3& Iix)
0.2}
+0.1

[¢]

-0
-02f
-03}t
-04
-osF
-08F
-0z}
-o8}
40.9 -
ottt

Rx}

Fia. 1. The W function W(z) = —ER(z) + il(z).
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implies that
F; — (T:-v/v") = 0. (29)

If F, and T, are expressed in terms of a unit vector
e, parallel to v and e,, e; perpendicular to v,

F, = Fe, (30)
T, = T e,e, + T (e.e;, + ezey),
and
F/ =Fe,
where

There are only two independent quantities to com-
pute, Fy and T, since T, = (,°F,/v).

The frictional drag from the fluid response of the
plasma to the test particle is obtained from Eqgs.
(22) and (25):

drig® 1%, o [0 pduWlw/m)
(21r)"’f., kak | Loy + Wiao/or)

The funetion

g+ 5o 3 ]
= —R(x) + iI(z)

is plotted in Fig. 1. The % integral in Eq. (31) is
divergent. That the present procedure breaks down
at short distances is apparent from the case Q(X,) =
8(X,), i.e., a zero-velocity test charge. In this case,

Fy= (31)

W)

i

lim f;(X, 7)

t—om

2:4; exp (_‘!XL’,LD)]‘ (32)

mu;” |x|

- f,-“”(v)[l -

If x| < ¢°/0, f; will not be positive when ¢; = ¢;.
We should expect the present treatment to be
appropriate for collective effects. For distances less
than the interparticle spacing r, = (3/4wn)} there
can be no collective effects, and the binary collision
method should be applicable.! It is also necessary
to employ a short distance cutoff with this method.
For ¢; = —q;, a quantum-mechanical treatment is
necessary to avoid divergence. The short distance
cutoff employed in the classical collision treatment
is ¢°/0.) Instead of using the present treatment
down to distances of the order r, and the binary
collision method from r, to ¢°/@, we shall simply
use the present treatment with the cutoff ky.. =
/4", which gives the same result.
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Since |R(z)| < I and |I(x)| < 1, the denominator
in Eq. (31) can be expanded in the domain kLp > 1.
This leads to a collision-type contribution,

oF 1
Fy=="In DZ ( \/21))

o=

() —1F,InD Z(v/v) for » <y,

o~ —52“ InD X 0,/0)° for v, (33)
where Fy = ¢°/Lp” and D = kyeeLp = 4mg™"

For the domain kLp, < 1, it is convenient to
write Eq. (31) in the form

F,= —l/va(k,Q) dk de,
where
_ v(kLp)®
S(k H 9) - 27r2
) K ul (uv/v,)
(kLp)* — R(uv/v)]* -+ [I(uo/v)]"’
and dQ = 2xdu. The integrand is of a resonant

character for v >> v,. In this case R(uw/v,) =
(:/A/2uw)” > 0 and [I(uv/v;)] < 1. The resonance
corresponds to the emission of plasma waves. For
a given k, the emission takes place at the angles
g = cos 0 = ==(v;/\/2kLy). After the Q integration
is carried out, the result is
Sk, ) = 11-1; f S, Q) dQ = (g%, /4aky)

for v/v; > [1/4/2kLy) and negligible otherwise.
The drag force due to plasma-wave emission is

k~1/L
4y /Lp

Fy=——

Sk, v) dk
v »/I‘CN(H;/\/EIILD) S( ,v)

_ _F_<v_> v
=35\, lnv1 (34)

The rate of emission of energy from the test particle’

is Fyv, or 4w S(k, v) dk from wave vector magnitudes
between k£ and k& + dk. The total emission per unit
volume and wave vector magnitude for a plasma
with a Maxwell distribution of particles is

471-7221:‘/‘

v>(v;/\/EkLD)

Q(k) Sk, 1, @) d'v

Il

A(k)[®K* /2°], (35)
where A(k) = 2e¢.(k) is the energy absorption con-

stant and e, (k) is the Landau damping given by
Eq. (26). Equation (35) is simply a statement of
Kirkchoff’s law of radiation with the classical
Rayleigh-Jeans distribution ©%*/2x°.

