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278 7 Thermal Convection

7.8 Fixed Flux Convection ®

7.8.1 Introduction

In all the foregoing matter, we considered that the plates limiting the fluid are
perfect heat conductors, so that their temperature remained constant (fixed by a
thermostat). Hence, we demanded that the temperature fluctuations vanished on the
boundaries.

In the case of a laboratory experiment the boundary conditions are not so

simple. As mentioned in Sect. 1.8.2 the only conditions that have to be satisfied
are

where the index f refers to the fluid and the index s to the solid. However, the
temperature field in the solid is not known and needs to be computed as well. The
general case is thus quite tedious and we refer the reader to the work of Hurle et al.
(1966) for a detailed study.

Here, we shall concentrate on the limit y,/ y # — 0 which is the case where the
solid is a very poor heat conductor compared to the fluid. This case corresponds to
the ideal insulator. Hence, after studying the ideal conductor case, we now explore
the other extreme. From a physical point of view, it means that the temperature
field in the solid is fixed (or evolve on a very long time scale compared to that of
the fluid). Thus, the temperature gradient, and therefore the energy flux, is fixed in
the solid and the temperature fluctuations at the interface do not propagate inside

the solid. Hence, one imposes that the temperature gradient does not fluctuate,
or that

8_6? =0 (71.74)
0z

on z = 0, 1. We note that in such conditions the Nusselt number remains fixed to
unity.

The interesting point of this system is that the convective instability occurs
with a vanishing critical wavenumber. Hurle et al. (1966) indeed noticed that as
Xs/Xr — 0 then k. — 0. Convection sets in at a scale all the larger that the
solid is less conductive. It is then possible to find out a weakly nonlinear solution
taking advantage of the fact that the horizontal scale is very large compared to

the height. The resolution of this problem is a typical example of a multi-scale
analysis.

G
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7.8.2 Formulation

We start again from the equation of motion (7.31) and introduce the small parameter
& such that:

¥ =¢¢, 0 =edy, 0, =¢'0,, Ra=Ra + ule?
where . measures the rate of supercriticality. Thus doing, we rescaled the horizontal
lengths, introducing the scaled variable X = ex of order unity. We also rescaled the
time and introduced the new time variable © = &*. Hence, we can focus on very
large horizontal scales and very long time scales. The choice of the &* factor in

the time scale is justified a posteriori by the consistency of the solutions. The two
equations of (7.31) now read:

£%9,0%¢ + &* (3, D%¢p + Ixpdy Do — 9% 9D¢) + & (IxpD*p — 3, D*pD ) =
P [(Rac + n?e®)0x6 + D*¢ + 2605 D¢ + £* 9% 4]

£*9.0 + &> (AxpDO — 3,0D¢) = >3y + (D + £29%)0

Here, the functions depends on the three variables (z, X, z). The boundary condi-
tions at 7z = :i:% are®

DO =0
for the temperature and
u,=e9yp=0 and o0,=0<= D=0

for the velocity. Note that we chose the stress-free boundary conditions; for no-slip
conditions we would ask uy = 0 or D¢ = 0.

7.8.3 The Chapman—Proctor Equation

We now develop the solution in powers of the small parameter up to the fourth order,

0 =00+&0+e 0+, ¢=go+ b+ ps+ -

SWe place the boundaries at z = :I:% rather than at z = 0, 1 so as to be able to use the symmetry
or the anti-symmetry of the functions with respect to the z = 0 plane.

N



280 7 Thermal Convection

Note that with the choice made on the amplitudes and the horizontal scales, the
velocity field is O(g), or

ad d
u= ——wex + —viez = —eDoe, + 20y pe,
0z ox
whereas the temperature field remains O(1).
At zeroth order, the equations of motion reduce to

D*9p=0 and  Ra.dx0 + D*po =0
which lead to the following type of solution
o= f(X.r) and  ¢o=RaP@)f'(X.7)
where D*P(z) = —1. f(X,t) is an unknown function which needs to be
determined; f’(X, 7) is its derivative with respect to X. We note that the boundary
conditions on 6, are automatically satisfied whereas those on the velocity demand
that P(+ ‘E) =0and P'(£ %) = 0 for no-slip conditions or P”(£3) = 0 for stress-

free ones. These last two conditions and the differential equation allow us to specify
completely the function P(z). In the no-slip case

1 2 1 1 ik
PR =—+—-—=—r(d—-
@O=—2" T % 3" 2 (z )

Let us now consider the g2-order of the temperature equation. We have
D26, = —Ra.DPf"* — (Ra.P + 1) f" (7.75)
This equation is interesting as it has a solution only if the right-hand side verifies

a solvability condition. Indeed, if we integrate the equation on z, then the left-hand
side is zero whereas the right-hand side implies:

+1/2 =
Ry = — / P(z)dz)
—1/2

giving the value of the critical Rayleigh number. This expression leads to the
numerical values Ra,=720 in the no-slip case and Ra,=120 in the free-slip one,
values which were first derived by Hurle et al. (1966).
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The equation (7.75) can now be solved. We find

0= HLX. D)+ WRSf?+ 0@ f"
where we introduced W(z) and Q(z) such that
W" +Ra.P’=0 and Q"+Ra,P+1=0
These new functions verify the boundary conditions Q’ (:l:-;-) = W'( i%) = 0 since

D# = 0 on the boundaries. We infer that W’ = —Ra, P.
The &2-order of the momentum equation leads to

D¢y = — u> f' —Rac [f§ + W(f™) +(Q +2P") f"]
+ -Rpig [PP" — P'P"] f' "
which is solved in the same way as the equation for 6,; we find
¢> = p>Pf’ +Ra.Pf) + Uf" + Sf'f"
with

)

R Z
D*U = —Ra,(Q +2P") and  D*S = —2Ra.W + % (PP" — P'P")
The boundary condition u; = 0 imposes that

U(x£1/2) = S(£1/2) =0

The last step consists in writing the fourth order g*-term of the temperature equation.
Integrating this equation on z between :i:%, we obtain

B.F + AP+ AR Lo (5 + B =0 (1.76)

which is the Chapman—Proctor equation. It controls the horizontal dynamics
of small-amplitude convection at fixed flux (Chapman and Proctor 1980). The
constants A, B, C, D are given by

1 1/2
A= ; B = —f U + Q)dz,
Rac —1/2 Q)

= iz = 1/2 /
= —Ra; P<dz, D = (Ra,PQ"'— S —2W)dz
—1/2 =1/2

158



282 7 Thermal Convection

The evaluation of the foregoing integrals is not straightforward. Let us illustrate
their derivation in the case of stress-free conditions on both boundaries. Because of
the symmetry of the set-up D = 0. The calculation of B is a little tedious. We first
remark that

1/2 1/2 1/2
= f Udz = f UD*Pdz = / PD*Udz
—1/2 —1/2 =1/2

Then, the differential equation verified by U implies that

1/2
B= f (2Ra.(DP)* — (DQ)?) dz

1/2
Noting that
9
L
0=z 52 + T
we finally obtain
1091
= —— ~0.197
5544
In the same way, one can derive that
155
126

7.8.4 Properties of the Small-Amplitude Convection

Chapman—Proctor’s equation gives a good description of the dynamics when the
temperature gradient is slightly supercritical.

To start with, let us examine the linear case and search for a solution proportional
to e*; if 4 = 0 (i.e. Ra=Ra,), then the growth rate of a disturbance is just
—Bk* and the critical wavenumber is k = 0 as expected. If the Rayleigh number

is now slightly supercritical, we may linearize (7.76) and find the dispersion
relation

A=kAp® —Br* (1.77)
which shows that the wavenumber of the fastest growing mode is

“

km =0 7.78
v2BRa, ( )
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This results shows that the fastest growing mode is not necessarily the one with the
critical wavenumber. In the present case, the mode with the critical wavenumber
(k = 0) has a zero growth rate!

We should also note that the transition from the hydrostatic state to the convective
one is independent of the Prandtl number. The growth rate is real so that convection
is steady (no oscillation).

Let us now examine the nonlinear régime. If the boundary conditions are identical
on the top and bottom plates, the solution is symmetric with respect to the mid-layer
z = 0 plane. The integrand defining D is antisymmetric and thus D should be zero
in this case. The Chapman—Proctor equation therefore simplifies in this case and
may be written

0.8+ Au’g” + Bg¥W +C (g3)" =0

where we took the derivative of the equation and set g = f’. Now, introducing the

new variable u = \/g % and changing the time scale as well as the X -scale, we find

the Cahn—Hilliard equation:
u = —u" — Bu® + ()" (7.79)

where B = BC'/?/A%2u5. This equation was uncovered by John Cahn and
John Hilliard in 1958 when they studied the dynamics of the phase separation
phenomena.’

We note that this equation, as the Chapman—Proctor one, is richer than Landau
equation which allowed us to study the nonlinear evolution of disturbances leading
to convection rolls. The Landau equation indeed controls the time evolution of the
amplitude of perturbations (whose structure is fixed by the linear analysis), while
the two foregoing equations control both the time evolution and the spatial structure
of the solutions (being partial differential equations). They are much simpler than
the original ones, but still contain a rich variety of solutions. For instance, one can
solve the Cahn—Hilliard equation in a stationary case (the solution is expressed with
elliptic integrals) and then study the stability of these nonlinear solutions. Chapman

and Proctor have shown that, in a periodic box, the stable flow is made of very
flattened contra-rotating rolls.

7Cahn and Hilliard (1958).



