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I. INTRODUCTION

We consider motion of a planet around the sun, the Kepler problem, see e.g. Garcia, “Numerical
Methods for Physics”, Sec. 3.1.
Let the planet have mass m and velocity v, and the sun have mass M. The total energy is given

by

E:§mv— . (1)

where 7 is the distance from the sun to the planet. The energy is conserved, as is the angular

momentum:
L =mF x 7. (2)

The motion is in a plane so the only non-zero compoment is

L,=L =m(zvy — yvy). (3)
The force on the planet is given by
— GMm
F(r)=— el (4)

The negative sign indicates that this is an attractive (inwards) force.

II. CIRCULAR MOTION

For the special case of circular motion the sum of the gravitational force in Eq. (4) and the

2

centripetal force muvZ, . /Tcirc is zero, i.e.

mvgirc GMm
= 2 ) (5)
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It is easy to check that the potential energy is minus twice the kinetic energy so the total energy is

EGM'm

Ecirc = -
2 Teire

: (7)

The angular momentum, L., and period of the circular orbit, Tei.c, are given by

Leire = MUcire™ = m V GMTcirc (8)

ir 2
Teire = 2 Leire = 7T T3/2 (9)
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IIT. THE GENERAL CASE: ELLIPTICAL MOTION

In general the motion is not circular but an ellipse with the sun at one focus, see the figure

below.
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If a and b are the semi-major and semi-minor axes (b < a) then the eccentricity, ¢, is defined to

be

We now quote without proof that the formula for the ellipse is

a(l —é?)
) = ——=.
r(©) 1 —ecosf

Hence, the perihelion (distance at closest approach) is given by
qg=(1-¢€)a, (12)
while the aphelion (distance when furthest away) is given by

Q= (1+¢€)a. (13)



We also quote without proof that the eccentricity, angular momentum and energy are related
by

2F 2
=\ Gz (14)

From Egs. (7) and (8) we see that Eq. (14) correctly gives € = 0 for a circular orbit.

One can also show that the period is related to the semi-major axis a by

)

which is known as Kepler’s third law. Furthermore, the energy can also be expressed in terms of

T =27

a by

1GMm
E__§ panl (16)

Comparing the general expressions for the energy and period in Egs. (16) and (15) with those for
a circular orbit in Eqgs. (7) and (9), we see that they are the same except that rc.. is replaced by

a in the general case.

IV. RELATION TO SPEED AT APHELION

In the numerical problems in the homework, we start the planet at the aphelion with speed v;,

see the figure below.
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Hence we have

1 GM
L = mQu;, E = —muv? — T (17)
2 Q
The expression for the eccentricity, Eq. (14), can then be written in the following simple form
2
Yi
e=1-——, (18)



where vy is given by Eq. (6) with » = @, and we have assumed v; < vcire (S0 that the planet

starts at the aphelion rather than the perihelion). Similarly, from Eqgs. (11) and (13) we can write

r(@)  1—e¢
Q 1—ecosh’

(19)

and, from Egs. (9) and (15),

T 1
= . 20
Tcirc (1 + 6)3/2 ( )

V. NUMERICS

In the numerical calculations we set m = M = G = (Q = 1. From the above results it follows

that
Ucirc = 17 (21)
Teire = 2, (22)
e = 1—02 (23)
2T 2T
T = = , 24
2= 2R~ (14 P 24)
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e — 25
" 1—ecosd (25)

Orbits of different eccentricity are produced by different values of v; in the region 0 < v; < 1. For
v; = 1 the orbit is circular (e = 0). If we were to set set v; = 0 (e = 1) the planet would fall into
the sun and crash.

For € < 1, the orbit is close to circular and the speed is nearly constant. However, for € — 1,
the ellipse becomes more and more “squashed”, and the magnitude and direction of the velocity
change rapidly when the planet approaches the sun. This requires a smaller time step to preserve
accuracy. In fact, for e — 1, it would be better to use adaptive step-size control so the time-step
would be automatically reduced when the planet gets close to the sun and increased again when the

planets moves away. (However, adaptive step-size control will not be needed for the homework.)



