Final project

Monte Carlo applications

problem 1 (individual): 10 % problem 2 (team): 20%

due: December 14, 2018 2:00 pm

Team A: Birky, Wong, Papas

Team B: Liu, Montoya Gutierez De Rave, Woods
Team C: Ramirez, Smith, Van Linge

Team D: Or#eleva, Cosens, Kesbhat

Team E: Leonelli, Rice, Zhou



Problem 1 prepared and submitted individually

Consider the probability distribution p(x) which is the mixture of two multivariate Gaussian
distributions in two variables with x=(x1,x2):

1 1
p(x) = EN (x|py, Z1) + 5N (x| pa, X2)

where u, = [0, 0], Bo =[5, 517, ¥, = X, = diag{0.25, 2}

1(A) Plot the p(x) probability density function in the (x1,x2) variables

1(B) Calculate the mean of the vector x=(x1,x2) using Markov Chain Monte Carlo with
Metropolis importance sampling. Compare the histogram with the 1(A) plot.

1(C) Calculate the Monte Carlo error of the mean of the vector x=(x1,x2) using Markov Chain
Monte Carlo with Metropolis importance sampling.

1(D) Estimate the autocorrelation time (separation of independent MC configurations) for
correct error estimates.

1(E) Compare the MC results with the analytic expectations.



Problem 1 (phys 239 only)

prepared and submitted individually

1(F) Compare the Metropolis MC results with Gibbs sampling.
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Problem 2 submitted by the team

plot your figure of mine accidents between 1851-1962 from data files custom made for
each team (linked on Final web page)

estimate with prior based MCMC the year when regulations changed

Bayesian prior is parametrized with the Gamma distribution where a=2-3 and b=1
are reasonable choices although results are not sensitive to the choices
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Problem 2 submitted by the team
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Problem 2 submitted by the team
A CASE STUDY: CHANGE-POINT DETECTION

The task of change-point detection is of major importance in a number of scientific disciplines, ranging
from engineering and sociology to economics and environmental studies.

The aim of the chanege-point identification

task is to detect partitions in a sequence of observations, in order for the data in each block to be
statistically “similar,” in other words, to be distributed according to a common probability distribution.

Let x, be a discrete random variable that corresponds to the count of an event, for example, the
number of requests for telephone calls within an interval of time, requests for individual documents on

a web server, particle emissions in radioactive materials, number of accidents in a working environment,
and so on. We adopt the Poisson process to model the distribution of x,, that is,
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Poisson processes have been widely used to model the number of events that take place in a time interval,

7. For our example, we have chosen t = 1. The parameter A is known as the intensity of the process



Gamma distribution:

X ~ Gamma(x, B).
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Problem 2 submitted by the team

We assume that our observations, x,, n = 1,2,...,N, have been generated by two different Poisson
processes, P(x; A1) and P(x; A2). Also, the change of the model has taken place suddenly at an unknown
time instant, ng. Our goal is to estimate the posterior,

P("OIA'1$ A'stliN)'
Moreover, the exact values of A; and A, are not known. The only available information is that the Poisson
process intensities, A;, i = 1,2, are distributed according to a (prior) gamma distribution, that is,

p(A) = Gamma(A|a, b) = %a)bala—l exp(—bA),

for some known positive values a, b. We will finally assume that we have no prior information on when
the time of change occurred; thus, the prior is chosen to be the uniform distribution, P(ng) = 1lv Based
on the previous assumptions, the corresponding joint distribution is given by,

p(no, A1, A2,X1.8) = pe1n|A1, A2, ng)p(A1)p(A2) P(ng)
or

ny N
p(no, A, Az, x1w) = [ [ PGald) [ PGalr2)p(h)p(A2)P(no).
n=1 n=np+1

Taking the logarithm in order to get rid of the products, and integrating out respective variables, the
following conditionals needed in Gibbs sampling are obtained to prove



Problem 2 submitted by the team

2(A) prove the conditional probabilities to prepare for Gibbs sampling:

Taking the logarithm in order to get rid of the products, and integrating out respective variables, the
following conditionals needed in Gibbs sampling are obtained

p(A1|ng, A2, Xx1.5) = Gamma(A,|ay, by),

with

no

aj =a+2xn, b1 = b + ny,
n=1
p(Az|ng, A1,x1.8) = Gamma(Az|az, by),
N
a) =a-+ Z: Xn, by=b+ (N —ngp),
n=ng+1

and

ny N
In P(no|A1,A2,x1:8) = In iy an —noA1 +1InAz Z Xn
n=1 n=ngp+1

— (N —ng)ry, ng=1,2,...,N.

The last line for In(P) just gives the log of the products of independent Poisson probabilities once the Poisson
intensities 11,2 are determined from the Gamma distributions for a particular no. A1 up to year noand 1> from year

no+1 to year N. ~ indicates the normalization factor which has to be taken into account. See next page for how to
draw Gibbs sampling from discrete probabilities.



For discrete probabilities Pi, with u ~ U(0,1) uniform
random number in the (0,1) interval:

o Defineay =Y+ P,by=>"r Pr,k=12,....K,a; =0.
e Fori=1,2,...,D0

@ uNU(O,l)

* Select

x.ifu € lag, b)), k=1,2,...,K
* End For



Problem 2 submitted by the team

2(B) Implement the Gibbs sampling of the Markov Chain Monte Carlo:

Gibbs sampling for change-point detection

* Having obtained x1.5 := {x1,...,xn}, select a and b.
+ Initialize n_’
e Fori=12,...,D0
0 ny (i~1)
© A~ Gamma()&la + D o1 Xn, b+ 1y
NG N (1)
Ay’ ~ Gamma(Ala + Z:n=n§,""')+l Xn, b+ (N —ny "))

. né"’ ~ P(nolk"’,ké"’,xm)
* End For



Problem 2 submitted by the team

2(C) Plot the no probably distribution and A1, A2 from Gibbs sampling:
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2(D) What are the means of no, A1, A2?

2(E) Estimate the MC errors on no, A1, A2 from the independent
MC configurations of the simulations



Problem 2 (phys 239 only) submitted by the team

2(F) Compare your Gibbs sampling based simulation with
Metropolis Monte Carlo






