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8-24 Ps()=—= r2e /% for hydrogen ground state, U(r)= - is potential energy (Z =1)
do

L) = TU (NP o(r)dr = —&fz T re~2laogr
0 dy o

ake® (ag )% 2
=- 2 (ﬁ) [ze7*dz  where 7=
o 2/ g

—ke?
8

=-2(136 eV)=-27.2eV.

2 2
To find (K), we note that (K)+{U)=(E) = _Iz(ia =-136 eV so, {K) :% =+13.6 eV.
0

8-25  The most probable distance is the value of r which maximizes the radial probability density

P(r) =|rR(rj2 .Since P(r) is largest where rR(r) reaches its maximum, we look for the most

dirR() }

probable distance by setting ————— equal to zero, using the functions R(r) from Table 8.4.

d

r
For clarity, we measure distances in bohrs, so that g becomes simply r, etc. Then for the 2s

state of hydrogen, the condition for a maximum is

T e R R R B

or 0 =4—6r +r”. There are two solutions, which may be found by completing the square to
get 0=(r —3)2 —5 or r=3++/5bohrs . Of these r =3++5 = 5.2368, gives the largest value of
P(r), and so is the most probable distance. For the 2p state of hydrogen, a similar analysis

d - 1
gives 0 = {Ze 12 }: {Zr _Erz}e—rlz with the obvious roots r =0 (a minimum) and r =4 (a

maximum). Thus, the most probable distance for the 2p state is r = 4a,, in agreement with the

simple Bohr model.

8-26  The probabilities are found by integrating the radial probability density for each state, P(r),

from r =0 to r = 4a,. For the 2s state we find from Table 8.4 (with Z =1 for hydrogen)

Pys(r) =|rRas O = Bao )™ [gi]z(z —a—r)ze*'a‘) and P =(8a)" EO(LJZ[Z—éJZe'/aOdr.

0 £
r 4
Changing variables from r to z = g gives P = 871_[ (42 2 _472° 47" )fz dz . Repeated
0

integration by parts gives

) A
P87t {ar" e 42 (02 120" 147" ) @-202 122" ) (20 22)- @)

—871 {(64+96 +104+72 +24 )%™ +8 }= 0176



4
2
For the 2p state of hydrogen Py ,(r) = |rR2p (rﬂ = (24;5;0)_l (a—rj e % and
0

da 4
g0
P=(45)" | (;] e o dr = 24‘1j' 2%e’dz . Again integrating by parts, we get
0 0
4
P=247"{z" —4z° -122% - 24224 }e‘z|0 =247 {824e™ + 24 }=0.371. The probability for the
2s electron is much smaller, suggesting that this electron spends more of its time in the outer

regions of the atom. This is in accord with classical physics, where the electron in a lower
angular momentum state is described by orbits more elliptic in shape.

8-29  Tofind Ar we first compute <r2> using the radial probability density for the 1s state of
4 T 4 7 2
hydrogen: P (r):_zrze—zr/ao . Then <r2> = j'rzpls (r)dr = f r4e_2r/a°dr . With z :é , this is
dp dg
56
<r2> =—3 (—j f z°e7"dz. The integral on the right is (see Example 8.9) j 2"e7"dz =4! so that

<r2>:i3(%] (41)=3a3 and Ar:(r2 —(r)zj/ = 3a§ —(1.530)2]’ =0.8664, . Since Ar is an
%

appreciable fraction of the average distance, the whereabouts of the electron are largely
unknown in this case.

8-30  The averages {r) and <r2> are found by weighting the probability density for this state

(z),
Ps(r) = 4L azo J r2e 221% with rand r? , respectively, in the integral from r=0to r =

JT r3e—ZZr/a0dr

0

%j]? rde2Zla gy
dg /0

27r
Substituting z _a— gives

0

o= (3 eracile) Al
<r2>=4£:0J (3 rra-ie) (¥

2
a
and Ar = —(r )j = [3 - T —0.866[%j . The momentum uncertainty is deduced

from the average potential energy

3 3
L) = —kze? T% P, o(r)dr = 4kZze Z[éj T re 2212 _ 4kZe2[iJ (ijz = _ﬁz_ef .
0

0



9-1

9-6

k(ze 5
Then, since E = —% for the 1s level, and g = 7 , we obtain
m. ke

e

2
(pZ):zme<K>:zme(E_<u>):%z—ef:(ﬁj |
% %
: 2\VY2 Zh
With (p) =0 from symmetry, we get Ap= (p ))V =g and ArAp=0.8667% for any Z,

consistent with the uncertainty principle.
AE = 2,UBB = hf

2(927 x10™* JT)0.35T)=(663x10"*" Js)f so f=9.79x10° Hz

1
(@) 3d subshell = 1=2=>m; =-2, -1, 0, 1, 2 and mq :iE for each m,

I m mg
n
3 2 -2 -1/2
3 2 -2 +1/2
3 2 -1 -1/2
3 2 -1 +1/2
3 2 0 -1/2
3 2 0 +1/2
3 2 1 -1/2
3 2 1 +1/2
3 2 2 -1/2
3 2 2 +1/2
(b) 3p subshell: for a p state, |=1. Thus m; can take on values I to/, or -1, 0, 1. For each
1
m;, mg can be J_rz.
I my mg
n

3 1 -1 -1/2
3 1 -1 +1/2
3 1 0 -1/2
3 1 0 +1/2
3 1 1 -1/2
3 1 1 +1/2

The exiting beams differ in the spin orientation of the outermost atomic electron. The energy
difference derives from the magnetic energy of this spin in the applied field B:

_e
U=-u,-B= g(%)SZB =—-0gBmy.



1
With g =2 for electrons, the energy difference between the up spin (ms = Ej and down spin

1
(ms = _E) orientations is

AU =gugB =(2)0.273 %107 )/ T)0.5T)=9.273x10** 1=580x10"° eV

(#7%)
9-17  From Equation 8.9 we have E = LZ_”LZJ (nl2 + n§ + ng)
m

) (1054 x 10*3“)2(”2 Yn? +nj +nd

2(9_11X10—31X2X10_10)2 ):(1.5><10—18 Janz +n22 N n32)=(9.4 eV)(nf N ng +n§)

(@) 2 electrons per state. The lowest states have
(07 +nf+n3)=(@ 1, 1)=>Ey =04 eV)® +1° +17 )ev =282 eV.
For (nf +nj +n3 )=( 1, 2) or (1, 2, 1) or (2,1, 1),

Ei1 = Ein =B =(0.4 eV)(1* +1° +2°)=56.4 eV
Epin =2% €11 +Eqgy +Enpy +Eppp )=2(28.2 +3x 56.4) = 3984 eV

(b) All 8 particles go into the (niz + n22 + n32 ): (1, 1, 1) state, so

Emin :8 X Elll :2256 eV .
921  (a) 1s°2s*2p*

1
(b) For the two 1s electrons, n=1, 1=0, m; =0, mg = iz.
1
For the two 2s electrons, n=2, =0, m; =0, mg = iz.

For the four 2p electrons, n=2, =1, m; =1, 0, -1, my =+

N |~



9-24

Ato

Na

Mg

Al

Si

Cl

Ar

3s

3p

4s

l

T

Eledr on
Configuration

[Ne]3st

[Ne]3s?

[Ne]3s?3p!

[Ne]3s°3p?

[Ne]3s?3p®

[Ne]3s23p*

[Ne]3s?3p®

[Ne]3s23p®

[Ar]4st

The 3s subshell is energetically lower and so fills before the 3p. According to Hund’s rule,
electrons prefer to align their spins so long as the exclusion principle can be satisfied.





