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1 Introduction

Turing Instability is a simple mechanism for generating heterogeneous spatial patterns via reaction-diffusion
system. Let’s consider two coupled scalar fields system:

∂A

∂τ
= F (A,B) +DA∇2A

∂B

∂τ
= G(A,B) +DB∇2B,

(1)

where DA and DB are diffusion coefficient of A and B, respective, F (A,B) and G(A,B) characterize the
kinetics of chemical reaction, which are generally nonlinear. One example of the kinetic term is the Schnaken-
berg model for the minimal chemical system exhibiting limit-cycle behavior:

F (A,B) = k1 − k2 + k3A
2B

G(A,B) = k4 − k3A2B,
(2)

where ki > 0 are chemical reaction coefficients. Another example is the activator-inhibitor model:

F (A,B) = k1 − k2 + k3A
2/B

G(A,B) = k4A
2 − k5B,

(3)

In the absence of diffusion, A and B tend to have a uniform stationary state. However, Turing pointed out
that if DA 6= DB , it’s possible for the system to have an spatially heterogeneous solution. The diffusion
term, which in many cases is the stabilizing factor preventing pattern formation, becomes essential to drive
pattern formation in this case.

To understand the destabilizing effect of diffusion intuitively, let’s consider the following scenario: a
population of grasshoppers live on the grass field. When the grasshopper feels hot, it sweat to increase the
moisture of the environment. In the hot dry summer, the grass becomes direr and drier, some part of the
grass somehow get burned. When our super grasshoppers feel the fire(more than warm), they begin to sweat,
which can make the environment so wet that can effectively damp the prorogation of the front of the fire.
Assuming that the diffusion coefficient of the fire DF is much smaller than that of the grasshopper DG and
the grass randomly get burned on the field, we can expect each spot of fire will be surrounded by a bunch
of our super grasshoppers and eventually a heterogeneously pattern of fire and grasshoppers will form.

Now, let’s consider what’s important in this dynamical system. The first one is the interaction. The
kinetic term F (A,B) and G(A,B) might characterize the rate of grass get burned, how does the sweat damp
the fire and the grasshoppers sweating rate. Second, the diffusion coefficient of fire and grasshoppers, which
is essential to diffusion driven instability. Combined with the scale of the field(characterize by L), we get two
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critical time scale for the spreading of grasshoppers and fire, DH/L
2 and DF /L

2, respectively. And third,
the boundary condition is also important.

Before starting analyzing, it’s useful to rewrite Eqn.1 into dimensionless form. Taking the kinetic term
in Eqn.2 as an example. Let:

u = A(K3/K2)1/2, v = B(k3/k2)1/2, t∗ = DAt/L
2, x∗ = x/L,

d = DB/DA, a =
k1
k2

(
k3
k2

)1/2,

b =
k4
k2

(
k3
k2

)1/2, γ =
L2k2
DA

.

(4)

we get the following dimensionless form:

∂u

∂t
= γ(a− u+ u2v) +∇2u = γf(u, v) +∇2v

∂v

∂t
= γ(b− u2v) + d∇2v = γg(u, v) + d∇2u,

(5)

Note that here γ ∼ L2.

2 Linear Stability Analysis

We define the system with zero flux boundary condition:
∂u
∂t = γf(u, v) +∇2v
∂v
∂t = γg(u, v) + d∇2u
n̂ · ∇u = n̂ · ∇v = 0 on all the boundary
u(r, t = 0), v(r, t = 0) given

(6)

2.1 Linear Stability Without Diffusion

We assume that without diffusion, the system has a linearly stable spatial-homogeneous solution (v0, u0).
ThE stability of the system can be examined by a small perturbation:

u = u0 + ũ

v = v0 + ṽ,
(7)

and Eqn. 6 becomes:

d

dt

(
ũ
ṽ

)
= γ

(
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

) ∣∣∣∣∣
(u0,v0)

(
ũ
ṽ

)
≡ A

(
ũ
ṽ

)
(8)

The sign of the eigenvalue of A indicate the stability of the system:∣∣∣∣γ ∂f∂u − λ γ ∂f∂v
γ ∂g∂u γ ∂g∂v − λ

∣∣∣∣ = 0 (9)

thus:
λ =

γ

2
[tr(A)±

√
tr(A)− 4 det(A)] (10)

To have a stable system, λ should be negative, which requires tr(A) < 0 and det(A) > 0 and thus impose
constrains on the properties of the kinetic function f(u, v) and g(u, v). In the following analysis, we always
assume that the system is linearly stable in the absence of diffusion.
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2.2 Diffusion driven instability

Now let’s consider the whole problem. Define w = (ũ, ṽ)T , Eqn. 6 becomes:

∂w

∂t
= D∇2w + γAw, D =

(
1 0
0 d

)
(11)

To solve this problem, we take the Fourier transformation of the w:

w =
∑
k

cke
λtwk(r) (12)

For each mode of the time-independent component, wk(r) satisfies the following equations with the same
boundary condition as the original equation Eqn.6:

∇2W + k2W = 0

(n · ∇)W = 0 on all the boundary
(13)

The possible value of k in Eqn.13 is determined by the boundary condition. For example, if the system is
one dimensional 0 ≤ x ≤ a, we have w ∝ cos(nπx/a), where n is an integer and k = nπ/a. If w vanishes on
the boundary, then w ∝ sin(nπx/a).

