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1 Introduction

1.1 Attractors

Why study Strange Attractors? Certain classes of attractors (called ’strange attactors’) have fractal dimen-
sion. Compare to usual focus / limit cycle. Main topics in study of attractors: How to describe them?
Dimension, and Measure.

2 Box Counting Dimension

Box-Counting (Fractal) Dimension, Fractals and Self-Similarity. To measure the ’size’ of a fractal, defnie
the box-counting dimension in N-dimensional cartesian space as the number of N-dimensional cubes of size
ε required to cover the structure, denote this by N(ε). Then the boxing count dimension is

D0 = lim
ε→0

lnN(ε)

ln 1
ε

. (1)

Some examples:

• Two (different) points, N(ε) = 2, D0 = limε→0
ln 2

ln 1/ε = 0

• A line requires l
ε boxes, so D0 = limε→0

ln l/ε
ln 1/ε = 1
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(a) Middle Third Cantor Set

2.1 Middle Third Cantor Set

Definition: Starting with [0, 1] continually remove the middle third from each sub-interval.
Step 1: [0, 1] (Requires 1 box of size 1 to cover)
Step 2: [0, 1/3], [2/3, 1] (Requires 2 boxes of size 1/3)
Step 3: [0, 1/9], [2/9, 1/3]; [2/3, 7/9], [8/9, 1] (Requires 4 boxes of size 1/9)

And so on. We have εp = ( 1
3 )p, N(εp) = 2p. Now, consider p→∞.

D0 = limp→∞
lnN(εp)
ln 1/εp

= limp→∞
ln 2p

ln((1/3)−p)

= limp→∞
p ln 2
p ln 3 = ln 2

ln 3 ≈ 0.63.

(2)

Fractal dimension (i.e. effective dimensionality between 0 and 1).

2.2 Koch Curve (Snowflake) / Coastline

In the Koch snowflake, each line segment breaks into four small line segments, each of size l/3, where l was
the original segment length. This leads to np = 4p, εp = (1/3)p.

D0 = limp→∞
lnN(εp)
ln 1/εp

= limp→∞
ln 4p

ln((1/3)−p)

= limp→∞
p ln 4
p ln 3 = ln 4

ln 3 ≈ 1.2618.

(3)

Fractal dimension is ’in between’ line and plane (1 and 2). (Note also that Koch curve has exactly twice the
dimension of the Cantor set).

2.3 Cantor Square (’Cake-Cutting Fractal’)

D0 = lim
p→∞

lnN(εp)

ln 1/εp
= lim
p→∞

ln 4p

ln((1/3)−p)
≈ 1.2618. (4)

Note box-counting dimension of cake-cutting fractal identical to dimension of Koch curve. Somewhat counter-
intuitive as (a) koch curve 1D structure, which is ’fattened’ while (b) cake-cutting fractal 2D structure
which is ’thinned’. More intuitively, the Cake-Cutting fractal has exactly twice the dimension of the middle
third cantor set as it can be seen as the direct product of two cantor sets (x and y dimensions).

2.4 Self Similarity, Scale Similarity

Fractals tend to exhibit invariance under magnifaction (i.e. koch curve), and to have power law scaling
(which is symptomatic of scale invariance).

Consider Koch curve, N(εp) = n(p) = 4p, which is the number of cubes of scale lp to cover the curve.

At a particular p, Areap = l2p = (1
3 )2p =⇒ ln lp = −p ln 3. So, n(p) = ep ln 4 = e(−

ln lp
ln 3 ln 4) ≈ 1/lDp . This

example of a ’scaling relation’ can be thought of as occupation density or number on scale lp.
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(a) Koch Curve

(a) Cake-Cutting Fractal
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(a) n=1 (b) n=2

(a) n=3 (b) n=4 (c) n=5

Figure 5: Pictures of animals

3 Case Study: Baker’s Map

The Baker’s map is a model of compressible (λa + λb < 1) or incompressible (λa + λb = 1) mixing.

xn+1 =

{
λaxn, if yn < α

(1− λb) + λbxn, if yn > α
(5)

yn+1 =

{
yn
α , if yn < α
yn−α
β , if yn > α

(6)

Here are repeated iterations of the baker’s map with λa = 0.25, λb = 0.6, α = 0.5 β = .5. The red
and blue regions are of different mixing materials, while the white shows empty space resulting from the
compression of red and blue regions.

