PHYSICS 152B/232
Spring 2017
Homework Assignment #4 Solutions

[1] Atomic physics — Consider an ion with a partially filled shell of angular momentum .J,
and Z additional electrons in filled shells. Show that the ratio of the Curie paramagnetic
susceptibility to the Larmor diamagnetic susceptibility is

xpara g2 J(J+1) R

xdia 2Zk, T m(r?) -

where g, is the Landé g-factor. Estimate this ratio at room temperature.

Solution :

We have derived the expressions
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and where p, = eh/2mc is the Bohr magneton. The ratio is thus

ypara QE J(J + 1) h2

xdia 2Zk, T m(r?)

If we assume (r?) = a2, so that h?/m(r?) ~ 27.2eV, then with T' = 300K (and k,T ~
LeV), g =2, J =2, and Z ~ 30, the ratio is xPa /x4 ~ —450.

[2] Adiabatic demagnetization — In an ideal paramagnet, the spins are noninteracting and

the Hamiltonian is
NP

H = Z v, ;- H
i=1
where v; = g1, /h and J; are the gyromagnetic factor and spin operator for the i*" param-

agnetic ion, and H is the external magnetic field.
(a) Show that the free energy F(H,T) can be written as
FH,T)=T®H/T) .

If an ideal paramagnet is held at temperature 7} and field H; 2, and the field H; is adia-
batically lowered to a value Hy, compute the final temperature. This is called “adiabatic
demagnetization”.



(b) Show that, in an ideal paramagnet, the specific heat at constant field is related to the
susceptibility by the equation
ds H?X
Cr = — = .
" or), T

Further assuming all the paramagnetic ions to have spin J, and assuming Curie’s law to be
valid, this gives

| gusH Y’
cy = gnpkgJ(J +1) < T ) ,
p is the density of paramagnetic ions. You are invited to compute the temperature
T* below which the specific heat due to lattice vibrations is smaller than the paramagnetic
contribution. Recall the Debye result

T 3
12,4
oy =rnks (5-)

where n = 1/ is the inverse of the unit cell volume (i.e. the density of unit cells) and ©p,
is the Debye temperature. Compile a table of a few of your favorite insulating solids, and
tabulate © , and 7™ when 1% paramagnetic impurities are present, assuming J = g

where n

Solution :

(a) The partition function s a product of single-particle partition functions, and is explicitly
a function of the ratio H/T"

Ji
Z=1] > e ™" =2z(H/T).

i m=—J;
Thus,
F=—kTWnZ=T&H/T),
where
)= —k Zl sinh ((J; + )7, 2/ks)
s1nh (’y x/2ky)

The entropy is

S— —g—i — _®(H/T) + % ' (H/T) |
which is itself a function of H/T. Thus, constant S means constant H/T, and
(b) The heat capacity is
Cy T<g—§:> =—x g—i = 229" (x),



with & = H/T. The (isothermal) magnetic susceptibility is

(O F\ 1,

Thus,

Next, write

gLNBH>2

B

3
Cy = %714711{:3 <l>
©p

and we set C'y; = C, to find T*. Defining O, = g, uy H/ky, we obtain

* 1 5m 7'Lp 2 3 1/

™

Set J ~ 1, g, = 2, n, = 0.0ln and Op ~ 500K. If H = 1kG, then ©5 = 0.134K. For

general H, find

T* ~ 3K - (H [kG])* .

[3] Ferrimagnetism — A ferrimagnet is a magnetic structure in which there are different
types of spins present. Consider a sodium chloride structure in which the A sublattice spins
have magnitude S, and the B sublattice spins have magnitude Sy with Sy < S, (e.g. S =1
for the A sublattice but S = % for the B sublattice). The Hamiltonian is

H=J) Si-Sj+ganH Yy Si+geut Y S
(i) €A JjEB

where J > 0, so the interactions are antiferromagnetic.

Work out the mean field theory for this model. Assume that the spins on the A and B
sublattices fluctuate about the mean values

(8,y)=m, 2 ) (Sp) =my 2
and derive a set of coupled mean field equations of the form

my = F,(Bg po.H + BJzmy)
myg = FB(BQBIU’OH + BJZmA)



where z is the lattice coordination number (z = 6 for NaCl) and F, (z) and F,(x) are related
to Brillouin functions. Show graphically that a solution exists, and fund the criterion for
broken symmetry solutions to exist when H = 0, i.e. find T.. Then linearize, expanding for
small m,, my, and H, and solve for m,(T") and my(T") and the susceptibility

1 0
X(T) = —3 8—H(9AuomA + gphtomy)

in the region T' > T,. Does your T, depend on the sign of J? Why or why not?

Solution :

We apply the mean field Ansatz (S;) = m, ; and obtain the mean field Hamiltonian

HMF _%szmA “my + Z (gA,uOH + ZJmB) -8+ Z (QB,UOH + ZJmA) -85 .
icA J€B

Assuming the sublattice magnetizations are collinear, this leads to two coupled mean field
equations:

m(@) = Fy_(BganoH + BJzmy)
my(2) = Fy_(BgupoH + BTzm,) ,

where

Fg(x) = =S Bg(Sz) ,

and Bg(x) is the Brillouin function,

Bg(z) = (1+ %)ctnh (1+ %)x — %ctnh% .

The mean field equations may be solved graphically, as depicted in fig. 1.