By the same techniques, 7', may be computed.
The collision contribution from the domain kLp > 1
is

T, =

Z"”' In DZ(I—!—av’)erf - (36)

v ;

The plasma-wave contribution from the domain
kLD <1 is

S 7 L R

where T, and T, = (Fw.’/v) are caused by field
particle individuality. By use of Egs. (30), F|’ can
now be computed. The collision contribution is

T, =

OF,
2 In D

1 1V /1
'Z<*+7n‘:)@(;eff

7 \my

FH,=

v
V' _2-1)) (38)
When this is compared with Eq. (25), it is apparent
that the consequence of the individuality of the
field particles is to replace the field particle mass
1/m; by 1/m,;;, = (1/m;) + (1/m;); i.e., recoil of
the test particle is introduced.

The plasma-wave part of the total drag force is,
for v > v,

F, (1)1)2 v Fo (”.')2 0'2012
v . __fotwya Z a2t u .
Fy = 2 v lnvl 2 \w + Fo »*

The latter two terms are small corrections to the
fluid response. The first term may be interpreted as
due to spontaneous emission of plasma waves, the

second as stimulated emission, and the third as
absorption.

(39)

IV. EFFECT OF A CONSTANT EXTERNAL
MAGNETIC FIELD

The procedure for solving Eqs. (17) and (19) is
similar to the case where B = 0. It is, however, more
complicated because the unperturbed orbits are
spirals about the magnetic field lines instead of
straight lines. The details of this calculation will be
omitted here.® In this section, the calculation of F,
and T; will be considered, making use of the asymp-
totic results for 6f;; (X, X') and G;; (X, X’). The

8 M. N. Rosenbluth and Norman Rostoker, ‘“Kinetic
equations for a plasma, Part ITI,” General Atomic Internal
Report GAMD-663, 1959.
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¥, and T, arc functions of v, the test particle veloeity.
It is convenient to employ cylindrical coordinates
(vy, B, v,) for v, since the test particle spirals about
the z direction. The angular variable 8 is defined so
that v, = —wv, sin 8, v, = v, cos B. All vectors and
dyadics will be expressed in terms of the unit vectors,
(e,, €, €,), where
e, =e,cos 8 — esin B,
e, = e,sin 3 + ez cos B.

In terms of these unit vectors,
v =u,6¢ +v.e,, (40)

F,- = F,,e,, + Fﬂes + F,e,

T, = T,e.e, + Tgeses + T..e.e,

+ Tosleses —

+ Te.(ese. + e.es) + T.,(e.e,

eﬁep)
— e,e.).

The components F,, Fgs --+ T,, are functions of
v, and v,, but not of 8. They are as follows:

- g;L_zz)z .
F. = 2< 2r fdk
- Yi(k: m)
Ly + W m) D
_ q: LD> &’k
Ti=v < Zf[(ch)+1]
— Nk, mT.(k, m
2 s 42
X Ty + W mi @
N, m) =i [ " dt exp [ilkw, — mwd)i]
0
exp [—§()],  (43)
1 ® . d
W, m) = —5 & fo at exp [i(k, — mo)t]) 5.
-exp [—£,(0)]
=1+ %(kzvz - mwi) Z Ni(k7 m)7 (44)
£(t) = 3(kw;t)* + (kp3;)*(1 — cos w;i).
Cylindrical coordinates (k,, @, k,) are employed for
k; a; = v;/w; is the mean Larmor radius for field

particles of species 7.

The components of the vector y; and the tensor
I'; contain Bessel functions of argument » = k,a;,
where a; = v /w; is the Larmor radius of the test
particle. These components are

M. N. ROSENBLUTH

ke w0 T @), l

. =
vs = Wm/a)[J.07T,

v, = —ik[J.(0)7T,

Iy, = k. [JOT,

Tgs = i[(m/a)J O, i (45)
.. = ifk.J.0F,

Lo = ki(m/a)J u(r)J /@),

Ty, = —ik.(m/a)[J.()7T,

L., = kik.Ju()J '),

where J,, is the Bessel function of the first kind of
order m and J,)/(r) = dJ.(r)/dr. Equations (41) to
(45) were obtained by solving Eqs. (17) and (19)
exactly.

