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Dimension is perhaps the most basic property of an attractor. In this paper we discuss a variety of different definitions 
of dimension, compute their values for a typical example, and review previous work on the dimension of chaotic attractors. 
The relevant definitions of dimension are of two general types, those that depend only on metric properties, and those 
that depend on the frequency with which a typical trajectory visits different regions of the attractor. Both our example and 
the previous work that we review support the conclusion that all of the frequency dependent dimensions take on the same 
value, which we call the "dimension of the natural measure", and all of the metric dimensions take on a common value, which 
we call the "fractal dimension". Furthermore, the dimension of the natural measure is typically equal to the Lyapunov 
dimension, which is defined in terms of Lyapunov numbers, and thus is usually far easier to calculate than any other definition. 
Because it is computable and more physically relevant, we feel that the dimension of the natural measure is more important 
than the fractal dimension. 
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1. Introduction 1.1. Attractors 

It is the  p u r p o s e  o f  th is  p a p e r  to  d i scuss  a n d  

rev iew q u e s t i o n s  r e l a t i ng  to  the  d i m e n s i o n  o f  cha -  

o t ic  a t t r a c t o r s .  Be fo re  d o i n g  so,  h o w e v e r ,  we  

s h o u l d  first  say w h a t  we  m e a n  by  the  w o r k  " a t t r a c -  

t o r " .  

In  this  p a p e r ,  we c o n s i d e r  d y n a m i c a l  s y s t ems  

such  as  m a p s  (d i sc re te  t ime,  n )  

x .  + ~ = F ( x . ) ,  

or  o r d i n a r y  d i f fe ren t ia l  e q u a t i o n s  ( c o n t i n u o u s  
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time, t) 

dx( t )  
- G(x( t ) ) ,  

dt 

where in both  cases x is a vector. Thus, given an 

initial value o f  x (at n = 0 for the map or t = 0 for 

the differential equations) an orbit  is generated 

((xl, x2 . . . . .  x , , . . . )  for the map  and x ( t )  for the 
differential equations). We shall be interested in 
attractors for such systems. Loosely speaking, an 

at tractor  is something that  "a t t racts"  initial condi- 
tion~ from a region around it once transients have 

died out. More  precisely, an attractor is a compact  

set, A, with the proper ty  that there is a neigh- 
bo rhood  of  A such that for almost  every* initial 
condit ion the limit set of  the orbit  as n or t ~ + 

is A. Thus, almost  every trajectory in this neigh- 

bo rhood  of  A passes arbitrarily close to every point  

o f  A. The basin o f  attraction of  A is the closure o f  
the set o f  initial conditions that approach  A. 

We are primarily interested in chaotic attractors. 

We give a definition o f  chaos in section 3, but the 
reader may also wish to see the reviews given in 
references 1-4. 

1.2. Why study dimension? 

The dimension of  an at tractor  is clearly the first 

level o f  knowledge necessary to characterize its 
properties. Generally speaking, we may think of  

the dimension as giving, in some way, the amount  
o f  information necessary to specify the position o f  
a point  on the at t ractor  to within a given accuracy 

(cf. section 2). The dimension is also a lower bound  

on the number  o f  essential variables needed to 
model the dynamics. For  an extensive discussion of  
dimension in many  contexts, see Mandelbro t  
[5, 6, 46]. 

* The phrase "almost every" here signifies that the set of 
initial conditions in this neighborhood for which the corre- 
sponding limit set is not A can be covered by a set of cubes of 
arbitrarily small volume (i.e. has Lebesgue measure zero). 

[Mod 1 means that the values ofx and y are truncated to be 
less than or equal to one and their integer part are discarded, 
so that the map is defined on the unit square. 

For  simple attractors,  defining and determining 
the dimension is easy. For  example, using any 

reasonable definition o f  dimension, a stat ionary 
time independent equilibrium (fixed point) has 

dimension zero, a stable periodic oscillation (limit 

cycle) has dimension one, and a doubly  periodic 

at tractor (2-torus) has dimension two. It is because 

their structure is very regular that  the dimension 

these simple attractors takes on integer values. 
Chaotic (strange) attractors,  however, often 

have a structure that is not  simple; they are often 

not  manifolds, and frequently have a highly frac- 
tured character. For  chaotic attractors,  intuition 

based on properties of  regular, smooth  examples 

does not  apply. The most  useful notions of  dimen- 
sion take on values that are typically not  integers. 

To fully understand the properties o f  a chaotic 
attractor,  one must  take into account  not only the 

at tractor  itself, but  also the "dis tr ibut ion" or "den- 

sity" of  points on the attractor.  This is more 

precisely discussed in terms of  what  we shall call 
the natural measure associated with a given attrac- 
tor. The natural measure provides a not ion of  the 

relative frequency with which an orbit visits 
different regions of  the attractor.  Just as chaotic 

attractors can have very complicated properties, 

the natural measures o f  chaotic attractors often 

have complicated properties that make the relevant 

assignment o f  a dimension a nontrivial problem. 
Precise definitions of  such terms as "natural  

measure" follow, but we would first like to give an 
example in order to motivate the central questions 
we are addressing in this paper. 

Consider the following two dimensional map t :  

x . + t = x n + y . + f c o s 2 n y ,  mod 1, 

Yn + ~ = x. + 2y, mod  1. 

(l) 

For  small values o f  6, Sinai [7] has shown that the 

at tractor  o f  this map is the entire square, and is 
thus o f  d imension  2. Therefore almost every initial 
condit ion generates a trajectory that eventually 
comes arbitrarily close to every point  on the 
square. However,  consider the typical trajectory 
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Fig. 1. Successive iterates of the initial point x 0 = 0.5, Y0 = 0.5 
using eq. (1) with & = 0.1.80,000 points are shown. Almost any 
initial condition gives a qualitatively similar plot; the location 
of the individual points of course changes, but the location of 
the dark bands does not. The density of these points is described 
by the natural measure of this attractor. (For example, the 
outlined parallelogram (which is blown up in fig. 2) contains 
approximately 27% of the points of a typical trajectory, and 
thus can be said to have a natural measure of approximately 
0.27.) 

shown in fig. 1. Certain regions are visited far more 
often than others. The natural measure of  a given 
region is proportional to the frequency with which 
it is visited (see section 2.2.2), in this case the 
natural measure is highly concentrated in diagonal 
bands whose density of  points is much greater than 
the average*. Furthermore,  as shown in fig. 2, if a 
small piece of  the attractor is magnified, the same 
sort of structure is still seen. 

For this map we do not know if the value of 6 
chosen to construct fig. 1 is small enough to insure 
that the dimension of the attractor is two. For 
practical purposes, though, this may be irrelevant. 

* In fact, for small values of 6, Sinai [7] has shown that for 
any ~ > 0, there exists a collection of tiny squares whose total 
area is less than e, and such that almost every trajectory spends 
1 - ¢ of the time inside this collection of squares. These squares 
cover what is called the core of the attractor• (See section 7). 
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Fig. 2. A blow-up of the strip marked in fig. 1. This strip was 
chosen in order to follow one of the dark bands; the blow-up 
was made by expanding the strip in a direction perpendicular 
to its long sides (roughly horizontally), and the top and bottom 
were trimmed to make the result square. What appears to be 
a single band in fig. 1 is now seen as a collection of bands. 

Even if a trajectory eventually comes arbitrarily 
close to any given point, the amount  of  time 
required for this to happen may be enormous. In 
order to assign a relevant dimension that will 
characterize the trajectories on the attractor, the 
natural measure must be taken into account. For 
this example the dimension that characterizes 
properties of  the natural measure is between one 
and two. 

These considerations are not as esoteric as they 
might seem. One may not be as interested in 
whether the dimension of a given attractor is 3.1 or 
3.2 as in whether it is on the order of  three or on 
the order of  thirty. As we shall see, a proper 
understanding of probabilistic notions of  dimen- 
sion leads to an efficient method of computing the 

dimension of chaotic attractors, that provides the 
best known method of  answering such questions. 

The main points of  this paper can be sum- 
marized as follows: 

1) Although there are a variety of  different 
definitions of  dimension, the relevant definitions 
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Table ! 
Current evidence indicates that typically the first two dimensions take on the same value, 
called the fractal dimension, while the next five dimensions take on another typically smaller 
value, called the dimension of the measure. 

Navae of dimension Symbol Generic name Symbol 

Capacity d c fractal d v 
Hausdorff  dimension d H dimension 

Information dimension d~ 
,9 -capacity de(,9 ) 
'9-Hausdorff dimension dH(,9 ) dimension of the d, 
Pointwise dimension dp natural measure 
Hausforff dimension of the core dn(core ) 

Lyapunov dimension d L 

are of two types, those which only depend on 
metric properties, and those which depend on 
metric and probabilistic properties (i.e., they in- 
volve the natural measure of the attractor). 

2) Current evidence supports the conclusion 
that all of  the metric dimensions typically take on 
the same value, and all of the frequency dependent 
dimensions take on another, typically smaller, 
common value. 

3) Current evidence supports a conjectured re- 
lationship whereby the dimension of the natural 
measure can be found from a knowledge of the 
stability properties of an orbit on the attractor (i.e., 
knowledge of the Lyapunov numbers). 

4) For typical chaotic attractors we conjecture 
that the distribution of frequencies with which an 
orbit visits different regions of the attractor is, in 
a certain sense, log-normal (section 5). 

Points l-3 are summarized in table I. The first 
two entries in the table are metric dimensions, 
while the next five are frequency dependent dimen- 
sions. Under the hypothesis that all the metric 
dimensions yield the same value (point 2), we call 
this value the fractal dimension and denote it dF. 
Similarly, if all the probabilistic dimensions yield 
the same value, we call this value the dimension of 
the natural measure, and denote it d~. Although in 
special cases dF equals d u, typically d v :> d;,. Finally, 
the last entry in table I, the Lyapunov dimension, 

is by definition the predicted value of d~ obtained 
from the Lyapunov numbers (cf. Point 3). The 
Lyapunov dimension is in a different category than 
the other dimensions listed, since it is defined in 
terms of dynamical properties of an attractor, 
rather than metric and natural measure properties. 

1.3. Outline 

This paper is organized as follows: In section 2 
we give several definitions of dimension. Section 3 
reviews conjectures relating Lyapunov numbers to 
dimension. These conjectures are particularly im- 
portant because the Lyapunov numbers provide 
the only known efficient method to compute di- 
mension. In sections 4, 5, 6, and 7, we compute all 
the dimensions discussed here for an explicitly 
soluble example, the generalized baker's trans- 
formation. In addition, based on this example, in 
section 5 we propose a new conjecture concerning 
the frequency with which different values of the 
probability occur. Section 7 gives a discussion of 
the "core" of attractors, and section 8 gives an- 
other example supporting the connection between 
Lyapunov numbers and dimension (an attractor 
which is topologically a torus but is nowhere 
differentiable). Section 9 reviews relevant results 
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from numerical computa t ions  o f  the dimension of  

chaotic attractors.  Concluding remarks are given 

in section 10. 
In general terms, this paper has two functions. 

