Lecture 12: Maximum likelihood (continued)

Y2 fitting procedure!

Midterm tools reviewed



from Lecture 10: Maximum Likelihood discussion

Nonlinear fits are often easy in MATLAB (or other high-level languages) if you
can make a reasonable starting guess for the parameters:

T — by)?
y(z|b) = by exp(—bax) + b3 exp (_%( - 4) )
5

o=y (st

)

ymodel = @(x,b) b(1)*exp(-b(2)*x)+b(3)*exp(-(1/2)*((x-b(4))/b(5)) .A2)
chisqfun = @(b) sum(((ymodel(x,b)-y) /<ia) A2}

1.2

bguess = [1 2 .5 3 1.5]

bfit = fminsearch(chisqfun,bguess)
xfit = (0:0.01:8); o8}
yfit = ymodel (xfit,bfit);

1

\
y :

bfit = 1.1235 1.

3.2654
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Suppose that what we really care about is
the area of the bump, and that the other

parameters are “nuisance parameters”. 025 1 2 3 4 5 5 7 8

> increasing temperature x
iIn some arbitrary units




from Lecture 10: Maximum Likelihood parameter errors?

How accurately are the fitted parameters determined?
As Bayesians, we would instead say, what is their posterior distribution?

Taylor series:

o . 1 %
—3X (b)) = =3 Xmin — 3(b —bo) {Ec’?b@b] (b —bo)

So, while exploring the x? surface to find its minimum, we must also
calculate the Hessian (2nd derivative) matrix at the minimum.

Then
P(b{y;}) o< exp [—%(b - bo)TZb_l(b - bo)] P(b)
with I

B2y2 ] -1~ covariance (or “standard error”) matrix
1~

3, = |2 of the fitted parameters
° [2abab

Notice that if (i) the Taylor series converges rapidly and (ii) the
prior is uniform, then the posterior distribution of the b’s is
multivariate Normal, a very useful CLT-ish result!



Maximum Likelihood parameter errors?

Numerical calculation of the Hessian by finite difference

me,l(ﬁ+—ﬁ+_ﬁF—f")
dzdy ~ 2h 2h 2h

= o (Fae + foe = fm = )

bfit = 1.1235 1.5210 0.6582 3.2654

chisqfun = @(b) sum(((ymodel(x,b)-y)./sig).A2)

h =0.1;
unit = @(i) (1:5) == 1;
hess = zeros(5,5);

for i=1:5, for j=1:5

bpp = bfit + h*(unit(i)+unit(j));
bmm = bfit + h*(-unit(i)-unit(j));
bpm = bfit + h*(unit(i)-unit(3));
bmp = bfit + h*(-unit(i)+unit(3));

hess(i,j) = (chisgfun(bpp)+chisqfun(bmm)..
-chisqgfun(bpm)-chisgfun(bmp))./(2*h)A2;
end
end
covar = inv(0.5*hess)

o— 4 ®0+ ® ++
h
h
*>0 %00 *30
® _ _ ‘O_ .+_

1.4832

This also works for the diagonal
components. Can you see how?



Maximum Likelihood parameter errors?

(17—-b4)2
For our example,  ¥(z|b) = by exp(—bax) + b3 exp (‘% b2
5
bfit =
1.1235 1.5210 0.6582 3.2654 1.4832
hess =

64.3290 -38.3070 47.9973 -29.0683 46.0495
-38.3070 31.8759 -67.3453 29.7140 -40.5978
47.9973 -67.3453 723.8271 -47.5666 154.9772
-29.0683 29.7140 -47.5666 68.6956 -18.0945
46.0495 -40.5978 154.9772 -18.0945 89.2739

covar =
0.1349 0.2224 0.0068 -0.0309 0.0135
0.2224 0.6918 0.0052 -0.1598 0.1585
0.0068 0.0052 0.0049 0.0016 -0.0094
-0.0309 -0.1598 0.0016 0.0746  -0.0444
0.0135 0.1585 -0.0094  -0.0444 0.0948

This is the covariance structure of all the parameters, and indeed (at least in
CLT normal approximation) gives their entire joint distribution!

The standard errors on each parameter separately are 0; = 4/ Ci'i

sigs =
0.3672 0.8317 0.0700 0.2731 0.3079

But why is this, and what about two or more parameters at a
time (e.g. b; and b;)?



multivariate normal distribution

Question: What is the generalization of

2
Li — Mg
x2=z( “) i~ N o)

, 0;
i

to the case where the x,'s are normal, but not independent?
l.e., x comes from a multivariate Normal distribution?

(2m)M/2 (1iet(2)1/2 exp[—5(x — ) E7 (x — )]

N(x|p, %) =

The mean and covariance of r.v.’s from this distribution are*

p=(x) I=(x-—p)(x—pm)

} . I In the one-dimensional case o is the standard deviation,

which can be visualized as “error bars” around the mean.