Of the nine components given by Eq. (45), only
six are independent; F,; and T, satisfy the detailed
balance relationship of Eq. (29), which gives three
equations connecting the components. The dyadic
T, contains a symmetric and an antisymmetric part.
Only the symmetric part need be retained in the
term  (1/m,)(8/0v)-(8/0v) - (T.w;'¥) of Eq. (20).
The total frictional drag foree is given by Eq. (21).
The components of F,” are

, ol,s oT.,
F"_F”“Favl o, ’
' _ o 0Tps  0Ts, (T —T,,)
Fy' = Fy v, v, vy ’ (16)
oT oT T
r — _Yi8: 2z Bz'
F. F. o, o, vy

The components 7,5 and T.,, play only a part in
the determination of the radial force F,’. The radial
force is in the same direction as the Lorentz force.
It is smaller than the Lorentz force by a factor g so
that if the present expansion procedure converges
rapidly, the radial force and the antisymmetric part
of T; may be neglected.

To make any further progress in the calculation
of F; and T, it is necessary to carry out the inte-
grations of Eqs. (41) and (42) approximately. The
method consists of dividing the k space into regions
where asymptotic forms of N; (k, m) and W(k, m)
are applicable. If the results are insensitive to how
the division is made, they are considered to be
acceptable. The asymptotic forms of N; (k, m) are
as follows:

L. If |k,| > 1/a;, the term exp [—% (k.v;t)*] annihi-
lates the integrand in a time ¢ < 1/w;. We may
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therefore expand cos wit = 1 — 3(w;t)’
retain only the first two terms. The asymptotic
form is
~ 1 mw; — k.,
Ni(ky m) - k?),' U( ki),' ) ’ (47)
and

~ k,v, — Mw;
Wk, m) = W(—-—————-kv1 ) )

where U(x) and W(z) are defined in Eqs. (27) and
(31).
2. If k| <« 1/@; and k, < 1/a,,

exp [~ (k,d,)°(1 — cosw;f)] =21

1 .(mwi — k,vz)
lkz| v D |kzl U; ’
3. If |k, K 1/a; and k, > 1/a;, exp [— & ()] K 1
except in the neighborhood of w;t = 2nr. In the

neighborhood of these points we may set ¢ =
2nw/w; + 7 and cos w;t 22 [1 —1(w;7)?]. The result is

1 i kz z
Nk, m) = kv, {U(m ko, ”)

— © 7. 2
+ 2i[ U,<*——m“”‘ — k’”‘)] > exp [—-———(k‘a’g’m) :]

[. (sz, - mw,)]}
-exp | 2mn| ——— )
Wj

where U(z) = (x/2)} exp (— 2°/2).

The second term is of a resonant character. When
ko, — mw; = sw;, where s = 0, 1, &2, etc., the
sum will be

> (k,d;2xn)? 1
2 exp [ 2 ] = 22m)! [k.| a;

If v, > v;, the resonances will be sharp and the
spacing narrow. The width of a resonance will be
d(k.a;) ~ (k.,a;) (v;/v,), and the spacing A(k.a;) ~
(v;/v,). The fraction of k, space oceupied by reson-
ances will be of order k.d; << 1. The resonances may
be neglected in this case. If v, < v;, the resonances
will be broad and the spacing large. Assuming
w, # w, times an integer, the only case in which the
resonant term is significant is when ¢ = j and
v, < v;. In this case the sum is given by Eq. (50).
The subdivision of k space is illustrated in Fig. 2.
Except in the resonance regions indicated by
hatching, [W(k, m)] < 1. If (W(k, m)] < 1 and
kLp, > 1, the denominator in Egs. (41) and (42)

and

Nk, m) =

(48)

(49)

> 1. (50)

IN A PLASMA 9
*
K, “ Ky
&
)
1%, 75,
VE: I/a %
Y K /3, l/u X

ELECTRON TEST PARTICLE ION TEST PARTICLE

Fi1e. 2. Subdivision of k space.

may be expanded as follows:

1
&L + Wik, m)
Wik, m) ]

~ 1
= L) [1 ~ kLo’

The contributions from all domains where this
expansion is permissible are designated collision
type, otherwise they are resonance type.

Consider a typical integral such as

2
—-41r<gé—f;‘2) f by dk, f dk, ik,

. = S (koas) .
fn;‘” [((kLp)* + W(k, m)]

For the collision contribution, the domain of
integration is bounded on the outside by a sphere
of radius kmex = (k.* + k.°)* and on the inside by a
sphere of radius Ly if L, < &;. The resonance region
indicated in Fig. 2 must be omitted. This, however,
involves a small angular region so that it may be
included in the domain of integration provided the
asymptotic form of Eq. (47) is employed.