One is to present a review of  the current status o f  

research on the dimension of  chaotic attractors. 

The other purpose is to present new results (sec- 
tions 4-6). 

2. Definitions of  dimension 

In this section we define and discuss six different 

concepts o f  dimension. The first two of  these, the 

capacity and the Hausdorf f  dimension, require 
only a metric (i.e., a concept  o f  distance) for their 

definition, and consequently we refer to them as 

"metric dimensions".  The other dimensions we will 
discuss in this section are the information dimen- 

sion, the oa-capacity, the ,9-Hausdorff  dimension, 

and the pointwise dimension. These dimensions 
require both a metric and a probabil i ty measure for 

their definition, and hence we will refer to them as 

"probabilistic dimensions".  

In this paper  we compute  the values o f  these 
dimensions for an example that we believe is 

general enough to be " typical"  o f  chaotic attrac- 
tors, at least regarding the question o f  dimension. 

We find that the metric dimensions take on a 
c o m m o n  value. Whenever this is the case, we will 

refer to this c o m m o n  value dr as the f r a c t a l  

d imension*.  For  our  example we also find that the 

probabilistic dimensions take on a c o m m o n  value 
d,, which we will refer to as the dimension o f  the 

* The term fractal was originally coined by Mandelbrot [5]. 
However, he uses "fractal dimension" as a synonym for 
Hausdorff dimension. We should also mention that in some of 
our previous papers on this subject [8-11], we used the term 
'Tractal dimension" as a synonym for capacity, rather than our 
current usage as described in the text. 

t A diffeomorphism is a differentiable invertible mapping 
whose Jacobian has non-zero determinant everywhere. 

++ Note that in this paper we will not discuss the concept of 
topological dimension, since its application to chaotic dynamics 
is not clear. Its value is an integer and it is generally equal to 
neither d F nor d u. For discussions of topological dimension, we 
refer the reader to Hurwicz and Wallman [13]. 

natural  measure.  As we summarize in conjecture 1, 
we feel that this equality is a general property,  true 
for typical cases. 

Conjecture  1. For  a typical chaotic at t ractor  the 

capacity and Hausdorf f  dimensions have a com- 

mon value dr, and the information dimension, 

~9-capacity, 0 -Hausdor f f  dimension, and pointwise 
dimensions have a c o m m o n  value d~,, i.e., in the 
notat ion o f  table I, 

dc = d .  - de 

and 

d, = dc( O ) = d . (  O ) = d e = d r. 

Note :  For  the case o f  dif feomorphismst  in two 

dimensions, L.S. Young  has rigorously proven that  
information dimension, pointwise dimension, and 

the Hausdorf f  dimension of  the core (see section 7) 
all take on the same value [12]. 

In addit ion to the dimensions defined in this 
section, we will also discuss three others:~. The 

Lyapunov  dimension, the capacity o f  the core, and 

the Hausdorf f  dimension o f  the core. Lyapunov  
dimension is discussed in section 3, and the latter 

two dimensions are discussed in section 7. For  our  

example the Lyapunov  dimension and Hausdorf f  

dimension of  the core are equal to d r, while the 
capacity o f  the core is equal to dr. 

2. I. Me t r i c  dimensions 

We begin by discussing two concepts o f  dimen- 
sion which apply to sets in spaces on which a 
concept o f  distance, i.e., a metric is defined. In 

particular we begin by discussing the capacity and 
the Hausforf f  dimension. 

2.1.1. Capaci ty  

The capacity o f  a set was originally defined by 
Ko lmogorov  [14]. It is given by 

d c = lim log N(E) (2) 
,~0 log(1/E)'  
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Fig. 3. The first few steps in the construction of the classic 
example of a Cantor  set. 

where, if the set in question is a bounded subset of 
a p-dimensional Euclidean space ~P, then N(E) is 
the minimum number of p-dimensional cubes of 
side E needed to cover the set. For a point, a line, 
and an area, N ( E ) = I ,  N(E)~E 1, al~d 
N(E) --~ E -2, and eq. (2) yields d c =  0, 1, and 2, as 
expected. However, for more general sets (dubbed 
f ractals  by Mandelbrot), dc can be noninteger*. 
For example, consider the Cantor set obtained by 
the limiting process of deleting middle thirds, as, 
illustrated in fig. 3. If we choose E = (1/3)", then 
N = 2 m, and eq. (2) yields 

log 2 
dc = = 0.630 . . . .  

log 3 

If one is content to know where the set lies to 
within an accuracy E, then to specify the location 
of the set, we need only specify the position of the 
N(E) cubes covering the set. Eq. (2) implies that for 
small E, log N(E),~ d c log(I/e). Hence, the dimen- 
sion tells .us how much information is necessary to 

specify the location of the set to within a given 
accuracy. If the set has a very fine-scaled structure 
(typical of chaotic attractors), then it may be 
advantageous to introduce some coarse-graining 
into the description of the set. In this case, ~ may 
be thought of as specifying the degree of coarse- 
graining. 

2.1.2. H a u s d o r f f  dimension 
The capacity may be viewed as a simplified 

version of the Hausdorff dimension, originally in- 
troduced by Hausdorff in 1919 [15]. (We have 
reversed historical order and defined capacity be- 
fore Hausdorff dimension because the definition of 
Hausdorff dimension is more involved.) We believe 
that for attractors these two dimensions are gener- 
ally equal. While it is possible to construct simple 
examples of sets where the Hausdorff dimension 

and the capacity are unequalt,  these do not seem 
to apply to attractors. (Although they may apply 
to the core of attractors. See section 7.) 

To define the Hausdorff dimension of a set lying 
in a p-dimensional Euclidean space, consider a 
covering of it with p-dimensional cubes of variable 
edge length t~. Define the quantity ld(E) by 

~ ( e ) = i n f ~ E ~ ,  
i 

where the infimum (i.e. minimum) extends over all 
possible coverings subject to the constraint that 
E~ ~< e. Now let 

* Sets can be constructed for which the limit of  eq. (2) does 
not exist. We would then say that the capacity is not  defined. 

t For example, for the set of  numbers  1, 1/2, 1/3, 
1/4 . . . . . . .  the Hausdorff  dimension is zero while (2) yields 
dc=~. 

:~ To show that dc ~> dn, consider a covering consisting of  
cubes of equal side ~ = E. Then due to the infimum in the 
definition of la(~), we see that /'a(e~E,~ d=  N(¢)E d satisfies 
/'a(~) >~ la(~). Thus  taking the limit E--*0 and making use of eq. 
(2) we see that dr~ <~ dE. 

6 =  l im6(E) .  
~ 0  

Hausdorff showed that there exists a critical value 
of d above which la = 0 and below which la = ~ .  
This critical value, d =dn ,  is the Hausdorff dimen- 
sion. (Precisely at d = dH, ld may be either 0, oo, or 
a positive finite number.) This concept of dimen- 
sion will be used in sections 4, 6, and 7. It is easy 

to see that dc ~> dH:~. 
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2.2. Dimensions for the natural measure 

2.2.1. The natural measure on an attractor 
Note that, in computing dc from eq. (2), all 

cubes used in covering the attractor are equally 
important even though the frequencies with which 
an orbit on the attractor visits these cubes may be 
very different. In order to take the frequency with 
which each cube is visited into account, we need to 
consider not only the attractor itself, but the 
relative frequency with which a typical orbit visits 
different regions of the attractor as well. We can 
say that some regions of the attractor are more 
probable than others, or alternatively we may 
speak of  a measure on the attractor*. We define the 
natural measure of  an attractor as follows: For 
each cube C and initial condition x in the basin of 
attraction, define/~(x, C) as the fraction of time 
that the trajectory originating from x spends in C~. 
If almost every such x gives the same value of 
#(x, C), we denote this value/~(C) and call/a the 
natural measure of  the attractor [16]. The natural 
measure gives the relative probability of different 
regions of the attractor as obtained from time 
averages, and therefore is the "natural"  measure to 
consider. We will assume throughout that any 
attractor we consider has a natural measure, at 
least whenever C is one of the cubes we are using 
to cover the attractor. 

The four definitions discussed in the remainder 
of this section are defined for attractors with a 
metric and a natural measure defined on them. 

,. I(E) 
d l=  um - -  , (3) 

,40 log(1/E) 

where 

~(~) 1 
I(E) = ,=lE P, l°g E 

and Pi is the probability contained within the ith 
cube. Letting the ith cube of  side E be Ci, 
Pi = #(C~). Note that if all cubes have equal proba- 
bility then I (E)=logN(E) ,  and hence dc=dp  
However, for unequal probabilities 
I(E) < log N(E). Thus, in general, dc ~> di. 

In information theory the quantity I(E) defined 
in eq. (3) has a specific meaning [18]. Namely, it is 
the amount of information necessary to specify the 
state of the system to within an accuracy E, or 
equivalently, it is the information obtained in 
making a measurement that is uncertain by an 
amount E. Since for small E, I (E)~  dl log(I/e), we 
may view d~ as telling how fast the information 
necessary to specify a point on the attractor in- 
creases as ~ decreases. (For a more extensive 
discussion of the physical meaning of the informa- 
tion dimension, see refs. 9 and 10.) 

2.2.3. 9-Capacity 
Another definition of  dimension which we shall 

be interested in is what we will call the 3-capacity, 
dc(9). Essentially, this quantity is the capacity of  
that part of  the attractor of highest probability, 

2.2.2. Information dimension 
The information dimension, d~, is a generalization 

of the capacity that takes into account the relative 
probability of the cubes used to cover the set. This 
dimension was originally introduced by Balatoni 
and Renyi [17]. 

The information dimension is given by 

* Although there are many measures possible for a given 
attractor, we are only interested in one of them, the natural 
measure. 

t/~(x, C) = lim~cda,(x, C), where/~,(X, C) is the fraction of  
time spent in C up to some finite time r. 

log N(E; .9) 
dc(.9) = lim , (4) 

~o log(l/E) 

where N(E; .9) is the minimum number of  cubes of 
side e needed to cover at least a fraction ,9 of the 
natural measure of the attractor. In other words, 
the cubes must be chosen so that their combined 
natural measure is at least .9. Thus dc(1) -- dc. For  
the examples we study here, we find that for any 
value of  .9 < 1, the .9-capacity is independent of  g, 
but that dcGg) for ~9 < 1 may differ from its value 
at ,9 = 1. In particular dc(~q)= d, for ~ < 1 and 
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de(O)= dc for 0 = 1. 0-capaci ty was originally 
defined by Frederickson et al. [8]. Similar quan- 

tities have also been defined by Ledrappier [18], 
and Mandelbrot  [6, 45]. 