Note that after applying the BM twice, the diagram (b) has stripes of length λ2a, λaλb, λaλb, λ
2
b (consid-

ering only the red and blue).
After n iterations the number of stripes having width λma λ

n−m
b is Z(m,n) = n!

m!(n−m)! .

Note also that a horizontal slice of the baker’s map gives the Cantor Set, so that we expect the dimension
of the BM attractor, D0 = 1 + D̂0, where D̂0 is the dimension of the Cantor Set.

However to calculate the box counting dimension, D0 from the map itself we have to leverage the self-
similarity of the map.

In particular, the map can be viewed as generating holes gaps in such a way that all stripes where x < λa
arise from the x < λa of the previous iterate. Consider figure (b), and select the left two stripes, if one were
to zoom in on those two, they’d look exactly like figure (a).The same can be said for the right two stripes.
The respective stretching factors are 1

λa
and 1

λb
.

We can quantify this observation by letting N̂(ε) = of ε-length intervals required to cover a horizontal
slice. Then N̂(ε) = N̂a(ε) + N̂b(ε), where N̂a is the contribution from [0, λa], and similarly for N̂b.

However the self-similarity of the [0, λa] interval implies that N̂a(ε) = N̂( ε
λa

), N̂b(ε) = N̂( ε
λb

)
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(a) Sinai Map

Recall, D0 = limε→0
ln(N̂(ε))

ln( 1
ε )

=⇒ N̂(ε) ≈ kε−D0 . Subsituting into the previous equation, we get

kε−D0 = k( ε
λa

)−D̂0 + k( ε
λb

)−D̂0 =⇒ 1 = λD̂0
a + λD̂0

b . And also, λa + λb < 1 =⇒ 0 < D̂0 < 1. So attractor

of Baker’s Map has 1 < D0 < 2, and for λa = λb = 1
3 , we get D̂0 = ln 2

ln 3 = dimension of Cantor Set.

4 Attractor Measure

The box counting dimension D0 is a purely geometric description of the attractor. It gives the scale of the
number of ε-cubes required to cover the attractor.

However D0 does not contain information about how often each ε-cube is visited, or how long the
system stays in any given cube. From the Baker’s map figures, we can see that strange attractors exhibit
intermittancy, or bursts of dynamics between regions of inactivity (the white space).

To include timing information we need to define a dynamical concept of dimensionality, or measure.
To illustrate this further, we consider the Sinai Map [0, 1]→ [0, 1] (Ott pg. 81).

xn+1 = xn + yn + ∆ cos 2πyn mod 1 (7)

yn+1 = xn + 2yn mod 1 (8)

For ∆ << 1, the attractor can be shown to cover the entire unit square, so D0 = 2 and N(ε) ≈ ε−2. But,
as can be seen, the trajectories tend to cluster in tight bands rather than explore the space uniformly. (Also
see Ott pg. 81, fig 316).

Evidently, the tightly clustered bands are more important for the dynamics of the system than the low
density regions. It’s natural to relate the dimension of the attractor to the ’dwell time’ in small cubes (i.e.
replace N(ε) with a weighted sum). This leads to the definition of the natural measure of a cube.

µi = lim
T→∞

η(Ci, x0, T )

T
(9)

Which describes the time an orbit starting from an initial condition, x0, spends in cube Ci as T →∞. (i.e.
µi is ’fractional dwell time’).

Aside: Concept of Measure. Probability measure µ for bounded region R:

• Assigns non-negative number to any set in R

• Is countably additive
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For any countably family of disjoint sets Si in R, then

µ(∪iSi) =
∑
i

µ(Si),

which simply says that the measure of the union of sets is the sum of the measures of the individual sets.

• Assigns µ(R) = 1.

• For M−1(S) = Set of points mapping to S on 1 iterate M(M−1(S)) = S,
then µ is invariant if µ(S) = µ(M−1(S)) (defined by fractional dwell time).

• µ is natural if, for interval S and x0 in base of attractor of chaotic attractor, µ(S, x0) is the same for all
x0 in basin except for measure zero sets.

This allows the definition of Dq,

Dq =
1

1− q
lim
ε→0

ln I(q, ε)

ln 1
ε

(10)

I(q, ε) =

N(ε)∑
i=1

µqi (11)

Note:

• I(q, ε) is a weighted sum over all cubes, where the weight is given by the natural measure (fractional dwell
time spent in that cube).

