HW problem week 3

Your turned in assignment should be clearly written and easy to follow! Learning how to
explain your work in a way that is as easy as possible to follow is an important part of your
training as a physicist. An incoherent mess of equations with a correct final answer could
receive less points than a solution which is clearly explained at every step but has an algebra
mistake somewhere. Once you've solved the problem, you can rewrite it on a new piece of
paper for clarity if you need to.

In class, we derived the Bohr model of the atom following the assumption that the angular
momentum L is quantized in units of A. In this problem, you will repeat the derivation using
the relativistic expressions for energy and momentum. In this problem (and always in life),
you should try to combine physical constants into «, the fine structure constant, wherever
possible.

1. Assume that the electron travels in a circular orbit with constant angular speed w. Us-
ing Newton’s law F= dp/dt with the relativistic expression for the momentum, obtain
an expression relating the radius r and the velocity v. Hint: Since the speed is con-
stant, the relativistic answer for dp/dt is related in a simple way to the nonrelativistic
answer.

In the nonrelativistic case, we have F = mdv/dt = mv?/r. In the relativistic case,
F = d(ymv)/dt = ymdv/dt since v doesn’t depend on time (constant speed). So,
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2. By quantizing the relativistic angular momentum (still 77X p) to integer multiples of A,
and using the result of part 1, show that the speed of the n’th Bohr orbit is the same
as in the nonrelativistic case:
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3. Using the result of parts 1 and 2, calculate the radius of the n’th Bohr orbit.
Using parts 1 and 2,
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4. The formula E = +/(mc?)? + p?c? = ymc? is for a free particle; in the presence of
a potential we add the potential energy U. Using the result of the previous parts,
calculate the relativistic answer for the total energy.

Putting everything together, E = ymc® — kZe*/r. The most convenient way to solve
this is to use r = hn/ymuv from angular momentum quantization to get

where we also multiplied by ¢ in the numerator and denominator of the second term.
Now recognize the second term as
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so that the answer for the energy is
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To see how this depends on n, we now plug in v = Zae/n to find
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5. By expanding in powers of o using the Taylor expansion
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for small €, show that the energy levels are of the form
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Expanding the square root using the given formula,
(1—(Za/n)HY? =1~ (Za/n)?/2 — (Za/n)*/8.
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. The relativistic Bohr model of the atom actually makes a prediction for size of the
largest stable element. By looking at the results derived in this problem and imposing
some physical assumptions on the radius, velocity, or energy, find a condition on the
atomic number Z of a hydrogen like atom.

Possible answers are:
(a) from the expression for the velocity, the condition that v < ¢ yields Z < a~! for
n=1.

(b) from the expression from the radius, the condition that r is real and > 0 implies
n? — Z2a% > 0 so for n = 1 obtains Z < o™,

(c) the energy should be real, so 1 — (Za/n)? > 0. Again, for n =1, find Z <= o~ L.