2.2.4. O-Hausdorff dimension 
In analogy with the relationship between capac- 

ity (a metric dimension) and 0-capaci ty (a proba-  
bility dimension), we introduce here a probabili ty 

dimension based on the Hausdorf f  dimension. We 
call this new dimension the 0 -Hausdor f f  dimension 

and denote it du(O). To define the 0 -Hausdor f f  

dimension, modify the definition of  Hausdorf f  

dimension as follows: Define /d(E, 0)  by 

l,i(~, 0) = i n f ~ ,  
i 

where now the infimum extends over all possible 
~, < E which cover a fraction 0 o f  the total proba-  

bility o f  the set. We define dH(0) as that value of  
d below which la(O)= ~ and above which 

ld(0) = 0, where ld(0) = lim~0/d(~, 0). This concept  
o f  dimension will be used in section 6. 

2.2.5. Pointwise dimension 
Roughly  speaking, the pointwise dimension dp is 

the exponent with which the total probabili ty 
contained in a ball decreases as the radius of  the 

ball decreases. To make this notion more precise, 

let/~ denote the natural probabili ty measure on the 
attractor,  and let B,(x) denote a ball o f  radius E 

centered about  a point  x on the attractor.  Roughly  
speaking,/~(B,(x)) -,- E d.. More  precisely, define this 

dimension as 

dp(x) = lira l°g #(B+Cx)) (5) 
++o log 

If  dp(x) is independent of  x for almost all x with 
respect to the measure /u*, we call dp(x)=  dp the 

* By "'almost all x with respect to the measure #" we mean 
that the set of x which does not satisfy this is a set of/J measure 
zero. 

pointwise dimension. Similar definitions o f  dimen- 

sion have also been given by Takens [20], Bill- 
ingsley [31], Young  [11]~ and Janssen and Tjon [21]. 

2.3. Using a grid of cubes to compute dimension 

Some of  the definitions we have used, such as the 

capacity, allow any location or orientation o f  the 

cubes used to cover the attractor.  In a numerical 
experiment, however, it is much more convenient 

to select the cubes used to cover the at t ractor  out  
of  a fixed grid, as shown in fig. 4. For  these 

dimensions (dc, dl, and dc(O)) it can be shown that 
selecting from a fixed grid o f  cubes gives the same 
value of  the dimension as an optimal collection of  

cubes. For  example, for the case o f  an at t ractor  in 

a two-dimensional space, using a fixed grid to 

compute  N(~) in eq. (2) results in an increase of  at 
most  a factor o f  four in N(~), which has no effect 

on the value of  the dimension. Note  that this is not 
true for the Hausdorf f  dimension, which requires a 

more general cover. 
In principle, the definitions o f  dimension given 

in this section and the use of  a fixed grid provide 

specific prescriptions for obtaining capacity, infor- 
mat ion dimension, and 0-capacity.  To find ap- 
proximate values for these dimensions, one can 

generate an orbit on the at tractor  using a com- 
puter, and then divide the space containing the 

orbit into cubes of  side E in order to estimate the 
numbers  N(~), I(~), or N(E; 0). By examining how 

Fig. 4. The region of phase space containing an attractor can 
be divided with a fixed grid of cubes (in this case squares), which 
can be used to compute capacity, information dimension, or 
,9 -capacity. 
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N(O, I(E), and N(G 0) vary as E is decreased the 
value of these dimensions can be estimated. 

As discussed in section 9, however, in practice 
the agenda described above for computing dimen- 
sion may be difficult, costly, or impossible. Thus it 
is of interest to consider other means of obtaining 
the dimension of  chaotic attractors. The next sec- 
tion deals with this question. In particular, we 
discuss a conjecture that the dimension of  chaotic 
attractors can be determined directly from the 
dynamics in terms of  Lyapunov numbers. 

3. Lyapunov numbers and Lyapunov dimension 

The Lyapunov numbers quantify the average 
stability properties of an orbit on an attractor. For 
a fixed point attractor of a mapping, the Lyapunov 
numbers are simply the absolute values of the 
eigenvalues of the Jacobian matrix evaluated at the 
fixed point. The Lyapunov numbers generalize this 
notion for more complicated attractors. As we 
shall see, for a typical attractor there is a con- 
nection between average stability properties and 
dimension. The possibility of such a connection 
was first pointed out by Kaplan and Yorke [22] 
and later by Mori [23]. 

3.1. Definition o f  Lyapunov  numbers  

For expository purposes, for most of this paper 
we shall consider p-dimensional maps, 

x ,  + ~ = F(x , ) ,  

where x is a p-dimensional vector. We emphasize, 
however, that similar considerations to those 
below apply to flows (e.g., systems of differ- 
ential equations), including infinite-dimen- 
sional systems such as partial differential equa- 
tions. To define the Lyapunov numbers, let 
J, = [ J ( x , ) J ( x , _ O . . .  J(xl)] where J ( x )  is the Ja- 
cobian matrix of  the map, J ( x )  = (#F/Ox) ,  and let 
j~(n) >~j2(n) >~ " .  >>,jp(n) be the magnitudes of  the 
eigenvalues of  J,. The Lyapunov numbers are 

2 ,= lim[/i(n)] '/", i = 1, 2 . . . . .  p ,  (6) 
n ~ o c  

where the positive real n th root is taken. The 
Lyapunov numbers generally depend on the choice 
of the initial condition xt. The Lyapunov numbers 
were originally defined by Oseledec [24]. We have 
the convention 

2~ ~>22>~ " '" >~2~. 

For a two-dimensional map, for example, 2~ and 
22 a r e  the average principal stretching factors of an 
infinitesimal circular are (cf. fig. 5). For a chaotic 
attractor on the average nearby points initially 
diverge at an exponential rate, and hence at least 
one of the Lyapunov numbers is greater than one. 
This makes quantitative the notion of "sensitive 
dependence on ititial conditions". We will take 
2~ > 1 as our definition of chaos. (Note that many 
authors refer to Lyapunov  exponents  rather than 
Lyapunov numbers. The Lyapunov exponents are 
simply the logarithms of  the Lyapunov numbers.) 

In this paper we assume that almost  every initial 
condition in the basin of  any attractor that we 
consider has the same Lyapunov numbers. Thus, 
the spectrum of Lyapunov numbers may be con- 
sidered to be a property of an attractor. This 
assumption is supported by numerical experiments 
[25]. Exceptional trajectories, such as unstable 
fixed points on the attractor, typically do not 
sample the whole attractor and thus typically have 
Lyapunov numbers that are different from those of  
the attractor. Those points in the basin of attrac- 
tion that have different Lyapunov numbers or for 

n ITERATION~ OF X~S 
THE 2D MAP 

Fig. 5. n iterations of  a two-dimensional map transform a 
sufficiently small circle of  radius ~ approximately into an ellipse 
with major and minor radii (20"6 and (,~96, where 21 and 22 are 
the Lyapunov numbers. 



162 J.D. Farmer et al./The dimension of chaotic attractors 

which Lyapunov numbers do not exist are here 
assumed to be of  measure zero. (In other words, 
they may be covered by a collection of cubes of 
varying size having arbitrarily small total volume). 

substitute into both sides of eq. (7). This gives 

3.2. Definition of  Lyapunov dimension 

The following discussion contains a heuristic 
argument that motivates a connection between 
Lyapunov numbers and dimension. Consider a 
two-dimensional map. Suppose we wish to com- 
pute the capacity of  a chaotic attractor, for which 
21 > 1 > 22.  Cover the attractor with N(E) squares 
of  side E. Now, iterate the map q times. For  q fixed 
and ~ small enough, the action of the mapping is 
roughly linear over the square, and each square 
will be stretched into a long thin parallelogram. 
From the definition of the Lyapunov numbers, the 
average length of these parallelograms is (20qE, and 
the average width is (22)qE. Now, suppose we had 
used a finer cover of  squares of side (22)q£ .  (See fig. 
6.) To cover each parallelogram takes about  
(2x/22) q smaller squares. Thus, if it is supposed that 
all squares on the attractor behave in this typical 
way, then one is lead to the estimate 

N(2gE),~ (~2)qN(,). (7) 

Motivated by eq. (2), assume N(E) ~ k(l/E) de, and 

I 

(a) 

Ib) 

Fig. 6. A schematic illustration of the heuristic argument for 
the Lyapunov dimension. The image of each small square in (a) 
is approximately a parallelogram which has been stretched 
horizontally be a factor of 2]' and contracted vertically by a 
factor 2 I. The images in (b) thus have a smaller cover of squares 
as shown in (c). 

Collecting terms, taking logarithms, and solving 

for dc gives 

log 21 
d e =  l + - -  

log(l/20" 

We will see that this expression is often meaningful 
even when this heuristic derivation is invalid, so we 
will call it the Lyapunov dimension d L. 

log 2~ 
dE = 1 + -  (8) 

log(1/22) 

Generalization of the above heuristic argument to 
p-dimensional maps gives (cf. ref 7) 

1og(2122... 2k) 
dL= k -¢ 1og(1/2k+~) ' (9) 

where k is the largest value for which 

t ] q 2 2  . . . 2 k ~ 1. If  21 < 1, define dE = 0; if 
21~.2 . . . 2 p / >  1, define dE = p .  We shall refer to dE as 
the Lyapunov dimension. This quantity was origi- 
nally defined by Kaplan and Yorke [22], who 
originally gave it as a lower bound on the fractal 
dimension. 

From the above argument one might be tempted 
to guess that dc = d,. The Lyapunov numbers are 
average quantities, however, and to compute an 
average, each cube must be weighted according to 
its probability. The capacity does not distinguish 
between probable and improbable cubes. To un- 
derstand how some cubes might have vastly 
different probabilities than others, consider an 
atypical square of a two-dimensional map. If  the 
area of the images of this square decreases half as 
fast as the average for k iterations, then its kth 
image will be 2 k times larger than the image of a 
typical square, and the number of  squares needed 
to cover it will be 2 ~ times greater than the typical 
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value. In fact, as will be evident from consid- 
erations of explicit examples (cf. section 5), it is 
commonly the case that the vast majority of cubes 
needed to cover the attractor are atypical, and do 
not represent the properties of time averages. By 
this we mean that all the atypical cubes taken 
together contain an extremely small fraction of the 
total probability on the attractor yet account for 
almost all of  N(E). Furthermore, this tendency 
increases as E decreases. The behavior of  the atyp- 
ical cubes under iteration is in general not de- 
scribed by the Lyapunov numbers. It is clear, then, 
that in order for this estimate to be valid, we must 
consider only the more probable cubes, i.e., the 
estimate should be in terms of the dimension of the 
natural measure rather than the capacity. As- 
suming the equality of probabilistic dimensions 
(conjecture I), we are led to the following conjec- 
ture: 

Conjecture 2. For a typical* attractor d, = dE. 

In the following six sections we present evidence 
supporting this conjecture. Also, L.S. Young has 
proved some rigorous results along these lines, 
which are reviewed in the next subsection. 