• If q → 0, Dq → D0 (recall D0 = limε→0
ln(N̂(ε))

ln( 1
ε )

)

• If all µi are equal, µi = 1
N(ε) .

Dq =
1

1− q
lim
ε→0

ln
∑N(ε)
i=1 ( 1

N(ε) )
q

ln ε−1

≈ 1

1− q
ln( 1

N(ε) )
q−1

ln 1
ε

→ D0

5 Information Dimension

5.1 Back to the Baker’s Map

To develop the ideas behind the natural measure µ, dimension spectrum Dq, and how to calculate I(q, ε).
First, observe that an initial distribution uniform in y stays uniform upon iteration. The ’strangeness’ of

the attractor is due to λa + λb < 1 while α+ β = 1. This implies that D0 = 1 + D̂0.

• Natural measure of attractor in y ≤ α is α.

• Natural measure of attractor in y > α is β.

but y ≤ α =⇒ x ≤ λa, y > α =⇒ x ≥ 1 − λb (so α + β = 1). Also consider µ[(0 < y < α) ∪ (α <
y < 1)] = µ(y < α) + µ(y > α) = 1 (this is the first measure requirement). Measure in y is invariant, i.e.
µ(s) = µ(M−1(s)). So, the naturally invariant measure for x ≤ λa is α, while for 1− λb < x < 1 is β.

This implies that Dq = 1 + D̂q (as the vertical dimension is 1).

To calculate D̂q:

D̂q =
1

1− q
lim
ε→0

ln Î(q, ε)

ln ε−1
(12)
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Î(q, ε) =

N̂(ε)∑
i=1

µ̂qi (13)

µ =

{
α, if x ≤ λa
β, if x > 1− λb

=⇒ Î(q, ε) = Îa(q, ε) + Îb(q, ε) (14)

Îa(q, ε)↔ 0 < x < λa.
Îb(q, ε)↔ 1− λb < x < 1.
Recall that self-similarity under magnification we have{

Îa(q, ε) = αq Î(q, ε/λa), (µ = α)

Îb(q, ε) = βq Î(q, ε/λb), (µ = β)
=⇒ Î(q, ε) = αaÎ(q, ε/λa) + βq Î(q, ε/λb). (15)

From Dq = limε→0
1

1−q
ln I(q,ε)
ln ε−1 =⇒ Î(q, ε) = kε(q−1)Dq . Substituting this expression into (15) gives a

transcendental equation for D̂q,

1 = αqλ(1−q)D̂qa + βqλ
(1−q)D̂q
b (16)

For the case that λa = λb = λ, we can calculate D̂q explicitly.

D̂q =
ln(α2 + β2)

(q − 1) ln(λ)
=

ln(eq lnα + eq ln β)

(q − 1) lnλ
(17)

q = 0, D̂0 =
ln 2

ln(1/λ)
(18)

q = 1, D̂1 =
α lnα+ β lnβ

lnλ
(19)

In general, for qj > qi =⇒ Dqj ≤ Dqi . Now, what does information dimension (D1), and in general
Dq actually mean? A remarkable property of Information Dimension: consider subset of fractal attractor
with fraction 0 < θ < 1 of natural measure of attractor, then D0(θ) = D1. That is, D1 gives box-counting
dimension of smallest set with fraction θ of attractor. Since θ < 1, D1 represents the dimension of the ”core”
of the attractor, that is, the region with high natural measure. Equivalently, the dimension of the portion
of the attractor which contributes significantly to the dynamics of the system (i.e. excludes regions with
infinitesimal µ, or places that are very infrequently visited in phase space).

Here we present a proof by example of D0(θ) = D1 for the Baker’s Map. To do this, we require

• Characteristic natural measure (i.e. distribution of strips, measure of strips size)

• Distribution of natural measure µ

• Compare D1, D0(θ)

Recall that after n-iterations of the Baker’s Map there are 2n strips with width distribution Z(m,n) =
n!

m!(n−m)! . Also recall

µ =

{
α, if x ≤ λa
β, if x > 1− λb

,natural measures of basic strips, rescaling defined by y < α, y > α.