After expanding the denominator in Eq. (52),
the sum can be expressed as

(51)

F,=

(52)

i J mz(kLai) ~ 1
((kLyp)* + W(k m)] = (kLp)*

{ 2(kLD) Ef dt Ju'(k.a))
oxp ik, — mo)t & exp (-0 |1

The first term can be omitted because it is even
in k.. In the second term,

> Ja2(kya,) exp (—imw;t)

m=--00

Y .
= E;j; do exp {1k a.[cos (@ — w;l) — cosal}

1 % . .
%5;‘/; do exp (ikyv, I sin o),



10 N. ROSTOKER AND M. N. ROSENBLUTH

TasrE I. Maximum impact parameter for simple collision

terms.

Electron test Ton test Region of
particle particle applicability
Lp Ly Lp <a
@ Ly a < Lp < @
a Qs - ds < Lp

making use of the fact that exp [~ % (kv;¢)*] annihi-
lates the integrand before w;f departs appreciably
from zero. Thus Eq. (52) is reduced to

F. = (g:/2n L)’ f Pk ;}@
: Z (k-v/kv)U(—k-v/kv;)
dlc

fl

— o,/ 200" [
: f du it 32 @/)Us(— /o)

_ FO vz (v, v )
In D Z 3 o erf T

If Ly, < @, D = kueeLp. If Lp 4 d;, the calculation
is the same except that the domain of integration
is defined by the limits of applicability of the
asymptotic form given by Eq. (47). Thus,
D = FkupaxDmax,; Where bpax = 1/kniq, is given in
Table I.

Similarly, the collision contribution to all other
components may be determined. The results can be
expressed most conveniently in a coordinate system
for which T; is diagonal, neglecting the antisym-
metric part. The unit vectors es and e, are replaced
by e, and e,, where

(52a)

e, = v/v = (v, /v)eg + . /v)e., (53)
e, = (vxBxv)/w,B = —(@,/v)es + W./v)e..
In terms of e,, €,, €.,

F, = Fpe, (54)

T,- > T“even + Tl(epeﬂ + e“e")'

The equations for ¥y, T, and T, are the same as in
the zero-magnetic-field case except for the definition

of D.
The radial force has been neglected. The result

for F, is
F, > —(Fww:/mknin)
1= 3 X [0/0) + 0:/01Ux0/0)}

& (F o100/ kb min) Z w;/v)° for v>uw,;

2 (F,0:/310°kw;n) E (W) for v <Kwv;. (55)
Because e, has been defined so that it is always
directed from the guiding center of the particle
towards the particle, F, is always antiparallel to
the Lorentz force. The magnitude of the Lorentz

force is |F.| = mv, w; so that

IF /1P| 22 2/ hmaimialn?) @:/8)° 25 (3/0)°

for o>,
= (2/kmakainLD2) Z (vi/vi)2

for v Kv;.

Since (1/kmaxkminlin’) <K 1/kmelp = g/4w, and
g << 1 is the basis of the entire calculation, F, may
be neglected. Similarly, it can be demonstrated
that the components T,z and T,, are negligible.

The radial force has a simple physical interpre-
tation. The polarized cloud around the test charge
gives the test charge an effective mass. It can be
estimated, by considering the energy of the test
charge, which is 3mp® 4 ¢:(® — &,), where & — @,
is the change in potential produced by the test
charge at the location of the test charge. If the
collision contribution is determined in the same
sense that F, was calculated, we may use Eq. (24)
for ® — &,

4mq;
(2 )3 D

-/ dak[(kLD)zqu W (kLIDf]‘

For a slow test charge, ® — &, is proportional to
»® so that the energy is 3m.° where

b — Py =<

(56)

M, = m; +—~ LD Z(l/v

The additional mass ém; = (¢.°/37kmin Lp°)
i (1/v;%) may be regarded as an inertial mass due
to the polarized cloud. If it follows the motion of
the fest charge, there must be a centripetal force
acting on it of magnitude

F,= 5m;7)1_2/ai = (Fov;wi/g"’”)zkmin) Z (v/vi)2-

This foree must be produced by a radial asymmetry
of polarization, and therefore an equal force must
act outward on the test charge. The result agrees
with Eq. (55).
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There are additional long-wavelength collision
contributions when L, > a,, as well as resonance
contributions. For the remaining contributions we
shall consider only the limiting cases

v,/v; <1 v,/v; > 1,
v, /1; L1 v /v; > 1,

1)J_=O
v, = 0

and calculate only F,. These calculations are of the

description may be found elsewhere.® The results
are listed in Tables II, III, and IV. For each term,
the region of k space from which it came is indicated
by a number that refers to Fig. 2.