Substituting Eqn.12 into Eqn.11, we have:

λw = γAw +D∇2w (14)

To find the eigenvalue: ∣∣∣∣γfu − k2 − λ γfv
γgu γgv − k2d− λ

∣∣∣∣ = 0, (15)

thus:
2λ = [γtr(A)− k2(d+ 1)]±

√
[γtr(A)− k2(d+ 1)]2 − 4h(k2), (16)

where
h(k2) = γ det(A)− γk2(gv + dfu) + dk4 (17)

To have instability, at least one eigenvalue λ should be positive. Note that [γtr(A)− k2(d+ 1)] is negative-
definite, Eqn. 16 can be written as:

2λ = −|γtr(A)− k2(d+ 1)|[1±

√
1− h(k2)

[γtr(A)− k2(d+ 1)]2
] (18)

For d = 1, recall that tr(A) < 0 and thus h(k2) is positive-definite. As a result, both of the eigenvalues
are negative and thus the system is linearly stable, which confirms that the difference between diffusion
coefficient is essential for the diffusion driven instability. For d 6= 1, let’s look at the minimum of h(k2):

dh

dk2
= −γ(gv + dfu) + 2dk2 = 0, (19)

which gives the wavenumber that minimize h(k2):

hmin = γ2 det(A)− γ2(gv + dfu)2

4d
, k2m =

γ(gv + dfu)

2d
. (20)

Here, km characterizes the scale of the pattern. Linear instability requires hmin to be negative. The critical
diffusion coefficient ratio dc is given by:

d2f2u + 2(2gufv − fugv)d+ g2v = 0 (21)
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dc =
fugv − 2gufv ±

√
g2uf

2
v − fufvgugv

f2u
(22)

And the corresponding critical wavenumber is:

k2c =
γ(gv + dfu)

2dc
= γ

√
det(A)

dc
, (23)

Figure 1: (a) When diffusion coefficient ratio d becomes larger than dc, there exist a range of k2 such that
h(k2) < 0, which results in the positive real part of the eigenvalue λ, as shown in (b)[1]

As the diffusion coefficient ratio d increase, the value of h(k2) decreases. A typical h(k2) is shown in
Fig.1. If d < dc, then h(k2) = 0 has two solutions:

k21,2 =
γ(gv + dfu)±

√
γ2(gv + dfu)2 − 4dγ det(A)

2d
(24)

When h(k2) becomes negative, one of the eigenvalues in Eqn.18 is positive for k21 < k2 < k22, indicating
that the magnitude of these modes wk(r) increase exponentially over time and form a heterogeneous spatial
pattern.

3 Analysis of Patterns

One of the generic questions that one might ask is how does the structure of the pattern depends on the
size and the geometry of the system. As shown in Fig. 1-(b), the critical mode kc gives the largest positive
real part of the eigenvalue λ and thus grows fastest. However, the possible value of k is determined by the
boundary condition.

3.1 Single Unstable Mode

Considering the following example:
d2u

dx2
+ γf(u, v) = 0

d
d2v

dx2
+ γg(u, v) = 0

du

dx
= 0, x = 0, L

dv

dx
= 0, x = 0, L

(25)
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The spatial heterogeneity can be characterize by the heterogeneity function:

H =

L∫
0

(
du

dx
)2 + (

dv

dx
)2dx (26)

Since: ∫ L

0

(
du

dx
)2dx = u

du

dx
|a0 −

∫ L

0

u
d2u

dx2
dx =

∫ L

0

γuf(u, v)dx, (27)

we get:

H =
γ

d

∫ L

0

[duf(uv) + vg(u, v)]dx (28)

The heterogeneity function has the same form as the energy of the interface growth model. For homogeneous
solution, ux = vx = 0 and thus H = 0. For heterogeneous solution, we have positive H ∼ γ/d ∼ L2/DB ∼
L2: heterogeneity increases as the square of the box size(for 1 dimensional system). According to Eqn.26,
the heterogeneity function is an extensive quantity that is proportional to the size of the system. However,
in addition to integrating the same mode over a larger system, the number of modes also increases and thus
further increases the complexity of patterns and the value of the heterogeneity function. So, how does the
size and macroscopic geometry of the system determine the spatial structure of the pattern?

As we have discussed in Eqn.13, the possible value of k is determined by the boundary condition. For
finite size system with zero-flux boundary condition, the possible value of the spatial wavenumber k is
quantized.

kn =
nπ

L
, (29)

and the number of unstable modes between k1 and k2 (Fig.1) is limited.