In the special case that every initial condition on 
the attractor generates the same Lyapunov num- 
bers, we will say that the attractor has absolute 
Lyapunov numbers. In this case it is not necessary 
to distinguish probable from improbable cubes, 
and the above conjecture can be made in terms of  

*The  reason for the w o r d  "typical"  is that there exist 
examples of  maps that do not  satisfy d u = d L. These maps  are 
exceptional, however, in that arbitrarily small perturbations of  
them restore the conjectured equality of  d r and dE. An example 
of  such an atypical case is where a point x 0 is attracting and yet 
has 2~ = 1 (i.e., the Jacobian matrix OF/~x has an eigenvalue 
+ 1 at x0). The attraction here is due to higher order terms. The 
attractor is a point and so has dimension zero, yet d L >/1. Small 
perturbations, however, will destroy this delicate balance. For 
example, the one-dimensional map  xi + i = F ( x )  =- ~x~ - x~ has 
a fixed point at x = 0  with 2~=1  for ~ = 1  yet x = 0  is 
attracting. This situation is changed, however, as soon as ~ 4: 1. 
When I~l< 1, alL=0, and when I~l> 1, x = 0  is no longer 
attracting. 

the fractal dimension rather than the dimension of  
the natural measure. We call this conjecture 3, 

Conjecture 3. If every (not just almost every) initial 
condition generates the same set of p Lyapunov 
numbers 21, 22 . . . .  2p, and if 21 > 1, then for a 
typical attractor of  this type d F = dE = d~. 

The requirement of conjecture 3 that every initial 
condition on the attractor generate the same Ly- 
apunov numbers is very restrictive and only holds 
for special cases. For example, it holds if the 
Jacobian matrix of the map is independent of x. In 
more general cases, the requirement of conjecture 
3 would be expected to fail because of the existence 
of unstable fixed and periodic points on the attrac- 
tor. For example, if x~ is chosen to be precisely on 
an unstable fixed point, the Lyapunov numbers 
generated will simply be the eigenvalues of J(xO. 
These will typically be different from those gener- 
ated by a chaotic orbit on the attractor. Examples 
for which conjecture 3 is valid will be special cases 
of the more general example presented in the 
fol lowing section. In addition, an example for 
which conjecture 3 can be proven to hold is given 
in section 8. 

3.3. Review of rigorous results concerning Ly- 
apunov dimension 

In addition to the analytic and numerical evi- 
dence we will give for conjectures 1-3 in the 
remainder of this paper, there are several rigorous 
results supporting these statements which are re- 
viewed in this section. For example, Ledrappier 
[19] has proven an inequality that is somewhat 
similar to conjecture 2. In particular, he defines a 
dimension that we will call dLed, which is the 
0-capacity in the limit as 0 goes to one, i.e. 

dEed = lim dc(~9). 

For C -~ diffeomorphisms he has shown that 

d~ ~> d~.  
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The proof is a rigorous version of the heuristic 
argument that we have given (fig. 6), Also, Douady 
and Oesterle [26] have proven that an upper bound 
for the fractal dimension can be obtained yielding 
an expression like eq. (8), where the numbers they 
use are basically upper bounds for the Lyapunov 
numbers. 

L.S. Young [12] has proven several results that 
strongly support conjectures 1 and 2. Particularly 
relevant are the following two theorems*. 

1. If dp exists then 

the logarithms of the Lyapunov numbers that are 
greater than one. For attractors with only one 
Lyapunov number greater than one, this implies 
that h~, = log 2~. Thus, for axiom-A attractors of 
two-dimensional maps, eqs. (9)-(11) yield du = dL. 
Therefore Young has shown that conjecture 2 
holds for this case. (It has been conjectured that 
the relationship between h~ and the positive )~ 
holds for non-axiom-A attractors that have a 
natural measure.) This result for the case of axiom- 
A attractors of two-dimensional maps has also 
been obtained independently by Pelikan [30]. 

dp= 4 = dH(core) = dL.d. (lO) 

2. For two-dimensional C 2 diffeomorphisms 
with 21 > 1 > 22, dp exists, and 

dp= h~ ( log2, "] 
log2, 1 +1og(1/22)]. 

(ii) 

(See section 7 for a definition of dH(core).) h, 
denotes the Kolmogorov entropyt of the attractor 
taken with respect to the measure #, and 2~ and ~2 
are the Lyapunov numbers with respect to /~. 
(More precisely, almost every initial condition x 
with respect to/~ give 2~ and )~2 as the Lyapunov 
numbers.) 

For Axiom-A attractors Bowen and Ruelle [16] 
have shown that there is a natural measure such 
that h~ with respect to this measure is the sum of 

* For these results Young does not  require the existence of  
a natural measure, but rather assumes simply the existence of 
some invariant measure/~. In this case the Lyapunov numbers 
are those obtained when starting at almost every initial point 
with respect to p. 

$ The Kolmogorov entropy, originally defined by Shannon 
[18] and applied to dynamical systems by Kolmogorov [27] and 
Sinai [28], puts a quantitative value on the average amount  of  
new information obtained from a sequence of measurements.  
See [10] or [29] for physically motivated reviews. Note that this 
is also called metric entropy. The name metric entropy derives 
from the invariance properties of  this quantity; in fact, the 
definition of  metric entropy does not require a metric (but does 
require a measure). 

~. Except for the 9-Hausdorff  dimension, for which we only 
obtain an upper bound. 

4. Generalized baker's transformation: scaling 

4.1. Definition of generalized baker's trans- 
formation 

In this section we define the example which we 
will study in detail in this and the following four 
sections. Although we feel that this example is 
general enough to be typical of low-dimensional 
chaotic attractors (at least concerning its dimen- 
sional properties), it is also simple enough that all 
of the dimensions discussed in this paper can be 
analytically calculated~. Thus, for this example, we 
shall be able to verify conjectures 1-3 in a case 
where generally dF 4: d,. As we shall show in sec- 
tion 5, another nice property of this map is that it 
allows us to investigate certain properties of the 
natural probability distribution in detail. 

The map to be considered is 

=J2aX" i f y , < ~ ,  

Xn+l / Iq-)~bX n , i f y , > ~ ;  
(12a) 

Yn+l = 

1 
- y , ,  i fy,<c~,  

1 
(12b) 

where we shall assume 0 ~< x, ~< 1 and 0 ~< y, ~< 1. If 
this condition is satisfied initially it is also satisfied 
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,y-- 

X o X b I X a X b 

, ,]. 
I ~ ± , 2 11 

X a -~+k b 

(o) (b) (c) (d) 
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Fig. 7. The generalized baker 's  t ransformation.  One iteration of  the map  takes us f rom (a) to (d). Steps (b) and (c) are conceptual  
intermediate stages. 

at all subsequent iterates. Fig. 7 illustrates the 
action of  this map on the unit square. As shown in 
fig. 7, we take a, 2a, ~b ~< ½, and 2b /> "~a" Fig. 8 shows 
the result of  applying the map two times to the unit 
square. From fig. 8 it is seen that, if  the x interval 
[0, 2~] is magnified by a factor 1/2a, it becomes a 
precise replica of  fig. 7d. Similarly, if the x interval 
[½, ½-{-2b] is magnified by l/),b, a replica of  fig. 7d 
again results. This self similarity property of  eq. 
(12) will subsequently be used to obtain do dl, dH, 
and d o . 

I i:~:. . . . .  ~ i - -  :':':':':': [ "  ... :i:i:i:!:!: 

i:i:!:!:!:! 

i!iil ii ::::::::::: 
:!:! u ":':':':':' 

i:i:i:i:!:! i:i: i ::::::::::: 
:i: I ':':.:.:.:' 

i!in :!:i: iiiiii!!i!i 
::i:l iiiii iiiiii!iiii 
: i!i!! ii!i!i!~!!i 

Xo ( b) 

Xa ~ Xa X b 

4.2. Lyapunov numbers of generalized baker's 
transformation 

Now we consider the Lyapunov numbers. Eq. 
(12b) involves y alone and consists of  a linear 
stretching on each of  the y intervals [0, ~] and [~, 1]. 
Thus almost every y initial condition in [0, 1] will 
generate an ergodic orbit in y with uniform density 
in [0, 1]. The Jacobian of  eq. (12) is diagonal and 
depends only on y. 

where 

{2a, i f y  < c~, 
L2(y)= 2b ' i f y > ~ ,  

and 

L,(y) = 

ct' i f y  >cc  

Thus applying eq. (6) we have 

21 = lira [L~(y , ) . . .  L~(y~)] ~/~ , 
Fig. 8. . ~ c  
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o r  

1 
log 2, = lim _n, log + - -  log , 

where fl = 1 - ~. n~ is the number of times the orbit 
has been in the set y < c~, and n~ is the number of 
times the orbit has been in the set y > e. Since for 
almost any y~, the orbit in y is ergodic with uniform 
density in [0, I], lim,.~n~/n =c~, and similarly 
l im _-, n~/n = ft. Thus 

log2, = ~ log~ + fl log~. (13) 

Similarly, we obtain for '~2 

log 22 = c~ log 2~ + fl log 2 b, (14) 

To simplify notation in this and subsequent expres- 
sions, let 

H ( ~ ) = a l o g _ l + ( l _ a ) l o g _ _ . l  (15) 
1 - ~  

H(~) is called the binary entropy function and is the 
amount of  information contained in a coin-toss 
where heads has a probability ~. 

The Lyapunov dimension of the attractor of the 
generalized Baker's transformation (eq. (12)) is 

H(~) 
dE = 1 -~ (16) 

log(l/),.) + fl log(l + 2b)' 

all the probabilistic dimensions take on the value 
given in eq. (16). 

For all but special values of 2a, )~b, and ~, there 
exist unstable periodic orbits whose Lyapunov 
numbers are different from those given in eqs. (13) 
and (14)*. Thus, in general we expect that conjec- 
ture 2 rather than conjecture 3 applies and dv # d~. 

4.3, Capacity of generalized Baker's trans- 
formation 

To calculate d c we first note that the attractor is 
a product of a Cantor set along x and the interval 
[0, 1] along y. Thus the capacity, or any of the 
other dimensions, are in the form dc = 1 +  d c, 
where dc is the dimension of the attractor in the 
x-direction. We will generally use a bar over a 
dimension to refer to the dimension along the 
x-direction. 