Expanding Fg(z) = —25(S + 1)z + O(2®) for small z, and defining the temperatures
ksTy 5 = 25, 5(San + 1) 2J, we obtain the linear equations,
T Galto
m, — ?A my = — gj H
T g hto
mB—7BmA:— ,]ZJ H
with solution
9 LT — 95T\ Ty poH
m, = — 5
2-T,T, 2J
g5 TET — g, T\ T poH
My = — 5 .
T2—T,T, 2J
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Figure 1: Graphical solution of of mean field equations with Sy, = 1, S5 = 2, ga = g5 = 1,
zJ =1,and H =0. Top: T > T; bottom: T < T¢.

The susceptibility is
1 0
N OH 2 0H
(gi T, + 9123 T)T — 29,95 T\ Ty /‘(2)
T2 -T,T, 220

(Gattomy + gphtomy)

which diverges at

z| /|

3ky

Note that T, does not depend on the sign of J. Note also that the signs of m, and my may
vary. For example, let g, = g5 = g and suppose S, > S;. Then T, < /T, T; < T, and
while m, < 0 for all T' > T, the B sublattice moment changes sign from negative to positive
at a temperature 7, > T,.. Finally, note that at high temperatures the susceptibility follows
a Curie X oc 77! behavior.

T, = \/TATB = \/SASB(SA + 1)(513 + 1)

[4] Let’s all do the spin flop — In real solids crystal field effects often lead to anisotropic



spin-spin interactions. Consider the anisotropic Heisenberg antiferromagnet in a uniform
magnetic field,
H=J> (SFST+SYSY+AS;SH)+h> S
(i) i
where the field is parallel to the direction of anisotropy. Assume ¢ > 0 and a bipartite
lattice.

Consider the case of classical spins In a small external field, show that if the anisotropy A
is not too large that the lowest energy configuration has the spins on the two sublattices
lying predominantly in the (x,y) plane and antiparallel, with a small parallel component
along the direction of the field. This is called a canted, or ‘spin-flop’ structure. What is the
angle 0. by which the spins cant out of the (x,y) plane? What do I mean by not too large?
(You may assume that the lowest energy configuration is a two sublattice structure, rather
than something nasty like a four sublattice structure or an incommensurate one.)

Solution :

We start by assuming a two-sublattice structure in which the spins lie in the x — 2z plane.
(Any two-sublattice structure is necessarily coplanar.) Let the A sublattice spins point in the
direction (0 = 6,,¢ = 0) and let the B sublattice spins point in the direction (0 = 0, ¢ = 7).
The classical energy per bond is then

£(6,,0,) = —JS? sinf), sinf, + JS2A cos b, cos b, — %(cos 6, + cosby,) .

Note that in computing the energy per bond, we must account for the fact that for each
site there are %z bonds, where z is the coordination number. The total number of bonds is
thus Ny 4. = %N z, where N is the number of sites. Note also the competition between A
and h. Large A makes the spins antialign along Z, while large h prefers alignment along 2.

Let us first assume 6, = 0, = 0, and determine 6. Let e(6,,0,) = (6,,0,)/JS*:
e(0.) = e(by = 0,05 = 0.)

2h
= —sin%0, + A cos®0, — —— cos @,

zSJ
Oe . 2h
90, sin .. - {2(1 + A)cosf, — E} .
Thus, the extrema of e(f,) occur at sinf, = 0 and at
0 _ h
8V TSI+ A)

The latter solution is present only when A > |h/ zSJ | — 1. The energy of this state is

P S G
€= 1+A\ 257



per bond.

To assess stability, we’ll need the second derivatives,

0% 0%
= sin?0, — A cos?, + —— cos ¥,
062 | 0,= 02 | 65 =0c
0 zB_ic ~ 062 i 01;_90 SJ
0% 9
— = —cos?0, + Asin?f, |

from which we obtain the eigenvalues of the Hessian matrix,

h
=1+A)(1-2 —
AL = (14+A) cos?0,) + 57 cos 6,

- (1+A){1 - <m>2}

h
=1-A)4+—
A= ( )+ SJ0089

1 ho\?
=— {1 A? — .
1T A{ i <zSJ> }
Assuming A > 0, we have that A\, > 0 requires

BN

A
~ 257 28]

which is equivalent to cos?, < 1, and A_ > 0 requires

h 2
A 1
< i <zSJ>

This is the meaning of “not too large.”

The other extrema occur when sinf, = 0, i.e. . = 0 and 6, = 7. The eigenvalues of the
Hessian at these points are:

0, =0: A, = (1+A)+%
=1y
0. = r A, = (1+A)—%
N

Without loss of generality we may assume h > 0, in which case the 6, = 7 solution is
always unstable. This is obvious, since the spins are anti-aligned with the field. For 6. = 0,



the solution is stable provided A < (h/zJS) — 1. For general h, the stability condition is
A < |h|/zJS —1.

The other possibility is that A is so large that neither of these solutions is stable, in which
case we suspect 6, = 0 and 0 = 7 or vice versa.

Thus, for h < 2JS(1 4+ A), the solution with 6, = cos™' (h/2JS(1 + A)) is stable. The

Hessian matrix in this case is

9% %
oe —cZc h
962 9,00, (A + 257 1
9% 9% _ _h
90,00, 9% /) oy=0 1 A— 57
GB:W

whose eigenvalues are



