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1 Patterns

Patterns come in two different flavours: Patterns in time and patterns in space. This part of the notes will
concern synchronization, which is patterns in time. In studying synchronization the subject will be explored
through the study of the phase dynamics of the following examples:

1) An external force entrains an nonlinear-oscillator, with and without noise.

2) An oscillator entraining another oscillator, ie. coupled oscillators.

3) A network of oscillators, the example being the kuramoto transition, but that is for the next part of these
notes.

Through all these we shall see phenomena’s such as limit cycles, local synch- and desynchronization, tur-
bulence and more. The central theme here, a theme which runs through all of the following, is the central
”battle” between the strength of the entrainment force, and its’ frequency, versus the inner frequency of the
oscillator. We have two cases:

a) Weak forcing, this lends itself to a perturbative approach.

b) Strong forcing, here the examples are the circle map, and the standard map.

In both cases we shall study the phase dynamics, where the simplest example will be a limit cycle.

1.1 Phase Dynamics of Limit Cycles

In general, we will be working with a M -dim autonomous system 1.

dx

dt
= f(x), (1)

where x has dimension M , and f is independent of time. A limit cycle is then a staple, self-substained
oscillation such that x(t+ T ) = x(t).

This implies that there is a variable φ that describes the motion on the cycle, with dφ
dt = ω0, where ω0 is a

natural frequency of self-sustained oscillation. If the cycle is an attractor, i.e. it eats phase volume then we
will have

∑
hi < 0, where the hi’s are the Lyapunov exponents. Further more since the spacing is fixed on

the cycle we will also have that ∃hi = 0. This makes it phase stable but not asymptotically stable. Thus if
we consider a small perturbation on a oscillator we expect the excursion induced by the perturbation to be

1Autonomous system: system of ordinary differential equations which does not explicitly depend on the independent variable,
Wikipedia
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small ”perpendicular” to the limit cycle, but possibly large on or along the cycle.

Limit cycles shall come in two different flavours: The simple non-attracting (weak) limit cycle, which in the
canonical coordinates will look something like:

dq

dt
= αp,

dp

dt
= −αq. (2)

This is not an attractor in phase space, an example being a limit cycle in a Hamiltonian space. More inter-
estingly is the case of the attracting limit cycle.

For a limit cycle in a M -dim system, we will get a (M − 1)-dim hypersurface as the attracting cycle, this is
the isochrome surface. On isochromes flow takes one period, and flow along isochrome rotates attractor at
ω0.

1.1.1 The Complex Ginzburg Landau

The first example of an attracting limit cycle is the complex Ginzburg Landau equation:

dA

dt
= (1 + iη)A− (1 + iα)|A|2A. (3)

This is an equation for a complex amplitude, A. The term on RHS is a linear growth term, the iηA is a
linear phase frequency. From this is subtracted a non-linear saturation −|A|2A and a non-linear frequency
shift −iα|A|2A. Let A = Reiθ, we then have the equations:

dR

dt
= R(1−R2)

dθ

dt
= η − αR2 (4)

We see that we have an unstable fixpoint at R = 0, and a staple limit cycle at R = 1.

The equations in eqs. 4 have the solutions for initial conditions R0,θ0:

R(t) = [1 + (
1−R0

2

R0
)e−2t]−1/2

θ(t) = [θ0 + (η − α)t− α

2
ln(R0

2 + (1−R0
2)e−2t) ] (5)

In the limit where t→∞ andR→ 1 we have θ = θ0+(η−α)t−α lnR0. This lets us define φ(R, θ) = θ−α lnR.
We then have:

dφ

dt
=

dθ

dt
− αR−1 dR

dt
= η − α, (6)

by using our result from eqs. 4. We see that φ rotates uniformly. This is an isochrome, and rewriting
φ(R, θ) = θ − α lnR =⇒ θ0 = θ − α lnR =⇒ R ∼ exp[ θ−θ0α ], we get a spiral. Isochromes is spirals
attracted to the limit cycle thus we could describe the phase field using a set of isochromes.
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1.1.2 Van-der-Pol equation