In more than one dimension X can be visualized as
an error ellipsoid around the mean in a similar way.

1=x-—p)!'S 7 (x—p)




linear error propagation for arbitrary function of parameters

What is the uncertainty in quantities other than the fitted coefficients:

Method 1: Linearized propagation of errors

by is the MLE parameters estimate

b; = b — by is the RV as the parameters fluctuate

f=f(b)= f(bo) +Vfby+--
(f) = (f(bo)) + Vf (b1) = f(bo)
(£%) = (£)* = 2f (bo)(Vf {b1)) + ((Vf b1)?)
=Vf (bib] )VfT
=VfEVFT



linear error propagation for arbitrary function of parameters

In our example, if we are interested in the area of the “hump”,

bfit =
1.1235 1.5210 0.6582 3.2654 1.4832
covar = ]
0.1349 0.2224 0.0068 -0.0309 0.0135 ﬁj
0.2224 0.6918 0.0052 -0.1598 0.1585 ~ ¥l !
0.0068 0.0052 0.0049 0.0016 -0.0094 : f&] |
-0.0309 -0.1598 0.0016 0.0746 -0.0444 ‘J '
0.0135 0.1585 -0.0094 -0.0444 0.0948 N
J = bsbs

Vf=(0,0,bs,0,bs3)
VIV = bi233 + 2b3bs X35 + baXss = 0.0336
v/0.0336 = 0.18

So bsbs = 0.98 +0.18

the one standard deviation
(1-o) error bar

A function of normals is not normal



Sampling the posterior histogram

Method 2: Sample from the posterior distribution

1. Generate a large number of (vector) b’s
b ~ MVNormal(bg, >)

2. Compute your f(b) separately for each b

600

3. Histogram

100

a’l
0

-
4 3 B 10 12 14 1€

Note again that b is typically (close to) m.v. normal because of the CLT, but
your (nonlinear) fmay not, in general, be anything even close to normal!



Sampling the posterior histogram

Our example:

bees = mvnrnd(bfit,covar,10000);
humps = bees(:,3).*bees(:,5);
histChumps, 30);

std Chumps)

1400 , . 1 l . ] 1 ,
std = 0.1833 15001
1000}
800 -
600 +
400

200

Does it matter that | use the full covar, not
just the 2x2 piece for parameters 3 and 57?



x2 distribution goodness of fit

we have assumed that, for some value of the parameters b
the model y(x;|b) is correct

Suppose that the model y(x;|b) does fit. This is the null hypothesis.

N
B b
Then the “statistic” X Z (y x| >> is the sum of N t2-values.
=t AN (not quite)

So, if we imagine repeated experiments (which Bayesians refuse to do),
the statistic should be distributed as Chisquare(V).

If our experiment is very unlikely to be from this distribution, we
consider the model to be disproved. In other words, it is a p-value
test.




x2 distribution (from Lecture 10)

1
\/ 2T

2

1
2% = z~N(0,1)

px(x) = e

y =z’

1
py (y) = v~V 2px (y/?) = ﬁeﬁy

v2 is a “statistic” defined as the sum of the squares of n independent t-values.

2
Li — i
= (BoH) L N

7

Chisquare(v) is a distribution (special case of Gamma), defined as

x* ~ Chisquare(v). v >0

| |

p(x?)dy? = (y3)2" 'exp (—%){2) dy?. ¥? >0

I
22°T'(3v)



confidence intervals

The variances of one parameter at a time imply confidence intervals
as for an ordinary 1-dimensional normal distribution:

(Remember to take the square root of the
variances to get the standard deviations!)

-196SD  mean +1.96 SD

If you want to give confidence regions for more than one parameter

at a time, you have to decide on a shape, since any shape
containing 95% (or whatever) of the probability is a 95% confidence

region!

It is conventional to use contours of probability density as the
shapes (= contours of Ay?) since these are maximally compact.

But which Ay?2 contour contains 95% of the probability?



¥2 distribution

Measurement precision improves with the amount of data N as N-1/2

twice the data implies about
twice the y2atany b
\
NS //

_ so fixed A2 implies \2
better precision

\

2 |




confidence intervals

What Ay? contour in v dimensions contains some percentile probability?

Rotate and scale the covariance to make it spherical.
(Linear, so contours still contain same probability.)