Figure 2: (a) Only one possible wavenumber gives positive real part of the eigenvalue. Here, p is the size
of the system(denoted as L above) and ω is the spatial wavelength, which equals 2p in this case.(b) Time
evolution of mode n = 1 in the 1D system in [0, p]. (c) Steady heterogeneous pattern [1]
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Suppose that only n = 1 mode is unstable, as shown in 2-(a). The solution of u can be written in the
following form:

u(x, t) ∼ u0 + ε exp(λ
π2

L2
t) cos(

πx

L
) (30)

Note that we are doing linear stability analysis. With positive eigenvalue, the unstable mode increases
exponentially as the system evolve. However, as the amplitude of mode increase, the linear approximation
will eventually break down and typically the amplitude will be bound by the nonlinear terms. Here, we
consider a system starting from homogeneous state u(x, t = 0) = const. with a small amplitude(ε) of mode
n = 1. As the first order approximation, the temporal evolution of u is shown in Fig.2-(b). By looking at
the area with u larger than a threshold u0, we get a heterogeneous pattern in space (Fig.2-(c)).

Figure 3: (a) Changing the size of the system shift the dispersion relation of Re(λ(ω))
. (b) n = 2 is the only unstable mode

Now, we have only one unstable mode for the given parameters. If we decrease the size of the system, the
curve of Re(λ(ω)) will shift to the right and as a result, no unstable mode exist. In contract, if we increase
the size of the system by the factor of 2, n = 1 mode becomes stable while n = 2 mode become the only
unstable mode.

3.2 Multiple Unstable Modes

Similarly, for 2D system, the simplest solution is :

w(x, y, t) ∼
∑
n,m

Cn,m exp(λ(k2)t) cos(
nπx

p
) cos(

mπy

q
), k2 = π2(

n2

p2
+
m2

q2
) (31)

By changing the parameters of the system, different patterns can be formed,as shown in Fig.4.
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Figure 4: Spatial patterns from by different unstable modes

For system with less simple geometry, the solution to the Helmholtz equation becomes complicated.

∇2ψ + k2ψ = 0, (n · ∇)ψ = 0 for r ∈ ∂B (32)

However, for system with certain symmetry, such as square, hexagonal and rhombic, the analytical elementary
solutions exist. These solutions form patterns that can tesselate the plane and exhibit the symmetry of the
system. For example:

(a) Hexagonal symmetry(Fig. 5-(a)):

ψ(x, y) =
cos k(

√
3y
2 + x

2 ) + cos k(
√
3y
2 −

x
2 ) + cos kx

3
(33)

(b) Square symmetry(Fig. 5-(b)):

ψ(x, y) =
cos kx+ cos ky

2
(34)

(c) Rhombus symmetry(Fig. 5-(c)):

ψ(x, y) =
cos kx+ cos[k(x cosφ+ y cosφ)]

2
, (35)

where φ is the rhombus angle.
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Figure 5: Patterns in systems of different shape[1]

4 Application: Animals Coat Patterns

An interesting application of Turing instability is to explain the animals coat pattern formation. For example,
why do most of the cats have ringed tails? What’s the origin of zebra’s scapular stripes? The answer lies in
the morphogenesis of the embryo. During the development of embryo, part of the totipotent cells differentiate
into melanoblast and migrate over the surface of the embryo. Then they become melanocytes, which lies
in the basal layer of the epidermis. These melanocytes further differentiate into pigment cell and produce
melanin, which gives the hair colors. Moreover, it’s widely accepted that the synthesis of melanin depends
on the presence of a chemical that hasn’t been identified yet. In this scenario, cells migrate on the epidermis,
interact with the chemical. The diffusion coefficient of the cell is much smaller than the chemical’s. Thus,
the cells and the chemical form a classical 2 fields reaction-diffusion model, as we have discussed above.

A set of differential equations can be set up by considering detailed mechanism of the process mentioned
above. However, very often, analytical solution is inaccessible and thus numerical computation is needed.
Before we jump to the numerical results, let’s consider the processes qualitatively.

The size and geometry of the system limits the possible mode of patterns. Consider the long-thin tail of
cat. It can be modeled as a tapping cylinder of length s and radius r(z), where z = 0 corresponds to the
bottom of the tail and z = s corresponds the end. By long-thin tail, we assume that r << s With zero-flux
boundary condition and periodic boundary condition(natural boundary condition), we expect a solution in
the following form: ∑

n,m

cn,m exp(λ(k2)t) cos(nθ) cos(
mπz

s
)

k2 =
n2

r2
+
m2π2

s2

(36)

Since r is relatively small, the number of unstable modes is small and the number decrease as the tail
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tapping to the end. In contract, s is relatively large and allow more unstable modes. Longer tail allows
more sophisticated patterns. As a result, the fat end of the tail exhibits dot patterns. As r become smaller,
mode of lower wavenumber becomes dominant and rings appears. Several numerical solutions are obtained
for different parameters and the real patterns on tail are also shown in Fig.6, which are consistent with our
discussion.

Figure 6: (a)scale factor γ = 9 (b) scale factor γ = 15 (c) scale factor γ = 25, longer domain. (d-g) typical
tails[1]

Similar argument can be applied to the zebra patterns. The body and legs can be modeled as cylinders
and thus rings appears on the body and the legs. The stripes on body are orthogonal to the legs’. When
this two field forms a juncture, the scapular stripes appears(Fig.7)

Figure 7: (a) Typical zebra foreleg stripes (b) predicted pattern by reaction-diffusion equation[1]
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