The collision terms can be added together and
expressed in the form

i 2 »
F,9 = — o F, Z (ln K maxbi)@/;)

nature of a survey where the objective is simply to for » Lw;
see if there are any large effects due to the magnetic _ _1ip 0
field. Description of these calculations will be oo Fne Z (In Krnasbs) 0/2)
limited to the more interesting terms. A complete for v>uv,. (57
TasLe I Force on an electron or ion test particle, —F/Fo, when v, = 0.
Lp < a Region® Lp > a, Region®
R 2/3(r ) (In knL i (vz/v4 1 2/3(x)¥](In kmdy) v,/0;) 1
e (2/BGIR Enlo) 22 (elvi) K S L i oute) 2,3,5,6
+ [1/3 w)*](ln M/ M )(v2/v2) 2,3,6
v K v, K 01 [2/3(x)i(In kmLD)(vz/vl) 1 [2/ 3(#)*][1!1 Emd1)(v/01) 1
+ ¥(in kmLp )(v2/v.)? 1 + 3(In kndr)(v2/ve)* 1
+ [1/ 2(2r)¥(1n LD/al)(v,/vl) 5
+ 1(In ma/m1)(ve/v.)? 2,36
v >0 $(In knLp) 35 (v;/v:)* 1 %(ln knth) T (vi/ve)? 1
-+ %(ln ax/Lp)(Th/U,)2 1-7 %(ln mz/m1)(vz/vz)2 2’ 3: 6
e See Fig. 2.
TasLe III. Force on an electron test particle, —F/Fo, when v, = 0.
Lp < @ Region® Lp > a, Region®
vy Koy (2/3rt)(In knLp) X (01/v1) 1 (2/3x4)(In kmdin) 325 (vy /i) 1
g 2z )(In Lp/a1)(v. /o1) 4,7
v Ky K0 (2/3x%)(In kmLp)(vy /01) 1 (2/3xt)(In. kemd@y )(vy /1) 1
+ #(ln knLpXve/vy ) 1 + $(In ka1 No2/v) ) 1
+ (1/3‘"'*)(111 Lz)/az)(vz/”.L)2 5
+ (1/3x4)(In ma/mi )(v2/v, )2 2,3,6
+ (1/2x)(In Lp/a)(ve/n) 4,7
v >0 $(In knlp) 224 (v &, i 3(In kndr) 207 (v/0.)? 1
+ (2/3x)(In Dv;/alvl)(vx/bu.)’ 1-7 -+ (1/3x4) Z: (ln LD/a:)('):/vJ.)2 2,356
=+ (1/3x)(In ma/m1)(v2/v) )? 2,36
+ (2/3x*)1n Lp/a)(v1/v. ) 4,7
e See Fig. 2.
TasLi IV. Force on an ion test particle, —F/F,, when v, = 0.
Lp K a Region Ly > a, Region®
v, L v (2/3=%)(In knLp) ;i (vo/vi) 1 (2/3x4)(In kmdz) 35 (vy/v5) 1-4

v <Ky Lu (2/ 3ad)(In kemLp (v / v,)

+ 3(In knLp)(ve/v, )?

#(In kmLp) 325 (vifve)?

v >0
+ (2/3=)(In Dv_L/alv! or/vL )?

+ [1/2(2x)4][In (ma/m )H]

In Lp/az (2)_1_/1)1) 5

S1/27r)(1n Lp/@2)(v. [v2) 6, 7
1 (2/37%)(1n kmds) (11_1_/111) 1-4
1 + 7(111 kmaz)(l)z/ 1-4