The other example is the Van-der-Pol equation:

d2x

dt2
− 2µ

dx

dt
(1− βx2) + ω0

2x = 0 (7)

Writing y = ẋ we have:

ẋ = y (8)

ẏ = 2µy(1− βx2)− ω0
2x (9)

Here if we set x = r cosφ and y = r sinφ, we get the two equations:

dr

dt
= −µ(r2 cos2 φ− 1)r sin2 φ, (10)

dφ

dt
= −1− µ(r2 cos2 φ− 1) cosφ sinφ. (11)

These one can treat perturbatively, via method of averaging, to get the resulting figures 1, 2.

µ� 1

Figure 1: For µ� 1 we have a smooth NL oscillation.

µ >> 1

Figure 2: For µ� 1 we have a sawtooth oscillation.

1.1.3 Small perturbation from cycle

Now in order to say something general we want to look at φ(x) a phase in some neighbourhood of an
attracting limit cycle. We have:

dφ

dt
=
∑
k

∂φ

∂xk

dxk
dt

=
∑
k

∂φ

∂xk
fk(x)

= ω0 (12)

If we let: dx
dt = fk(x) + εp(x, t) then:

dφ

dt
=
∑
k

∂φ

∂xk
(fk(x) + εpk(x, t)) (13)
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To the lowest order we have dx
dt =

∑
k
∂φ
∂xk

fk(x). Letting limt→∞ x(t) = x0 where x0 is on the limit cycle we
then have x as a function of φ with φ⇒ φ0 + ω0t. We write to the first order:

dφ

dt
= ω0 + εQ(φ, t), (14)

dφ

dt
= ω0 + εQ(φ0 + ω0t, t), (15)

where Q acts like an external force with its’ own frequency ω, and in eq. 15 we have substituted the
unperturbed angle on the limit cycle in. If we can write Q, as:

Q =
∑
l,k

al,ke
ikφeilωt

=
∑
l,k

al,ke
ikφ0ei(kω0+lω)t. (16)

The most important terms here will be the ones giving steady Q, which induce phase singularities. We see
that if kω0 + lω ' 0 mod 2π we have resonances.

The question we can ask now would be: How does the phase evolve? Which frequency wins the fight? Will
we get quasi periodicity, or phase locking?

The simple case is for ω ∼ ω0 but ω 6= ω0. We have:

Q ≡ q(φ− ωt), (17)

since the k = −l becomes dominant. If we then define ψ = φ− ωt we get:

dψ

dt
=

dφ

dt
− ω

= −ν + εq(ψ), (18)

with the mismatch ν ≡ ω− ω0, and εq(ψ) being the strength of the interaction. This is the simplified phase
equation. It’s predicated on the existence of a dominant frequency. Now we can directly see that the fight
is between ν and εq(ψ).

Synchronization will show up as phase locking when ψ = ψs s.t. dψs

dt = 0 =⇒ ν = εq(ψs). To see if this

fenomena will be stable, one looks at ψ = ψs + δψ =⇒ dψs

dt = q′(ψs)dt. For:

q′(ψs) < 0 =⇒ stable (19)

q′(ψs) > 0 =⇒ unstable (20)

The range of the synchronization is set by ε and q. In general you will have a synch region εqmin < ν < εqmax
where you will have fix points in stable and unstable pairs, see fig. 3. With the onset of synchronization
being a bifurcation.

ν0

ε

Figure 3: Figure showing the synchronization region. The boundaries are indeed straight lines as shown.
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Now for ν outside of the synchronization region we can define a time:

t =

∫ ψ dψ′

[εq(ψ′)− ν]
. (21)

In this region we expect to see quasi-periodicity with the the beat period:

Tψ =

∣∣∣∣∫ 2π

0

dψ

εq(ψ)− ν

∣∣∣∣ , (22)

which lets one define the beat frequency:

Ωψ =
2π

Tψ
(23)

which gives as the actually observed frequency, the time average:

〈φ̇〉 = ω + Ωψ. (24)

If we want to look at what happens close to a bifurcation, we have for example at νmax ∼ εqmax:

εq(ψ)− ν = εq(ψ)− νmax − (ν − νmax)

= εq(ψmax) + εq′(ψmax) · (ψ − ψmax) +
1

2
εq′′(ψmax) · (ψ − ψmax)2 − νmax − (ν − νmax)

=
1

2
εq′′(ψmax) · (ψ − ψmax)2 − (ν − νmax), (25)

Then we have:

Tψ =

∫ 2π

0

dψ
1
2εq
′′(ψmax) · (ψ − ψmax)2 − (ν − νmax)

(26)

' [εq′′(ψmax)(ν − νm)]1/2. (27)

The integral is dominated by the ψ ' ψmax giving the above result. The beat frequency is then Ωψ ∼√
ε(ν − νmax). The beat frequency is plotted, in fig. 4 to show how it behaves close to synchronization, the

flat part being the synch region.

ν

Ωψ

Ω ∼ (ν − νµ)1/2

Figure 4: The beat frequency as a function of ν around the synchronization region (flat part).

The frequency slows near the bifurcation point, spending a long time near ψm. This will be the frequency
of the phase jumps or phase slips to other states of synchronization. This behaviour is show in fig. 5. Near
synchronization there will be long periods of nearly constant ψ with brief phase slips in between of period
Ωψ. As you go to synchrony the time between the slips increases.

1 PATTERNS 5



UCSD, physics 221A May 2017

t

Ω(t)
2π

Figure 5: Plot of ψ = φ− ωt over time. It shows periods of nearly constant ψ with brief phase slips in between.

1.2 Two Coupled Oscillators

In this section our starting point will be the work we did above for the oscillator with an entrainment force.
Here we replace the external entrainment force for a coupling force between two oscillators. Specificially each
oscillator has angle variables φ1, φ2, and φi = ωit, i.e. they have a stable limit cycle each. Then without loss
of generality we can write the functions:

dφ1

dt
= ω1 + εQ1(φ1, φ2)

dφ2

dt
= ω2 + εQ2(φ1, φ2), (28)

where the Q’s are periodic in 2π, and the cycles of φ1, φ2 define a 2D torus. As we did for the single oscillator
example the entrainment force will be written as:

Q1(φ1, φ2) =
∑
k,l

ak,l1 eikφ1eilφ2 (29)

Q2(φ1, φ2) =
∑
k,l

ak,l2 eikφ1eilφ2 (30)

In this we can express the φi with ωit, to get:

Qj(φ1, φ2) =
∑
k,l

ak,lj ei(φ0+(kω1+lkω2)). (31)

The dominant terms will be those with kω1 + lω2 ' 0. If we further take ω1

ω2
= m

n , we get resonances at
k = nj and l = −mj. This let us write the equations governing the phase dynamics as:

dφj
dt

= ωj + εqj(nφ1 −mφ2), (32)

with:

q1(nφ1 −mφ2) =
∑
k

ank,−mk1 eik(nφ1−mφ2)

q2(nφ1 −mφ2) =
∑
k

amk,−nk2 eik(mφ2−nφ1), (33)

which naturally leads one to define:

ψ ≡ nφ1 −mφ2. (34)

The new equation is then:
dψ

dt
= −ν + εq(ψ), (35)

where ν ≡ mω2 − nω1 and q(ψ) ≡ nq1(ψ)−mq2(ψ). We see that this now has reduced to the one oscillator
problem.
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1.3 The Nonlinear Oscillator

This section shall treat the general nonlinear oscillator, and on the way show how and when it reduces to the
complex Ginzburg Landau (CGL) equation. Furthermore a more general case of coupled oscillators will be
explain using the equations of amplitude we shall derive. The CGL is relevant in a lot of different instances,
and has also in this course seen a lot traction. If we start with a nonlinear oscillator:

ẍ+ ω0
2x = f(x, ẋ) + εp(t), (36)

here f(x, ẋ) is the nonlinear function and p(t) is a forcing term with it’s own frequency ω. We seek a solution
of the form:

x(t) =
1

2
(A(t)eiωt + c.c.), (37)

where A(t) is an amplitude, which is not necessarily slowly varying. We rewrite eq 36 as:

ẍ+ ω2x = (ω2 − ω0
2)x+ f(x, ẋ) + εp(t), (38)

in order to write:

ẋ = y

ẏ = −ω2x+ (ω2 − ω0
2)x+ f(x, y) + εp(t), (39)

which if :

y(t) =
1

2
(iωA(t)eiωt + c.c.) (40)

=⇒

0 =
1

2
(Ȧ(t)eiωt + c.c.) (41)

This lets one rewrite the amplitude equation:

ẏ(t) = (1/2)(−ω2A(t)eiωt + c.c) + (iω/2)(Ȧ(t)eiωt − c.c) (42)

= −ω2x+ (ω2 − ω0
2)x+ f(x, y) + εp(t) (43)

= −ω2(
1

2
(A(t)eiωt + c.c.)) + (ω2 − ω0

2)x+ f(x, y) + εp(t) (44)

=⇒

Ȧ(t) =
e−iωt

iω
[(ω2 − ω0

2)x+ f(x, y) + εp(t)]. (45)

Which we get by equating eqs. 42 and 44 and using the result from 41. This amplitude equation consist,
on the RHS, of a mismatch term (ω2 − ω0

2)x, the nonlinear term f(x, y), and the forcing εp(t). We are
interested in the largest, and slowest varying terms on the RHS, so the analysis is done by eliminating the
fast oscillating terms via averaging on a scale where we can neglect terms on scale of ω (akin to method of
averaging). The three terms will be dealt with in order, each time substituting the expressions for x and y
(eqs. 37 and 40).

First, Ȧ1(t) = e−iωt

iω (ω2 − ω0
2)x. Averaging we get:

Ȧ1(t) =
ω

2π

∫ 2π/ω

0

dτ
e−iωτ

iω
(ω2 − ω0

2)(
1

2
(A(t)eiωτ + c.c.))

=
(ω2 − ω0

2)

2iω
A(t) (46)
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Secondly, Ȧ2(t) = e−iωt

iω f(x, y). Using that f(x, y) =
∑
n,m cn,m(A(t)eiωt)n(A(t)e−iωt)m we get:

Ȧ2(t) =
ω

2π

∫ 2π/ω

0

dτ
e−iωτ

iω

∑
n,m

cn,m(A(t)eiωτ )n(A(t)e−iωτ )m, (47)

the relevant terms will be the ones with n+m− 1 = 0 =⇒ m = n− 1 which leaves us with the terms with
the factors of the form AnA

n−1
= A(AA)i. This leads us to write A2(t) = g(|A(t)|2)A(t). Generally g(|A|2)

set by the problem, but the simplest choice would be:

Ȧ2(t) = µA(t)− (γ + iκ)|A(t)|2A(t), (48)

here µ is a linear growth term, (γ + iκ) being the lowest nonlinear term. If we have µ, γ > 0 we have a
supercritical bifurcation whether as µ, γ < 0 lead sub-critical bifurcation we need h.o. to saturate.

Finally A3(t) = e−iωt

iω εp(t) will if we write p(t) =
∑
n(pne

inωt + c.c.):

Ȧ3(t) =
ω

2π

∫ 2π/ω

0

dτ
e−iωτ

iω
εp(t)

= −iεE. (49)

Gathering all the terms we get:

Ȧ(t) = −i (ω
2 − ω0

2)

2ω
A(t) + µA(t)− (γ + iκ)|A(t)|2A(t)− iεE, (50)

where we can see that we recover the structure of the CGL. We have a term for the mismatch, a term for
growth and then the two nonlinear terms which are respectively a saturation term and a frequency shift.
The last term is the driving of the oscillator. The derivation is generic to form of nonlinear oscillator. In
absence of forcing we recover the Landau-Stuart:

Ȧ = (1 + iη)A− (1 + iα)|A|2A. (51)

For the model to be valid one need |ω − ω0| � ω0 and µ� ω0 in order to make sure, respectively, that the
NL terms are small and the instability around the fixed point A = 0 is small. Furthermore |A|2 ≤ µ/γ but
|A|2 ∼ µ/γ in order to ensure that the terms representing growth and nonlinear saturation are comparable.
This requires small growth, and in practice the model is thus only valid near marginality.