We now obtain dc by making use of the scaling 
property of the generalized Baker's trans- 
formation, discussed at the end of section 4.1. We 
write N(e) as 

N(e) = Na(e) + Nb(e), 

where N,(E) is the number of x-intervals of length 
e needed to cover that part of. the attractor which 
lies in the x-interval [0, 2~], and Nb(Q is the anal- 

[i, 5 + 2hi. From ogous quantity for the x-interval ~ 
the scaling property, N,(e) = N(E/2a), and similarly 
Nb(e) = N(e/20. Thus 

N(E) = N(e/2a) + N(e/2b). (17) 

In the following sections we compute the values of 
the dimensions defined in this paper, and show that 

Assuming heuristically that N(E) ~ ke -ac for small 
e, substituting into eq. (17) gives 

* To see that for almost  all parameter  values the Lyapunov 
numbers  of  the generalized baker 's  t ransformat ion are not  
absolute, consider the special initial condition on the at t ractor  
with y-value y~ =Ya where Ya = ~2( 1 - a + ~2)-I.  This initial 
condition corresponds to one of  the points on the unstable 
period 2 orbit, (Ya, Yb, Ya, Yb , ' ' ' ) ,  where y b = a - l y  a. Since 
O < y a < c t  < y b < l  , we have n ~ = n a = ½ ,  and the Lyapunov 
numbers  generated by this initial condition are 2~ = (ctfl) i/2 
and 2 2 = (2a2b) L'2, rather than those given by eq. (13) and (14). 

implying that 

1 ~,7c ± ~dc z~ a n- r. b 

which is a transcendental 

(18) 

equation for dc. As 
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expected, eqs. (16) and (18) show that, in general, 
1 + d c = dc :~ dL. However, for the special choice 
2,=2~,  , =½, corresponding to eq. (12) with 
2, = 2t = 2, the two agree. Note that for this case 
the Jacobian matrix is constant, the Lyapunov 
numbers are therefore absolute, and conjecture 3 
applies. 

In obtaining eq. (18), in order to keep the 
argument simple, we have made the strong as- 
sumption that N(E)~kE -ac for small E, which 
implies the existence of the limit given in the 
definition of capacity, eq. (2). We can, however, 
show that the limit given in eq. (2) exists and dc 
must satisfy eq. (18) in a rigorous manner, as 
follows: 

Define Ec(~) by 

N(~) = Ec(E)~ 

where dis defined by 1 = -d a z~ + 2 b. Substituting this 
into eq. (17) then yields 

Ec(E)  = ~ + , (19) 

where Y = 2~ a and ff = 2~, and are independent of 
E. Notice that by definition ~ + ff = 1, so the above 
expression says that Ec(E) is a weighted average of 
its values at E/2, and E/2b. Choose E~ and e2 so that 
~l > E2 > 0. Since N(~) and hence Ec(E) are finite 
and positive for any finite E, there exist finite 
non-zero numbers B~ > B2 > 0 such that 
B2 < Ec(E) < B~ for E~ > E > E2. We can assume that 
~t and E2 are chosen so that Et/E2 is large. Since 

+ ff = 1, eq. (19) implies that B2 < Ec(E) < B~ 
also applies to the wider interval E~ > E > 2bE 2. 

Repeating this argument increases the domain of 
validity of the bound to c~ > E > 2~E2, and so on. 
Hence Ec(E) is bounded uniformly from above and 
below for arbitrarily small E. Thus the limit of eq. 
(2) exists and d c =  g (In fact it can be shown that 
eq. (19) implies that lim,~0Ec(E) is a constant if 
log 2Jlog 2b is an irrational number.) Note that in 
eq. (18), since both terms on the right-hand side are 
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monotonically decreasing, dc obtained from solv- 
ing this equation is unique. 

4.4. Computation of  Hausdorff dimension 

The Hausdorff dimension dH can be calculated 
by an argument that is very similar to the one used 
above in computing the capacity. Let dn --- dH -- 1, 
the Hausdorff dimension along x. Applying the 
scaling property of the map to the quantity ld(E) 
(defined in section 2), we obtain 

d E d 

Substituting Id(E)=EH(E)e -<a-~ into the above 
equation, we again find that EH(E ) satisfies eq. (19). 
Thus the limit E~0  yields l d = ~ or ld = 0 for 
d < d c  or d > dc, respectively. Hence, as predicted 
in section 2, the Hausdorff dimension and capacity 
are equal, dH = dc. 

4.5. Calculation of  information dimension 

The information dimension d~ can also be calcu- 
lated by a scaling argument similar to that used 
above in computing the capacity. Once again, let 
dt = 1 + dl and express the summation for I(E) in 
eq. (3) as the sum of contributions from the two 
strips in fig. 7d, 

I(~) = I,(e) + Ib(E ). (20) 

The total probability contained in strip [0, ),a] is ~, 
and that in strip [½, 28 + ~] is/3. Assuming that it 
takes N(~) strips of width E to cover the whole 
attractor, then from the scaling property of eq. 
(12), covering the strip [0, 2~] at resolution E2~ also 
requires N(E) strips. Thus 

N(O 1 
L,(~2~) = ~ ccP~ log orB, 

i=l  

{log! 
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Hence, replacing E,~ a by E in the above, 

l , ( E ) = ~ l o g  +ct I  ~ , 

Ib(E) = fl log ~ + flI . 

Thus 

where H(a)  is given by eq. (15). Motivated by eq. 
(3), if we assume that I(E) = ~ log(I/e) for small E, 
and substitute for I@), /(e/ha), and I(E/2b) in the 
above equation we obtain 

= H(~) 

log(1/Za)+fl 1og(1/2b)' 

which is in turn equal to dL. The assumption that 
I@) = ~ log(l/O can be made rigorous in the limit 
as E----,0 using an argument that is completely 
analogous to that used in deriving the capacity in 
the last part of subsection 4.3. 

We should mention that Alexander and Yorke 
[11] have computed the Lyapunov and information 
dimensions of the generalized baker's trans- 

formation for the special case ct = ½, Z = 2, = Zb, 
where 2 > ½. In this case dL = 2. For uncountably 
many values of 2 they find that also dl = 2, al- 
though there are certain special values of 2 for 

which dl < 2. 
In order to calculate the other probability di- 

mensions listed in table I more information con- 
cerning the probability distribution is required. 
This is dealt with in section 5, and we therefore 
defer calculation of the remaining dimensions to 
the sections following section 5. 

5. Distribution of probability 

In this section we derive the form of the proba- 
bility distribution {P~(E)} associated with the natu- 

ral measure /~ of the generalized baker's trans- 
formation. Here P, denotes the probability of the 
ith cube Ci of edge E, i.e., Pi = #(C~). The collection 
of numbers {P~(E)} may be also be thought of as 
the result of coarse graining the natural measure. 
This probability distribution is interesting both for 
its own sake, and because it is needed to compute 
some of the dimensions that we are interested in. 
In what follows we restrict ourselves to the case in 
which ,~, = 2b ~/~2, which keeps the width of all the 
strips the same. Thus a particularly convenient 
partition for computing {P~) is the set of 2" non- 
empty strips obtained by iterating the unit square 
n times. 

Starting with a uniform probability distribution, 
on one application of the map two strips are 
produced, one with total probability ct and the 
other with total probability ft. (See fig. 7d.) If the 
map is applied again (fig. 8), there results one strip 
of probability ~ 2, one of probability f12, and two of 
probability aft. In general, after n applications of 
the map, there result 2" strips of width (22)" and 
probabilities ct"fl ~"-"~, m = 0, 1, 2 . . . . .  n. The 
number of strips with probability ctmfl ~" mt is 

n! 
Z(n,  rn) - (n - m)!m! '  (22) 

i.e., the binomial coefficient. Since we take 
ct < ½ </L  lower m corresponds to more probable 
strips, i.e. strips of greater natural measure. The 
total probability contained in these Z(n,  m)  strips 
is 

W (n, m)  =- ct"fl("- m)Z (n, m ). (23) 

Note the similarity to a sequence of coin tosses. 
Using a coin with probability ct of heads and fl of 
tails, for a sequence of n flips the total number of 
sequences with m occurrences of heads is given by 
eq. (22), and the likelihood of all such sequences is 
given by eq. (23). 

For large n (small E) it is convenient to have 
smooth estimates for Z(n,  m)  and W(n, m). Using 
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Sterling's approximation, i.e. 

log n! = (n + ½) log(n + 1) - (n + 1) + log(2~z) 1/2 

+ C(n 1), 

we obtain from eq. (22) 

log Z ~ (n + ½) log(m + 1) - log(2n) ~/2 + 1. 

Expanding this expression in a Taylor series about 
its maximum value, m = n/2, yields 

2" f l-exp{ l r 4 l m  
Z(n,  m ) _ x / ~  ~/ n - 2Ln \ --2)2]}.  (24, 

Similarly, from eq. (23), W(n, m)  is 

W(n, m)  ~ exp (25) 
2nccfl J" 

Note that, since these expressions were obtained by 
Taylor series expansion, eq. (24) is only valid for 
Im/n-½14 l, and eq. ( 25 ) i s  only valid for 
[m/n - ~1 '~ 1. However, since the width of these 
Gaussians is (9(1/nm), eq. (24) is valid for most of 
the strips, and eq. (25) is valid for most of the 
probability. 

Fig. 9 shows a schematic plot of Z and W. It is 
clear from this figure that, for large n, almost all 
of the probability is contained in a very small 
fraction of the total number of strips. Further- 
more, the situation is accentuated as E gets smaller 
(n gets larger), since the width of the Gaussians 
given in eqs. (24) and (25) decreases according to 
n 1/2. In the limit as ~-+0 these Gaussians approach 
delta functions, and they do not overlap. We feel 
that the above properties are typical features of 
chaotic attractors. 

5.1. Log-normal distribution of  probabilities 

It is instructive to rewrite eq. (25) in another 
form. Let p = c~m//~"-") denote the probability of a 
strip, and reexpress eq. (25) in terms of 
u =log(J/p)  rather than m. Noting that m is 
proportional to u, and letting E =2~ W ( n , m )  
becomes 

1 F(u) - e - ( u  - U o ) 2 1 2 a 2  (26) 
,~,r 

where 

a2 = [~//(log(/?/c¢)) 2 log(l/E)] 

Iog(1/J,2) 

and 

l i  

.,,-- ~ o ( w v " ~ l  

t 
I D, m 

± I n 

Fig. 9. A schematic representation of  the distribution of  proba-  
bilities on the attractor. Z(n, m) is the number  of  cubes with 
probabili ty p =ctmfl ~" m), and W(n,m) is the sum of  the 
probability contained in cubes of  probability p. For  large n and 
m/n close to its mean value, these are both  approximately 
Gaussian distributions in m/n whose width is proport ional  to 
n. In the limit as n ~ or, W and Z become delta functions, and 
no longer overlap. 

u0 = avL log 1 , (27)  
t~ 

with de given by eq. (16). Eq. (26) is only valid if 

(u - Uo) 2 1 
a ~  <~ log -'E (28) 

corresponding to Im/n - ctl ~ 1. F(u)du is the total 
probability contained in strips whose values of 
u = log(I/p) fall between u and u + du. Thus we 
see that the values the logarithm of p asymp- 
totically have a Gaussian distribution, or in other 
words, the values of p asymptotically have a 
log-normal distribution. We believe that this is 
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typically true of chaotic attractors. In particular, 
we offer the following conjecture*: 

only able to obtain an upper bound for the dimen- 
sion. 