+ {1/ 2(21)9](111 0y/o, XIn Lp/@)(v /o) 5
+ (2/3x%)(In Lp/aGs)(va/vL ) 6

7

1 i(ln krmz) 25 (vifv, ) 1-4
1-7 + (1/3x3)(In Lp/az) (ifv ) 5
1 (2732%)(in Lo/as)(oaloy)* 6,7

e See Fig. 2.
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When L, <« d;, b;; = Lp. When L, > a; and
vy =0,

b = (Lpay)t if v, K,

b = a; if v,>v;.
When Lp > @; and », = 0,

b” o ’:(dlLD)zy dl} ]f v, < v,

@y, (@Lp)*

ST\ (qa Ty
b” g lj(alLD) ) (alazLD) :l lf vy >> v;.
(@:°Lp)*, (:Lp)*

In general, the maximum impact parameter, is
something between the Debye length and a Larmor
radius. The shield cloud of the test particle has a
complex form so that it is not easy to see in an
intuitive way what the particular value of b;
should be. Equation (57) accounts for all collision
terms except in the case of a slow ion moving
perpendicular to the field. The terms

—F\/Fy = s [In (my/my)]
«(In Lp/ay) (. /v,) for v, <v,  (58)
and
—Fy/Fo = e (0 0,/0.)(In Lo/a)01/0)
for », Kv, K (59)

are of a qualitatively different form so that the
calculation will be described. These terms come
from region 5, where |k,| K 1/d,, k., K 1/a,.
Making use of Eqs. (41), (48), and (51) gives

dk,

k..L ko_ %z_

region 5)

o m2w2 } mw2 \
L2 Tk, ”'(lm >J w (b0r).

Fy= —(Fy2ra) f(

The function U; has the property that
() e (3rtes)
2) P\ 72 k.l 4.,

o~ (%) it m] 2

w;

Therefore if v, < v, and k.0, K 1,

mw
UI z =

[k.Jv;

< V2 Ik @

=0 if

Mwsy

p e (haa) = (n/2)(hia)'/2

S = Zm2U1

if |k, @& > w/A/2w;, and 8§ = 0 if [k,] 4 <
w;/ V2w If vy > v, > v, and kia, > 1, we can
employ the asymptotic form of the Bessel functions
J.b (kray) = (1/7k,a,) [1 + rapidly oscillating
term]. Therefore

If V2 k] 4 < (@:/w;) kyas,
M = '\/ij k.| @;/w,.
The sum is terminated by the cutoff of the U,

function and

st (0, 2)
- 3(7[')%kLa2 ? j(l)z )

If /2 k.| @ > (w/w)k.a,,

T

S (E) 2,; m* S, (kias) = (v/2)(k.a,)?/2.

When v, < v,, the ion-electron force dominates.
The ion-ion force is negligible, because S = 0 for
lk.! < 1/+/2a,, which includes the entire range of
integration:

F, = —(F0/27ra2) f k. dk,

1 dk, (z)% (k) @, _
k' \2 2 |k
FO U_L 1/d. dk 1 (1 . #2)
= 5 Ju E du S
/Lp
Thus Eq. (58) is obtained. If v, < v, < v,, the only
change is that the lower limit of the u integration
is replaced by u = v, /v,.

The forces caused by plasma-wave emission are
significantly modified by the magnetic field. If
L, > a,, they disappear entirely. If L, < d, and
v, = 0, the modification is the replacement of
3 (Inov./v) (0/v.)" by (3) (0 @/Lp) (v/v.)". The
reason is that in the presence of a magnetic field,
the plasma-wave Cerenkov effect takes place only
for wavelengths 1/a, < k < 1/L, instead of
0 < k < 1/Ly. When there is no magnetic field,
the leading term of the dispersion relation for
plasma waves i8 w(k) = w,. The phase velocity is
w,/k. Plasma waves are emitted by the test charge
mainly at the angle cos 8 = w,/kv = (1,//2 v.kLp).
This leads to the usual Cerenkov shock front. In
the presence of a magnetic field, the leading term
of the dispersion relation is w(k) = o, for 1/4, <
k < 1/Lp, and w(k) = w, |k.|/k = «,, cos 6° for

¢ I. Bernstein, Phys. Rev. 109, 10 (1958).

p~(my/mg)t M
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0 < k < 1/a,. The resonance now takes place for
cos § = w,. cos 0/kv or w, = kv, independent of
angle. This plasma-wave resonance of the second
kind produces a negligible drag on a particle moving
in the direction of the field. The effect is to replace
the lower limit of integration in Eq. (34) by &k = 1/4,.

For a particle moving perpendicular to the field,
the plasma-wave drag

Fy = —(2F,/3) (In Lpv,/aw,) (vl/vl)2 s (60)

is entirely due to plasma-wave resonance of the
second kind. The calculation of this term will be
described.