1.4 The Nonlinear Coupled Oscillators

If we consider two weak coupled oscillators, where we in eq. 36 replace the forcing term to obtain the
following:

ẍ1 + ω1
2x1 = f1(x1, ẋ1) +D1(x2 − x1) +B1(ẋ2 − ẋ1)

ẍ2 + ω2
2x2 = f2(x2, ẋ2) +D2(x1 − x2) +B2(ẋ1 − ẋ2), (52)

where we have a linear coupling in the differences between the two phases. The aim of this section is then
to give a link between the structure of the coupling and the macro-phenomena that might show. If we use
the variables defined in eqs 37, 40, we can, as before (eq. 50), get the amplitude equations, via averaging:

Ȧ1 = −i∆1A1 + µ1A1 − (γ1 + iκ1)|A1|2A1 + (β1 + iδ1)(A2 −A1)

Ȧ2 = −i∆2A2 + µ2A2 − (γ2 + iκ2)|A2|2A2 + (β2 + iδ2)(A1 −A2), (53)

where we have introduced ∆j = ωj−ω to represent the mismatch. The coupling is here the respective terms
±(βj + iδj)(A2(t)−A1(t)), where the β’s are dissipative terms from the Bj coupling and the δ’s are reactive,
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and from Dj . Now writing Aj = Rje
iφj and ψ = φ2 − φ1 we can write:

Ṙ1 = µ1R1(1− γ1R1
2) + β1(R2 cosψ −R1)− δ1R2 sinψ (54)

Ṙ2 = µ2R2(1− γ2R2
2) + β2(R1 cosψ −R2) + δ2R1 sinψ (55)

ψ̇ = −ν + µ1α1R1
2 − µ2α2R2

2 + (δ2
R1

R2
− δ1

R2

R1
) cosψ + δ1 − δ2 − (β1

R2

R1
+ β2

R1

R2
) sinψ, (56)

with ν = ω2 − ω1. In order to progress further, the following assumptions is made:

µ1 = µ2 = µ (57)

t→ t/µ (58)

A→ A

(γ/µ)1/2
(59)

β, δ normalized to µ (60)

α normalized to γ/µ. (61)

This reduces the system of equations to:

Ṙ1 = R1(1−R1
2) + β(R2 cosψ −R1)− δR2 sinψ (62)

Ṙ2 = R2(1−R2
2) + β(R1 cosψ −R2) + δR1 sinψ (63)

ψ̇ = −ν + α(R1
2 −R2

2) + δ(
R1

R2
− R2

R1
) cosψ − β(

R2

R1
+
R1

R2
) sinψ. (64)

Now we can give our parameters the following interpretations: α is a nonlinear frequency shift, β represents
a dissipative coupling and δ a reactive coupling. This system exhibit (at least) two different phenomena:
oscillation death/quenching and attractive/repulsive interaction.

Oscillation death. For large β, ν R1, R2 becomes stable, effectively killing the oscillations. To see this set

δ ≡ 0 and let ω = (ω1+ω2)
2 =⇒ ∆1 = −∆2 = ∆. Neglecting the nonlinear terms we can write the amplitude

equations as:

Ȧ1 = (−i∆ + µ)A1 + β(A2 −A1)

Ȧ2 = (i∆ + µ)A2 + β(A1 −A2). (65)

Now if we perturb about A1 = A2 = 0 with:[
A1(t)
A2(t)

]
=

[
A1(0)
A2(0)

]
eλt, (66)

solving gives:

λ = µ− β ±
√
β2 −∆2. (67)

In order to get the quenching we need λ < 0 which implies:

µ < β (68)

β < (µ2 + ∆2)/2µ =⇒ β < ∆2/2µ+ ... (69)

The first condition is from the fact that the diffusive coupling introduces dissipation in each oscillator. The
second condition makes the detuning so large as to make forcing from the other oscillator unable to excite.