Conjecture 4. Let A be a chaotic attractor of a 
p-dimensional invertible dynamical system, and 
assume that this attractor has a natural measure #. 
Cover A with a fixed grid of p-dimensional cubes 
of side length ~. Assign each nonempty cube C~ 
probability Pi =/~(Ci), and let U~ = log(1/Py Let u0 
be the mean of the numbers Ui, and let O "2 be the 
variance. For typical chaotic attractors, in the limit 
as ~ --,0, values of U, sufficiently close to the mean 
(in the sense of  eq. (28)) approach a Gaussian 
distribution. In other words, the corresponding 
values of Pg approach a log-normal distribution. 

Note that Ui is the information obtained in a 
measurement that finds the orbit inside of the ith 
cube [1, 9, 10]. Thus, conjecture 4 states that for 

chaotic attractors the information is approxi- 
mately normally distributed for small ~. 

The function Z(n, m) given in eq. (24), can also 
be reexpressed in terms of p rather than m. When 
this is done, with similar restrictions to those of eq. 

(28), the result is also a Gaussian in terms of 
p = log( l /p ) .  When recast in the more general 
setting of conjecture 4, this says that the number 
of cubes Ci whose values Ui lie between u and 
u + du are given by a Gaussian distribution. (Sim- 
ilar restrictions to those given in conjecture 4 
apply.) 

6. Computation for the natural measure dimensions 

In this section we verify conjectures 1 and 2 for 
the generalized baker 's  transformation by explic- 
itly computing all of the probability dimensions 
defined in section 2. In order to simplify the 
computations, for all but the 0-Hausdorff  dimen- 
sion we restrict ourselves to the case in which 
2~ = 2b = 22. For the 0-Hausdorff  dimension we 

treat the most general case in which 2a # 2b, but are 

* The form of this conjecture was developed in collaboration 
with Erica Jen. 

6.1. Alternate derivation of information dimension 

Now that we know the probability distribution 

for the generalized baker 's  transformation for 
)~, = 2b = 22, we can obtain the information dimen- 

sion directly from its definition. From eq. (3) and 
eq. (26), I (O  is the average value of log(1/Pi) or 

= fuF(u) d u  = U o • 

Since from eq. (27) u0 =dL log(1/~), eq. (3) yields 
dl =dL (previously shown in section 4 for the more 
general case 2, 4: 2b). Thus the mean value of the 
log-normal distribution is simply the information 
contained in the probability distribution, and its 
scaling rate is the dimension of the nature measure, 
i.e., I(~) ~ d. log(1/O. 

6.2. Determination of O-capacity 

Here we calculate dc(0) for 2~ = 2 b = ]-2, We 
choose ~ equal to the width of a strip, E = 2~. As 
usual, for convenience we compute the 0-capacity 
of the attractor projected onto the x-axis, i.e. 
aTc(0) = de(O) - 1. The 0-capacity CTc(0) is defined 
in terms of the minimum number of  intervals 
N(~; 0) of  width E that have total natural measure 
at least 0, 

m o 

N(e;O)= ~ Z(n,m), (29) 
m=O 

where ms is the largest integer such that 

m~ I 

W(n, m) <~ O, (30) 
m--0  

To find ms we use eq. (25) and approximate the 
sum in eq. (30) by an integral, 
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Fig.  10. The  p r inc ipa l  c o n t r i b u t i o n  to  the s u m  needed  to  

c o m p u t e  N(E; ,9) (eq. (29)) c o m e s  f r o m  values  o f  m nea r  m~. 

estimate o f  N(E; ,9) yields dc(,9) =dL,  in agreement 
with conjecture 2. 

6.3. Computation o f  `9-Hausdorff dimension 

In this section we obtain an upper  bound  on the 

,9-Hausdorff dimension of  the generalized baker 's  
t ransformat ion with 2, # 2b. (Recall that  for our  

work in the previous section we took 2a = 2b.) We 

obtain an inequality for the ,9-Hausdorff dimen- 

sion by using a specific covering along x to com- 
pute the sum 

Thus for fixed `9 we obtain 

- -  ~ ~ + e r fc -  ~(̀ 9 
n 

(31) 

where erfc(x) = ( l / x / /~ )S  ~_ , e -x2/2 dx.  Now, con- 
sider eq. (29). The principal contr ibut ion to the 

sum will come from m values very close to m~, as 

depicted in fig. 10. Thus we use eqs. (23) and (25) 
to approximate  Z(n,  m)  as 

fl - "(fl /~ )" e - (m - ,~)2/2,~ (32) Z (n, m ) ..~ 

The term (fllot)" decreases as m decreases away 
from mo, and this decrease is very rapid compared  
to the variation o f  e - (  . . . .  )2/2,,p. Thus in performing 

the sum in eq. (29), we may approximate  
e -~'-"~)2/2"~ as being constant  and equal to its 

value at m = m0. Hence the only m dependent term 
in the sum is (fl/a)". Since 

",~ / fl \ "  / fl \".~ 

0) = ZE/,  
i 

where the Ei < E cover a fraction `9 o f  the natural 

measure o f  the attractor.  Our  choice for the ~ is 
specified below. Taking the limit as E-~0, we find 

that there is a value o f  d at which I*(E, ,9) crosses 
over f rom ~ to 0. For  the parti t ion we have 
chosen, we find that crossover occurs at d = aTL. We 

believe that the value we obtain is in fact the true 
0 -Hausdor f f  dimension. However,  we cannot  be 
sure that the particular covering we have chosen 

gives the lowest possible value o f  d, and thus we 

can only say that we have obtained an upper limit. 

After n iterations o f  the map,  an initially uni- 
form probabili ty distribution in the unit square is 

t ransformed to 2" strips with widths 2~'2~b "-")  and 
probabilities amfl(,-m), m = 0 ,  1,2 . . . . .  n. As 

shown in eq. (22), the number  o f  such strips is 
Z(n,  m).  We shall choose the Ei to cover the most  

probable strips so that ,9 o f  the total probabil i ty is 
covered. E for our  covering is equal to the width o f  

the widest strip, which is either (2,)" o r  (2b)", 
whichever is larger. Letting Ud(n, m)  be 

Ua(n, m) = (2~'-'2m)aZ(n, m),  

we find that 

N(E; `9) ~ fl - ('-"'~)a -"°n -1/2 

From eq. (4) and n = log(l/E)/log(1/2z), the above 

we have that 

E d /*(E, 9) = ~ i = ~ Ua(n, m) ,  (33) 
i m 
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We still have yet to specify which m values are to 
be included in the sum. To  do this, we expand 
Ud(n, m) about  its m a x i m u m  value (as done for Z 
and W in section 5), and obtain  

+ ; bq" Uu(n, m) ~ /  " d d  
Z a 2 b  

2~n(2~+  d~TF, a 2b)(,~ a -~- 2b  d) 

1 d - -  d 
x e x p - ~  .~ ~ . _ _  I (34) 

d d ~b)Jd + 

In order  to compute  l*(¢, 0), we must  consider 
the natural  measure  as well as Ud(n, m). Note  that  
for the general case we are considering now with 
2~ 4: 2b, W(n, m) obtained in eq. (25) continues to 
be the correct  expression for the distr ibution of  
probabil i t ies in each strip. Depending on the values 
of  c~, d, 2,, and )'b, W may  peak at a value of  m that  
is smaller, larger, or  equal to the value of  m at the 
peak of  Ud. Compar ing  the location of  the peaks  
of  the Gauss ians  in eq. (34) (for U) and in eq. (25) 
(for W), we see that  there are three cases: 

For  case l, selecting the best covering of  inter- 
vals that  contain 0 of  the total probabi l i ty  is easy. 
Since W remains valid, we get a covering that  
includes 0 of  the total natural  measure  by including 
intervals whose value of  m is less than m~, just as 
we did for the computa t ion  of  g-capaci ty .  Further-  
more,  since Uj peaks  at a larger value of  m/n than 
Wdoes ,  this selection gives the smallest value of  lJ'. 
The situation is analogous  to the computa t ion  of  
0-capaci ty,  except that  here the role of  Z is played 
by U, (cf. fig. 10). To  evaluate 

l* = Z Ud(n,m), (35) 
m 0 

we note that, as for the analogous  evaluat ion for 
0-capaci ty  in the previous subsetion, the principal 
contr ibut ion to the sum comes f rom m-values  close 
to mo. Thus  we approx imate  Ud(n, m) as 

Ud(n, , ~ ~m~--m W(n, m), 
m) ,,, otmfl~,_m ~ 

with W approx ima ted  by eq. (25). Proceeding as in 
section 6.2 we obt ian an est imate for l*(~, 0), 

Case l: ~ < - -  
+ 

Case 2: ~ > - -  
+ 

Case 3: c~ = 
+ 

o r  

Cases I and 2 may  be shown to be equivalent  as 
follows. F rom the case 2 inequality and the fact 

d d that  e + fl = 1, we obtain fl < 2b/(2a + 2bd). But, if 
we define m '  by m = n - m ' ,  and change the sums 
over  rn to sums over  m ', then the roles of  (c~, 2~) and 
(fl, 2b) are interchanged, and case 2 is converted to 
case 1. We shall not  consider case 3 here; suffice it 
to say that  it does not alter the results obta ined 
from considerat ion of  cascs 1 and 2. Therefore  it 
is sufficient to compute  the O-Hausdorf f  dimension 
for case 1. 

For  E---,0 (i.e., n---~oo) we obtain  I * ( 0 ) = 0  for 
d > de and I*(O)= oo for d <dL.  Thus remem- 
bering that  dH(0)=  dH(0 )+  I, 

dH(O) ~< de. (36) 

As already mentioned,  we expect that  the above 
inequality is really an equality. This expectat ion is 
reinforced by the fact that  when 0 = 1 we recover 
the exact expression for the Hausdor f f  dimension 
computed  in eq. (18). To  see that  this is true, 
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replace m0 in eq. (35) by n. F r o m  the form of  Ua, 
this sum is simply the binomial  expansion of  

d d n  ( 2 , + 2 b ) .  As n ~ o v ,  this quant i ty  is 0 or ~ for  

d > aVn or d < avH, where a7 H satisfies 2,  a-" + 2b a" = 1, 
which is the same as eq. (18). Tha t  is, for  the 
specific choice of  Eg that  we have used, we obtain 
the correct  value of  dH. Since the same choice o f  the 
E~ was used in obtaining dH69), it seems plausible 
that  the equali ty might  apply  in eq. (36). 