Consider the case of an ion test particle for which

F. = (FoLy'/ras) ko dk, [ ak,

(kLp<1)

s mda(ka) Wk, m)
wSo [(kLp)* + Wal* + W~

where Wk, m) = Wy + W,  In the domain
k< 1/a,,

P 1_m Ln_1>* [ m (&)]
W= 2 k.l a, <m2 Ur k.| @ \m,

m m
k.| @ U’(ikzl a>
If |k,| < (im|/a,) (m,/m.)}, then W, < 1, and the

contribution from the mth term will be significant
if (kLp)® 4+ W5z = 0, where

k,dz>2 My
m/) m,

=

WR = _%<

Therefore, only terms for which |k,|d; (m./m,)? <
lm| < (d5/Lp) (m./2m,)? can contribute. There will
be a significant number of terms only if L, < d,.
If k, = kp, the resonant condition is

- 2 2
2y 2| ¢ _1Me (G (K =
er 112 () ()] o

- 21&)*&3
= o = (22) L2y

(kLp)? + Wy =
or
] = lm| Wp /0,

Resonances can take place for harmonies of the ion
cyclotron frequency up to |m| = w,/w,. The contri-
bution from each resonance is proportional to
J.* (kia;), which becomes negligible for |m| >
k,as. Therefore, a significant result will be obtained
only for a fast test particle such that ki a, > w,/w,:
1/dz .

1
F, = (2F,/ra) f 2 dk f du
0 0

5 md o [ka(1 — w)' W,
m {k4LD4[]~ - (H/Mo)2]2 + W12}
The u integration can be carried out by making use
of the resonant character of the denominator:

_2(%>% F_OL_P.a_

m,

Fp=

1/é2
[ dk X w2 ha).

axl, Jo

If az/d@; > (my/2my)t (G./Lp), then for
{1/‘12[(’m2/2m1)5(dz/Lb)]} <k <1/a,

m~(my/2m1) ¥ (a8./LD)

m*J . (kay) = 2 > m’
2

WkaZ m=0

- 2
3rka,

[(ma/2m,)*(d2/ L)'
Therefore,
Fy= —(2F/3x)(v,/v.)" In [azLD(m2)*/dza2(2ml)*],

This contribution, is from the domain 0 < k < 1/a,.
Similarly, the contribution from the domain
1/a, < k < 1/a, is

Fy = —(2F,/3m) (. /v.)" In (4,/).

By combining these two, we obtain the result of Eq.
(60). In the domain 1/a, < k < 1/L,,

— _l @)2 me
Wy = (k) m
so that
~\2
A

can vanish only if [m| = [m,/2m,]* (4,/L,) happens
to be an integer. The contribution from this domain
is therefore negligible. The result for an electron
test particle is the same as for an ion.

The results obtained with a magnetic field depend
only logarithmically on the way in which k space
was divided. Fy(\) is a slowly varying function of
A = Lp/a. If either of these conditions were violated,
the caleulation procedure would be of doubtful
validity.

In a thermonuclear machine where the magnetic
field is produced by currents within the plasma,
(Lp/a@)> = B/4xnm,c’, where B/4r =~ n®.
Therefore (Lp/a,)* = 0/m,c* < 1 for® < 510 kev.
In a mirror machine where B is produced by external
coils, it is possible to have L, > @, for sufficiently
low density. This case may also arise in astrophysical
problems. The less extreme case, 4, < L, < @, is
more likely. We have not listed results for this case,
but they can easily be obtained by applying the
same methods.
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If the cluster expansion is continued (i.e., f, =
1.9+ gf." + g%, - +), it is probable that f,® will
contain the factor In ¢g. This speculation was made
some time ago by Bogoliubov'® for a thermal equi-
librium cluster expansion and appears in the recent
results of Abe.!' The expansion in terms of ¢ is not
a power series. However, for the kind of plasma
that is of current interest for thermonneclear ma-
chines, g is very small. For example, if ® = 100 ev

10 N, Bogoliubov, J. Phys. (U.8.S8.R.) 10, 257 (1946).
1 R, Abe, Progr. Theoret. Phys. (Kyoto) 21, 475 (1959).
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and n = 10" em™, g ~ 107® so that a calculation
to order ¢° should give satisfactory quantitative
results.
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