Now, each dimension is an independent Normal, and contours are labeled
by radius squared (sum of v individual #2 values), so Ay?~ Chisquare(v)

08
v=1 . — :
07k 4 Ay# as a Function of Confidence Level p and
2 Number of Parameters of Interest v
06 3 ..L . v
2\ 05F - _
</]~ 68.27% 1.00 2.30 3.53 4.72 5.89 7.04
04l ) 90% 2.71 4.61 6.25 7.78 0.24 10.6
= 95.45% 6.18 802 972 113 128
03F - 99% 6.63 0.21 11.3 13.3 15.1 16.8
09.73% 0.00 11.8 14.2 16.3 18.2 20.1
02 y 09.99% 15.1 18.4 21.1 23.5 25.7 27.9
95%points
01} .
You sometimes learn “facts” like: “delta

5 .
0 1 (2) A ° ¢ ° chi-square of 1 is the 68% confidence
X level”. We now see that this is true only
for one parameter at a time.



confidence intervals

Monte Carlo to generate parameters (non-linear models):

2 | Monte Carlo

synthetic | X paramgters

data set 1 min a
(1)

synthetic S

data set 2 i a2

actual x% | fitted

dataset [>| parameters

min a
(0)

synthetic . S
data set 3 a0)
synthetic > S

data set 4 A4




confidence intervals

Monte Carlo distribution of the non-linear parameters:

(s) _
a1~ Gon

68% confidence

interval on ag

68% confidence region
on a; and a, jointly

6

8% confidence interval on a,

al) —a

()0 (0)0




what is the Degree of Freedom?

How is our fit by this test?

In our example, x?(bg) = 11.13

This is a bit unlikely in Chisquare(20),
with (left tail) p=0.0569.

In fact, if you had many repetitions of the experiment, you would find that
their 2 is not distributed as Chisquare(20), but rather as Chisquare(15)!

Why?

0.08

chi-square pdf
O o
2 &

O
O
[N

the magic word is:
“degrees of freedom” or DOF



what is the Degree of Freedom?

Degrees of Freedom: Why is y2 with NV data points “not quite”
the sum of N t2-values? Because DOFs are reduced by constraints.

First consider a hypothetical situation where the data has
linear constraints:

ti_yz'_,ui ~ N (0,1)

op
joint distribution on all the t) = H t)oxexp | =1 E $+2
t's, if they are independent p( ) , p( Z) P 2 : ¢
(] (]

x? is squared distance from origin ) ¢2

Linear constraint: Z o;y; = C = <C> = Z Q;

C = ZQi(Uz’ti + ;)

So E oot = a hyper plane through the origin
’ el in t space!



what is the Degree of Freedom?

Constraint is a plane cut through
the origin. Any cut through the
origin of a sphere is a circle.

So the distribution of distance from origin is the same as a multivariate
normal “ball” in the lower number of dimensions. Thus, each linear
constraint reduces v by exactly 1.

We don't have explicit constraints on the y;’'s. But as the y's wiggle around
(within their errors) we do have the constraint that we want to keep the

MLE estimate b, fixed. (E.g., we have 20 wiggling y;'s and only 5 b/’s to
keep fixed.)

So by the implicit function theorem, there are M (number of parameters)
approximately linear constraints on the y;'s. So v =N — M , the so-
called number of degrees of freedom (d.o.f.).




what is the Degree of Freedom?

Review:

1. Fit for parameters by minimizing

- (o)

1=1

2. (Co)variances of parameters, or
confidence regions, by the change
in x2 (i.e., Ay?) from its minimum

value 2.

3. Goodness-of-fit (accept or reject
model) by the p-value of ¥2 ..
using the correct number of DOF.

ch square pdl

D8

ne

04t

D2t
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Ay? as a Function of Confidence Level p and

Number of Parameters of Interest v

v
p | 2 3 4 5 6
68.27% 1.00 2.30 3.53 4.72 5.89 7.04
90% 2.71 4.61 6.25 7.78 9.24 10.6
95.45% 4.00 6.18 8.02 9.72 11.3 12.8
99% 6.63 0.21 11.3 13.3 15.1 16.8
99.73% 9.00 11.8 14.2 16.3 18.2 20.1
99.99% 15.1 18.4 21.1 23.5 25.7 27.9
008 -
007 fi—
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/ \
/
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Goodness-of-fit

Goodness-of-fit with v= N— M degrees of freedom:

2 = this is an RV over the population of different data
we expect  Xpjn ~7 V T V2 sets (a frequentist concept allowing a p-value)

Confidence intervals for parameters b:

- O(1 this is an RV over the population of possible model
- ( ) parameters for a single data set, a concept shared
by Bayesians and frequentists

2 A2
we expect X = Xmin

How can +(O(1) be significant when the uncertainty is + v2v ?

Answer: Once you have a particular data set, there is no uncertainty about
what its x2 . is. Let's see how this works out in scaling with N:

v? increases linearly with v= N- M

Ayx? increases as N (number of terms in sum), but also decreases
as (N 12)2 since b becomes more accurate with increasing N :

Ax? < N(6b)?, &b N2 =  Ay?® x const

guadratic, because at minimum universal rule of thumb