6.4. Computation of the po&twise dimension 

We now consider the pointwise dimension for 
the generalized baker ' s  t r ans format ion  with 
2a = 2b < ½, and we show that  d v exists and is equal 

t o  d E . 
As previously noted in section 5, appl icat ion of  

the m a p  n times to the unit square produces 2" 
strips of  widths (2~) ". (Recall that  we are assuming 
2 a = 2b. ) In order  to compute  the pointwise dimen- 
sion, we choose a point  x at r a n d o m  with respect 
to the natural  measure  #, compute  the natural  
measure  contained in an E ball centered abou t  x, 
(i.e. # (B,(x))), and compute  the ratio of  log # (B,(x)) 

to log E in the limit as E goes to zero (cf. eq. (5)). 
The simplest case for this computa t ion  occurs 
when 2, < ¼, so that  the gaps between strips are 
bigger than the strips themselves, as pictured in fig. 
1 la. Choosing  a point  x at r andom with respect to 
the natural  measure  #, let S, denote  the n th  order  
strip o f  width (2~)" that  the point  x lies in. Lett ing 
E = (2,) ", the natural  measure  contained in a ball o f  

(o) 
v/A 

V//////A W///_/'/A V_/////A 
b) ff///U~ ~'/////'A -- U / / / / / ~  

r i ' Q ' 

Fig. 11. (a) Comput ing  the pointwise dimension for the case 
1 1 that  2, < a. (b) The case 2, > ~, in which the" computa t ion  is a 

little more  complicated.  

radius E around x (i.e., the x- interval  [ x -  (2~)", 
x + (2~)"]) will be equal to the natural  measure  of  
the strip S,, regardless o f  where in the strip x lies. 
(See fig. 1 la.)  The natural  measure  contained in a 

given strip is ~ f l ( " - ' ) ,  where n ~> m t> 0, where m 
depends on the part icular  strip that  x happens  to 
lie in. (See section 5.) Thus,  we have 

lim --#(B'(x)) = lim log #(S,)  
~ logE , ~  n log).~ 

= lim m log ~ + (n - m)  log fl (37) 
, ~  n log 2, 

In the l imit 'as  n grows large, as shown in section 
5 (see fig. 9), the total probabi l i ty  W(n,m) con- 
tained in strips of  a given m value is distr ibuted as 
a Gauss ian  centered abou t  m/n = ~. Thus,  in the 
limit as n - -+~  it becomes overwhelmingly likely 
that  m/n = ~. Thus for a lmost  every x with respect 
to the natural  measure  #, lim . . . .  m/n = ~. (This is 
just a s ta tement  of  the law o f  large numbers.)  
Putt ing this into eq. (37) gives 

#(B,(x))  ~ l o g ~ + f l l o g f l  
dp=  ,-~lim log E log/~a 

H ( ~ )  _ aTL. (38) 
Iog(1/2d) 

(See eqs. (15) and (16).) 

To  extend this computa t ion  of  the pointwise 
dimension to the case that  ½ > 2 a > ¼, for any 2a < 
choose a k such that  2a k÷ ~ ~< ½ -- 2, (e.g., for 2~ ~< ¼ 
this relation is satisfied for any k ~>0; for 
2, ~< 0 . 3 6 5 . . . ,  for  any k / >  1; etc.). Then we can 
show #(B,(x))~< c~-k#(S,), where without  loss o f  
generality, we have assumed ~ ~<//. Since 
B , ( x ) ~ S , ,  we have also #(B~(x))>~#(S,).  Thus 
#(S,)  ~< #(B,(x))  ~< ~ -k#(S,)  which with eq. (37) 
yields d p =  alL. (Our  evaluat ion o feq .  (37) holds not 
for E-+0 but ra ther  holds for  the restricted set o f  
E = 2,", n = 1,2 . . . . .  however,  it is not hard to 
show that  that  in fact implies eq. (38) for every 
sequence of  c going to 0.) 
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Thus we have shown that for the generalized 

baker 's  t ransformation the pointwlse dimension is 
equal to the dimension of  the natural measure. 

(Although we have only shown this for £a = ~'b, it 

is not  hard to extend this result to ),~ 4: £b.) 

7. The core o f  attractors 

As shown in section 5, for the generalized 
baker 's  t ransformation,  typically almost  all o f  the 

probability is contained in a very small fraction o f  

the total number  of  cubes needed to cover the 
attractor.  In the limit as E goes to zero, this fraction 

goes to zero. Thus, the natural measure o f  the 

at tractor is c o n c e n t r a t e d  on a subset of  the attrac- 

tor. We will call this subset the c o r e  of  the attrac- 
tor. 

To get a better feel for why this comes about,  

and to see how the properties o f  the core are 
related to those of  the at tractor  and its natural 

measure, consider the special case o f  the gener- 
alized baker 's  t ransformation where 2~ = Zb = ½. As 

we have already seen, at the n th level o f  approxi- 

mation the natural measure consists o f  2" vertical 

strips o f  probabili ty ~mfl,-~. For  large n and 
/~ > a, a small fraction of  the strips whose m values 

are close to ~n contain much more of  the natural 
measure than all other strips. Fig. 12 shows a plot 

O I 

Fig. 12. The natural probability distribution of the generalized 
baker's transformation projected onto the x-axis, and coarse 
grained using intervals of width E = 2 t0. In this case a <)2, and 

of  the nth level approximat ion to the probabili ty 

distribution as a function o f  x with )~a = 2b = ½, and 
<½ and n-= 10. The probabil i ty distribution 

looks as though it were made up of  spikes, showing 

that already at n = 10 the natural  measure has 
become quite concentrated in certain cubes (in this 

case intervals). 

To understand the form of  this probabili ty 
distribution, it is instructive to represent the proba-  

bility distribution of  these strips in terms of  x 

rather than m. To do this, approximate x using its 

first n binary digits, i.e. as a binary decimal trun- 

cated after n digits. Let m be the number  o f  ones 
contained in the first n digits o f  the binary expan- 

sion o f  x. The natural measure o f  the strip S,(x) 
containing x is then p ( S , ( x ) ) =  ~m/~,-m~. (See the 

discussion at the beginning of  section 5.) As we 
have already shown (see fig. 9), when written in 

terms of  m, for large n the natural measure is 
approximately a Gaussian centered about  an, and 
in the limit where n is large almost all the measure 

is contained in strips with m ~ czn. In other words, 
the natural measure o f  the generalized baker 's  

t ransformation for 2, = 2 b = ½ is concentrated on 

those values o f  x that have l 's  in their binary 

expansions in the fraction ~, or equivalently, O's in 

the fraction ft. In the limit n ~ o o ,  a l l  the natural 
measure is contained in this set, which we will call 
the core of  this attractor.  

For  this case (2a =/~b ~-1) the at t ractor  is the 

entire unit square. The core of  this at t ractor  is 
dense on the attractor.  In other words, any point  
of  the at tractor  has points o f  the core arbitrarily 

close to it. Hence any covering of  the core must  

also be a covering of  the attractor,  and vice versa. 
Thus the capacity of  the core is the same as that 
of  the attractor. The Hausdorf f  dimension, in 
contrast,  is more subtle, and in fact, comput ing the 
Hausdorff  dimension of  the set o f  numbers  whose 
binary expansions have a given fraction of  ones is 
a classic problem in the study of  Hausdorf f  dimen- 
sion [31]. The Hausdorf f  dimension of  this set is 

H(~) 
d.- 

log 2" 
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(See eq. (15).) This result was conjectured by Good 

in 1941 [32] and proved by Eggleston in 1949 [33]. 

Also, the Hausdorff dimension of a very similar 

example (involving ternary rather than binary ex- 

pansions) was proven by Besicovitch in 193 1 [34]. 

Thus, for this example we see that the Hausdorff 

dimension of the core is equal to the dimension of 

the natural measure, and the capacity of the core 

is equal to the fractal dimension of the attractor 

(cf. eq. (16)). For the case of diffeomorphisms of 

the plane, the former result has been proven by 

Young [12]. We suspect that this is a property of 

typical attractors. 

8. An attractor that is a nowhere differentiable torus 

This section contains a review of the work of 

Kaplan, Mallet-Paret, and Yorke [35] on the di- 

mension of a chaotic attractor in a setting that is 

quite different from that of the generalized baker’s 

transformation. The attractor described below has 

the same topological form as a torus, and yet is 

nowhere differentiable, thus providing an inter- 

esting example of the nonanalytic forms that can 

be produced by chaotic dynamics. 

Consider the following map: 

-x,+1 =2x,+y, mod 1, 

Y IIf1 = x, + Yfl mod 1, 

Z” + 1 = k + P hn YJ 

(39) 

where x and y are taken mod 1, z can be any real 

number, and p is periodic in x and y with period 

1 and is at least five times differentiable. (For 

example, p(x, y) = cos 27cx.) In order to keep z 

bounded, ;L is chosen between 0 and 1. Note that 

the eigenvalues and eigenvectors of the Jacobian 

matrix of eq. (39) are independent of x, y, and z. 

Thus euery initial condition has the same Ly- 

apunov numbers, i.e., the Lyapunov numbers are 

absolute, so that in this case conjecture 3 is rele- 

vant, and we expect that the fractal dimension and 

the dimension of the natural measure should be 

equal. 

The equations for x and y are independent of -_, 

and in fact are the classic Anasov or “cat” map 

[361, 

where 

AZ2 l ( ) 11’ 

Thus, the x-y dynamics are chaotic, and are 

unaffected by the value of z. 

To understand the shape of the attractor in the 

z-direction, put a sample initial condition into eq. 

(39). For example, consider (x0, y,, 0). z, takes on 

the form 

z, = i Ilk-‘p(xn_kryn-k). 
k=l 

Making use of the fact that (;; ;,k) = A -“@), and 

letting n go to infinity, it can be shown that the 

surface given by 

z(x,y)= f ik-‘p A -k i , 
k=I ( 0) 

is invariant and is the unique attractor of this 

dynamical system. 

z(x, y) has some very interesting properties. For 

I < l/R, where R = (3 + $)/2, z(x,y) is smooth 

and has dimension 2. If 2 > l/R, however, for most 

choices of p, z(x,y) is nowhere differentiable. A 

typical cross section of z(x,y) is shown in fig. 13. 

To understand intuitively how the nondifferent- 

iability of z(x, y) comes about, notice that z(x, y) 

is the sum of an infinite number of periodic 

functions whose arguments are the successive iter- 

ates of the cat map. Unless 2 is small enough to 

diminish the effect of higher order iterates, the 

value of the sum can swing wildly as x or y change. 

The Lyapunov numbers of the map given in eq. 
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Fig, 13. A cross section of a nowhere differentiable torus, made 
using eq. (39) with p ( x , y ) =  cos 2gx and 2 chosen so that 

putations, and finally we will review some previous 
numerical work. 

The methods to compute dimension vary consid- 
erably depending on the dimension that one wishes 
to compute. Thus far, we are aware of numerical 
computations only of capacity [37--41], Lyapunov 
dimension [37-40], and Hausdorff dimension [42]. 
Of these, only the studies involving the capacity 
and the Lyapunov dimension were applied to 
attractors of dynamical systems. In each case, the 
computations follow from the definitions. As we 
shall see, the capacity is (in principle) straight- 
forward to compute, but is in practice unfeasible to 
compute for all but very low dimensional attrac- 
tors. The Lyapunov dimension, in contrast, is 
much moFe feasible to compute. We will begin the 
discussion with a description of the computation of 
Lyapunov dimension, and then go on to discuss 
the computation of capacity. 