Thus, define the natural measure of a strip of width λma λ
n−m
b as W (m,n) = Z(m,n)αmβn−m, where Z(m,n)

denotes the number of m, n−m strips, and αmβn−m is µ for an m, n−m strip.

W (m,n) = αmβn−m
n!

m!(n−m)!
(20)
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Note:
∑n
m=0W (n,m) =

∑n
m=0 α

m(1−α)n−m n!
m!(n−m)! = (α+ 1−α)n = 1. So, W (n,m) fulfills the criteria

of a measure. To obtain information about the information entropy, we can leverage the n → ∞ behavior.
Recall Stirling’s Formula,

ln p! = (p+ 1/2) ln(1 + p)− (p+ 1) + ln((2π)1/2) +O(1/p) (21)

Applying Stirling’s formula to Z(m,n) and expanding about the point of maximal probability (for binomial
coefficients, mmax ≈ n/2, central line of Pascal’s triangle) yields

Z(m,n) ≈ 2n

(2π)1/2
(

4

n
)1/2 exp(−1

2
(

4

n
(m− n/2)2)) (22)

And similarly,

W (m,n) ≈ 1

(2πnαβ)1/2
exp(− (m− αn)2

2αβn
) (23)

Where the expansions are valid near their respective maxima, so Z valid for |m/n − 1/2| << 1 and W for
|m/n−α| << 1. Note that Z is clustered about m/n ≈ 1/2 and W is clustered about m/n ≈ α, both having
width at half-max 1/

√
n. In particular, note that limn→∞W = δ(m/n − α), limn→∞

Z
2n = δ(m/n − 1/2).

This confirms that most of the natural measure is concentrated in a small fraction of strips near the maximum,
also that the concentration increases with iteration (peaks get tighter).

Recall D̂1 = α lnα+β ln β
lnλ . To check D̂0(θ) = D̂1, need to calculate D0(θ). Consider the sum of

measures less than the fraction θ, i.e.
∑mθ−1
m=0 W (m,n) ≤ θ, where mθ is greatest integer such that

N̂(ε, θ) =
∑mθ
m=0 Z(m,n). (N̂(ε, θ) is the smallest number of intervals of length ε = λna to cover θ of

x-axis. To relate mθ to θ, consider:

θ ≈
∑mθ W (m,n)

≈
∫mθ
0

W (m,n)dm

≈ 1
(2παβn)1/2

∫mθ
0

e−
(m−αn)2

2πnαβ dm

(24)

mθ ≈ n(α+ (
αβ

n
)1/2erfc−1(θ)) (25)

Now, we still need N̂(ε, θ), however for α < β, and recalling N̂(ε) = N̂a(ε) + N̂b(ε), we can see that
N̂a(ε) = N̂(ε, λa) has the dominant contribution. In other words, as n → ∞, low powers of α dominant.
However, the asymptotic form Z(m,n) is invalid away from m/n ≈ 1/2. We can get around this by using
the approximation:

Z(m,n) ≈ β−n(β/α)m

(2παβn)1/2
e−

(m−αn)2

2πnαβ , (26)

which is valid near m/n ≈ α. This implies

N̂(ε, θ) ≈
mθ∑
m=0

β−n(β/α)m

(2παβn)1/2
e−

(m−αn)2

2πnαβ (27)

Further, the variation in (β/α)m on [0,mθ] is stronger than e−
(m−αn)2

2πnαβ as n→∞. So we have,

N̂(ε, θ) ≈
mθ∑
m=0

(β/α)m
β−n

n1/2
≈ (β/α)mθ

β

β − α
β−n√
n
, (28)

And finally,
N̂(ε, θ) ≈ β−(n−mθ)α−mθn−1/2 (29)

From above, we have mθ/n ≈ α+O(1/
√
n), and ε = λna . Now consider

D̂0(θ) = limn→∞
ln N̂
ln ε−1

= limn→∞
mθ lnα+(n−mθ) ln β

n lnλa

= limn→∞
nα lnα+n ln β−nα ln β

n lnλa

= α lnα+β ln β
lnλa

= D̂1

(30)
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This equates the box counting dimension of the attractor with fraction θ of natural measure to the information
dimension of the attractor.

• Most cubes covering attractor have small fraction of measure (orbit dwell time is tiny fraction).

• Few cubes compose the ’core’ of the attractor, though those contain most of the measure.

• Representative of intermittancy in the dynamics!
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