Attractive/repulsive interaction. Assuming β, δ small, by making a small excursion can writing:

Rj = 1 + rj , rj � 1, (70)
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get the equations:

ṙ1 = −2r1 + β(cosψ − 1)− δ sinψ

ṙ2 = −2r2 + β(cosψ − 1) + δ sinψ. (71)

When we have strong damping ṙj = 0 this reduces to:

r1 =
β

2
(cosψ − 1)− δ

2
sinψ

r2 =
β

2
(cosψ − 1) +

δ

2
sinψ, (72)

which finally by inserting into the phase equation,ψ = φ2 − φ1 gives us.

ψ̇ = −ν − 2(β + αδ) sinψ. (73)

If ν = 0 then for (β+αδ) > 0 implies that ψ = 0 is a stable fix point, thus synchronizing the two oscillators.
On the other hand for (β+αδ) < 0 implies that ψ = π is a stable fix point, again also a synchronized point.
The first case is will then attract the oscillators to each other whereas the second repulse.

To summarize, the β terms from the B’s is a form of dissipative coupling which will drive the to oscillators
towards synchronization, or attraction. The δ’s, from the D’s is a reactive coupling, which has no effect on
isochronous oscillators (ν = 0), but will be attractive or repulsive depending on sign otherwise.

1.5 Synchronization with Noise

In this section, we will look at the oscillator with noise. So far everything presented has been deterministic,
but this is due to change. This requires us to change our approach in order to accommodate the element
of randomness that is introduced. The starting point will be eq. 18, representing the phase dynamics, but
with an added term representing noise. This gives the Langevin equation for a particle in the potential V:

dψ

dt
= −ν + εq(ψ) + ε(t) (74)

= −dV (ψ)

dψ
+ ε(t) (75)

with:

V (ψ) = νψ − ε
∫ ψ

q(x)dx (76)

The staple fixpoints of the equation above is for:

dV

dψ
= 0,

d2V

dψ2
> 0 (77)

This depends on the structure of V (ψ). If the potential is structure as in fig. 6, it is possible to have noise
induced phase slips from one ψs1 to another ψs2. If V (ψ) is smooth with no local minima, the ”best” one
can hope for is quasi-periodic motion. This has an obvious parallel to Kramer’s problem, and the question
is, what does it take to overcome the energy barrier, and with what probability? Furthermore we would like
to know an average phase rotation frequency:

Ωψ = 〈ψ̇〉 =

∫
dψP (ψ)

(
−dV

dψ

)
(78)

where P (ψ) is a pdf. Here it is important to distinguish between white and coloured (bounded) noise. For
white noise we have 〈ε(t1)ε(t2)〉 = ε0

2δ(t2−t1), and the phasekicks introduced by the noise will be Gaussian.
This makes large kicks possible whereas in the case of coloured noise the kicks will be restricted. In the noisy
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V (ψ)

ψs,1

ψs,2Synchronization points

Figure 6: A potential V (ψ) where there is local minima which corresponds to states of synchronization.

environment the condition for synchronization, namely Ωψ = 0 needs to be change to Ωψ small but finite.
Also Ωψ needs to be treated statistically.

In order to calculate the probability of one phase slip one needs the probability flux which can be gotten
from the Fokker-Planck theory with white noise. We have:

∂P (ψ)

∂t
= − ∂

∂ψ

{〈
dψ

dt

〉
P − ∂

∂ψ
DP

}
, (79)

with D = 〈δψδψ〉
2∆ε and δψ = ψ − 〈ψ〉. Furthermore, with:

d

dt
δψ = ε(t) (80)

D = 〈ε2〉 = D0 (81)

〈dψ
dt
〉 = −ν + εq (82)

we can write:
∂P (ψ)

∂t
= − ∂

∂ψ

{
(−ν + εq(ψ))P −D0

∂P

∂ψ

}
. (83)

Equivalently we can introduce Γψ the probability flux:

∂P

∂ψ
+

∂

∂ψ
Γψ = 0, (84)

with:

〈Γψ〉 =
1

2π

∫ 2π

0

Γψdψ (85)

=
1

2π

∫ 2π

0

[
−dV

dψ
P −D0

∂ρ

∂ψ

]
dψ (86)

=
1

2π
〈Ωψ〉. (87)

Now to solve we use stationarity and periodicity of P, p(ψ + 2π) = p(ψ), to write:

1

ρ

∂P

∂ψ
= − 1

ρ0

dV

dψ
=⇒ logP = −V

ε20
+ constant (88)

=⇒ P = c

∫ ψ+2π

q

dψ
exp[V (ψ̇ − V (ψ)]

D0
(89)
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For the Adler equation q(ψ) = sinψ, we can Fourier analyse P:

P =

∞∑
n=−∞

Pne
inψ, (90)

and using that we are looking for stationary solutions, i.e. independent of time we can write:

∂P

∂t
+

∂

∂ψ
Γψ = 0 =⇒ Γψ

∣∣∣∣
ss

= Γδn,0, (91)

which leads to:
Γδn,0 = −(inD0 + ν)Pn +

ε

2i
(Pn−1 − Pn+1). (92)

n = 0 =⇒ Γ = −νP0 +
ε

2i
(P−1 − P+1) (93)

n 6= 0 =⇒ Γ = 0 = −(inε0
2 + ν)Pn +

ε

2i
(Pn−1 − Pn+1), (94)

normalization then requires P0 = 1
2π and we also have Preal =⇒ P−n = Pn∗. We have:

Γ = − ν

2π
− ε=P1 (95)

=⇒
Ωψ = 2π〈Γψ〉 = −ν − 2πε=P1. (96)

This is the statistical slip frequency. To get P1 we notice:

0 = −(inε0
2 + ν)Pn +

ε

2i
(Pn−1 − Pn+1) (97)

=⇒
Pn
Pn−1

=
1

(inε0
2 + ν) 2i

ε + Pn+1

Pn

(98)

=⇒

P1 =
1/(2π)

(iε0
2 + ν) 2i

ε + 1
ν+2iε2

2i
ε + P3

P2

. (99)

So we get a continued fraction which we can calculate to large n. And the flux 〈Γψ〉 → P1. As an interesting
aside we can also see that the lyapunov exponent can be found by writing:

dψ

dt
= −ν + ε sinψ + ε, (100)

so
dδψ

dt
= ε cosψδψ, (101)

which let us write:

h =

〈
1

δψ

dδψ

dt

〉
= ε〈cosφ〉 = 2π<P1. (102)

Now ε0
2 = 0 =⇒ h = 0 unless synchronized and ε0

2 6= 0 =⇒ h < 0. Thus the effect of noise is to increase
the plateau of Ωψ, see fig. 7, thus softening the synchronization. Ways to extend this work would be to
look at synchronization by quasi-harmonic stochastic force or to look at mutual synchronization of noisy
oscillators.
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ν

Ωψ

Figure 7: The beat frequency as a function of ν around the synchronization region (flat part). We see that compared to the
case without noise that the noise softens the synchronization.

1.6 References

The notes I have tried to cover are the following:

• Lecture 6a: Basics of Synch 1

• Lecture 6b: Basics of Synch 2

• Lecture 6c: Synch-Technical Aside

• Lecture 7: Locking and Quasi-periodicity for Coupled Oscillators, Oscillator with Noise.

Further reading: Review of patterns near threshold-Cross,Hohenberg
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https://drive.google.com/file/d/0B31H-OKr7F_BNjJGd25VMXZjT2c/view
https://courses.physics.ucsd.edu/2017/Spring/physics221a/Basic_Synch_2.pdf
https://courses.physics.ucsd.edu/2017/Spring/physics221a/Technical_Aside.pdf
https://courses.physics.ucsd.edu/2017/Spring/physics221a/Synch_Coupled_Oscillators_Noise.pdf
https://courses.physics.ucsd.edu/2017/Spring/physics221a/handouts.html
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