(39) are ) . l=R ,  22=2,  and 23=1/R,  where 
R = (3 + x/~)/2, as given above. Kaplan, Mallet- 
Paret, and Yorke [35] have shown that there are 
two possibilities for the dimension of z(x, y): 
Either 

(i) z(x, y) is nowhere differentiable and 

o r  

(ii) z(x, y) is differentiable and dc = 2. 
For given p, the nowhere differentiable case occurs 
for nearly every choice of 2. Thus we see that 
conjecture 3 is satisfied for this example. 

9. Numerical computations 

In this section we discuss some aspects of the 
numerical computation of dimension. First we will 
discuss the basic ideas behind numerical com- 
putations of dimension, secondly we will discuss 
some of the problems encountered in such com- 

9. I. Numerical computation of Lyapunov dimension 

The Lyapunov dimension is defined in terms of 
the Lyapunov numbers. (See section 3.) Thus, the 
work involved in computing Lyapunov dimension 
is in computing the Lyapunov numbers, Numerical 
methods for doing this have been discussed by 
Bennetin et al. [43], Shimada and Nagashima [44], 
and in infinite dimensions by Farmer [38]. With 
appropriate numerical caution, the largest k Ly- 
apunov numbers can be computed by following the 
evolution of k nearby trajectories simultaneously 
and measuring their rate of separation. There are 
various numerical problems with this method, 
however, and a better method is to follow only one 
trajectory, but also follow k trajectories of the 
associated equations for the evolution of vectors in 
the tangent space. These methods have been suc- 
cessfully used in a variety of numerical studies. 

For low-dimensional cases, such as two- 
dimensional maps or systems of three autonomous 
ordinary differential equations, with a modern 
computer and plenty of computer time, numerical 
computation of the dimensions we discuss here 
directly from their definitions is feasible, as dis- 
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cussed in the next subsection. Even in such low- 
dimensional cases, however, the computation of  
Lyapunov dimension is by far less costly in terms 
of computer time and memory than the com- 
putation of other dimensions. For higher dimen- 
sional attractors it appears that only the Lyapunov 
dimension is computationally feasible. The key 
reason that the Lyapunov dimension is feasible to 
compute numerically even for attractors of rather 
high dimension (e.g. dL ~ 10) is that the difficulty 
of  the computation scales linearly with the dimen- 
sion of  the attractor times the dimension of the 
space it lies in, rather than exponentially as it does 
for a computation of  the fractal dimension, or any 
of the other dimensions discussed in this paper. 
The memory needed to compute the largest j 
Lyapunov numbers is equal to the memory needed 
to numerically integrate the equations under study, 
multiplied by j + 1. (Memory requirements are 
usually a problem only in computations involving 
partial differential equations.) The computer time 
needed is the time needed to compute a time 
average to the desired accuracy (which depends, 
among other things, on the irregularity of  the 
natural measure of  the attractor), multiplied by 
j + I. Fortunately it is only necessary to compute 
the largest Lyapunov numbers, and the number of 
these needed depends on the dimension of the 
attractor rather than the dimension of the phase 
space. (See eq. (9).) This linear dependence on the 
dimension of  the attractor has allowed com- 
putation of  the Lyapunov dimension for attractors 
of dimension as large as twenty [38]. 

We should mention one disadvantage concern- 
ing Lyapunov dimension. Namely, it is not pres- 
ently known how the Lyapunov dimension can be 
determined directly from a physical experiment. 
The difficulty comes about because, in some sense, 
in order to determine Lyapunov numbers it is 
necessary to be able to follow adjacent trajectories. 
To determine all the necessary Lyapunov numbers, 
it is necessaryto follow some trajectories (at least 
one) which are not on the attractor. Thus it is not 
possible to compute the Lyapunov dimension by 
simply observing behavior on the attractor; one 

must perturb the system from the attractor, and do 
so in a very well defined way. This poses a very 
severe problem in the computation of dimension 
from experimental data, one that is not present in 
the computation of other dimensions. 

9.2. Computation of fractal dimension 

In principle, it is quite straightforward to use the 
definition of capacity, eq. (2), to compute the 
fractal dimension. The region of  phase space sur- 
rounding the attractor is divided up into a grid of 
cubes of  size ,, the equations are iterated, and the 
number of  cubes N(~) that contain part of the 
attractor are counted. E is decreased and the pro- 
cess is repeated. If log N(E) is plotted against log E, 
in the limit as E goes to zero the slope is the fractal 
dimension. 

The difficulty with this method is that one must 
use values of E small enough to insure that the 
asymptotic scaling has been reached. (See Froe- 
hling et al. [40] and Greenside et al. [39].) The total 
number of cubes containing part of the attractor 
scales roughly as 

N(~) ~ E - dc (40) 

Thus, the number of  cubes increases exponentially 
with the fractai dimension of the attractor. To get 
a feel for the seriousness of this problem, plug in 
some typical numbers: IfE = 0.01 and d c = 3, then 
N ~ 106, exceeding the core memory of  all but the 
biggest current computers. Thus, computations of  
fractal dimension are currently not feasible for 
attractors of  dimension significantly greater than 
three. 

In addition, there is another potential problem 
involved in computing capacity. In counting cubes, 
how can one be sure that all the nonempty cubes 
have been counted? This problem is compounded 
by the highly nonuniform distribution of proba- 
bility on an attractor. In particular, if our hypoth- 
esis that the probability is distributed log-normally 
is correct, in order to count the highly improbable 
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cubes present in the wings of the distribution 
requires that a large number of points on the 
attractor must be generated. Furthermore, this 
number increases rapidly as E decreases. 

The conclusion is that a great deal of care must 
be taken in the computation of fractal dimension, 
and in particular, a sufficiently large number of 
points on the attractor must be generated to insure 
that low probability cubes are not left out in the 
determination of N(E). 

Although there are as yet no extensive results on 
direct computations of the dimension of the natu- 
ral measure, it may be easier to reliably compute 
than the fractal dimension. The reason for this is 
that very improbable cubes are irrelevant for a 
computation of the dimension of the natural mea- 
sure. Numerical experiments on this topic are 
currently in progress. 

9.3. Summary of past numerical experiments 

In this section we summarize previous numerical 
experiments on dimension computation. The two 
studies most relevant to the topic under discussion 
are those of Russel et al. [37] and Farmer [38]. Both 
of these were made in an attempt to test the 
Kaplan-Yorke conjecture [8, 22]. (See section 3.) 
In both of these studies, the capacity of chaotic 
attractors was computed directly from the 
definition. The Lyapunov dimension was also com- 
puted, and compared to the capacity. 

In the study of Russel et al., five examples were 
examined. In each case, the computed capacity 
agree with the computed Lyapunov dimension to 
within experimental accuracy. These computations 
were done on the Crayl, a state of the art main- 
frame computer; at the smallest value of E = 2-  14, 
more than 105 cubes were counted. 

The numerical experiments of Farmer were done 
using high-dimensional approximations to an 
infinite dimensional dynamical system. Because the 
equations under study were more time consuming 
to integrate, and because the capacity com- 
putations were done on a minicomputer, it was 
only possible to achieve about two significant 

figures of accuracy. The computed capacity and 
Lyapunov dimension agreed to this accuracy at the 
two parameter values tested. 

In 1980, Mori [23] conjectured an alternate 
formula relating the fractal dimension to the spec- 
trum of Lyapunov numbers. For attractors in a 
low-dimensional phase space, such as those studied 
by Russel et al. [37], Mori's formula and the 
Kaplan-Yorke formula (eq. (9)) predict the same 
value. For higher dimensional phase spaces, how- 
ever, the two formulas no longer agree. Farmer's 
results support the Kaplan-Yorke formula. 

One puzzling aspect of both of these numerical 
experiments is the striking agreement between the 
computed value of capacity and the Lyapunov 
dimension. The Kaplan-Yorke conjecture equates 
the Lyapunov dimension to the dimension of the 
natural measure, and therefore only gives a lower 
bound on the fractal dimension. Why, then, was 
such good agreement obtained between the com- 
puted capacity and the computed Lyapunov di- 
mension? We do not yet understand the answer to 
this question, though further numerical experi- 
ments may resolve the question. 

10. Conclusions 

We have given several different definitions of 
dimension. These divide into two types, those that 
require a probability measure for their definition, 
and those that do not. (Refer back to table I.) For 
an example that we believe is typical of chaotic 
attractors, i.e., the generalized baker's trans- 
formation, our computations of dimension show 
that all of the probabilistic definitions take on one 
value, which we call the dimension of the natural 
measure, while the definitions that do not require 
a probability measure take on another value, 
which we call the fractal dimension of the attrac- 
tor. We believe that this is true for typical attrac- 
tors. 

If the probability distribution on the attractor is 
"coarse grained" by covering the attractor with 
cubes, for the generalized baker's transformation 
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we find that the probabi l i ty  conta ined in these 

cubes is distr ibuted nearly log-normally  when the 

cubes are sufficiently small. In  other words, the 

total probabi l i ty  conta ined in cubes whose na tura l  

measure is between u = log pi and u + du has a 

dis t r ibut ion that is nearly Gaussian,  and as the size 

of the cubes is decreased, it becomes more nearly 

Gaussian.  Fur thermore ,  the number  of cubes in a 

given interval of  u also has a Gauss ian  dis tr ibut ion,  

but  with a different mean  and variance. (See fig. 9.) 

As E decreases, both of  these dis tr ibut ions become 

narrower  in a relative sense, in that the ratio of  

their variance to their mean  decreases. In  the limit 

as ~ goes to zero, both dis t r ibut ions approach delta 

functions;  since their means are different, in this 

limit the two dis t r ibut ions typically do not  overlap. 

Thus,  almost  all of  the natura l  measure is con- 

tained in almost  none  of the cubes, and  the na tura l  

measure is concentra ted on a core set. The capacity 

of the core is the fractal d imension of  the attractor,  

while the Hausdorff  d imension of the core is the 

dimension of the natura l  measure. Once again, 

a l though we have demonst ra ted  the results mem- 

tioned in this paragraph only for the generalized 

baker 's  t ransformat ion ,  we feel that they are true 

for typical chaotic attractors.  

Most  of the dimensions  that we have defined are 

difficult to compute  numerically.  The Lyapunov  

dimension,  however, is much easier to compute  

numerical ly than any of  the other dimensions.  We 

compute  the Lyapunov  dimension for the gener- 

alized baker 's  t ransformat ion ,  and  show that it is 

equal to the d imens ion  of  the na tura l  measure 

obta ined from any of the other probabil is t ic  di- 

mensions  that we have investigated. This supports  

the conjecture of Kap lan  and Yorke-[22]. 
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