Lectures 13: Jackknife |l.

(Jackknife/Bootstrap loose ends)

with material from https://www.scss.tcd.ie/Rozenn.Dahyot/



Jackknife sampling from Lecture 13

Jackknife samples

Definition
The Jackknife samples are computed by leaving out one observation x;
from x = (xq1, %, -+ ,x,) at a time:

x(i) = (Xl,Xz, "ty Xi—1y Xj+1y 0 axn)

@ The dimension of the jackknife sample x(;y is m=n—1
o n different Jackknife samples : {x(j)}i=1...n.
@ No sampling method needed to compute the n jackknife samples.

Available BOOTSTRAP MATLAB TOOLBOX, by Abdelhak M. Zoubir and D. Robert Iskander,
http://www.csp.curtin.edu.au /downloads /bootstrap_toolbox.html




Jackknife sampling from Lecture 13

Jackknife replications

Definition
The ith jackknife replication §(;) of the statistic = s(x) is:

9(,’) = S(X(;)), Vi=1,---,n

Jackknife replication of the mean

S(X(i)) =n%1 j#i X




Jackknife sampling from Lecture 13

Jackknife estimation of the standard error

© Compute the n jackknife subsamples x(1), - - - , X(n) from x.
© Evaluate the n jackknife replications 9(;) = s(x(i))-

© The jackknife estimate of the standard error is defined by:

» 1 n 11/2

A n— A A

sejack — 2(9() - 9(,))2
=1 4

n

—

where é() = 1 Z?=l é(,)

n




Jackknife sampling from Lecture 13

Jackknife estimation of the standard error

o The factor 21 is much larger than 515 used in bootstrap.

@ Intuitively this inflation factor is needed because jackknife deviation
(é(,-) - 4’9\(.))2 tend to be smaller than the bootstrap (6*(b) — 8*(-))?
(the jackknife sample is more similar to the original data x than the
bootstrap).

@ In fact, the factor ”;nl is derived by considering the special case 9 =x
(somewhat arbitrary convention).



Jackknife sampling from Lecture 13

Jackknife estimation of the standard error of the mean

For =X, it is easy to show that:

Therefore:

where o is the unbiased variance.



bootstrap review and bias  from Lecture 12

The Bootstrap algorithm for Estimating standard errors

© Select B independent bootstrap samples x*(1), x*(2) ... x*(B) drawn
from x

@ Evaluate the bootstrap replications:
9*(b) = s(x*®), vbe{1,---,B}

© Estimate the standard error se;:(é) by the standard deviation of the B
replications:

[EL 1046 - ()]

e B_1

e —

where 6+ () = 210" (®)




bootstrap review and bias  from Lecture 12

Bootstrap estimate of bias

© B independent bootstrap samples x*(1), x*(2) ... x*(B) drawn from x
© Evaluate the bootstrap replications:

9*(b) = s(x*®), vbe{1,---,B}

© Approximate the bootstrap expectation :

1 o 1 o
N * = % = *(b
0()= 5 D 0°(b) = 5 > s(x*®)
b=1 b=1
© the bootstrap estimate of bias based on B replications is:

Biasg = 0*(-) — 0




bootstrap review and bias  from Lecture 12

Bootstrap estimate of the standard Error

Example A

From the distribution F: F(x) = 0.2 N (u=1,0=2) + 0.8 N'(p=6,0=1). We
draw the sample x = (xg, -+ , x100) :

( 7.0411  4.8397 5.3156  6.7719 7.0616
5.2546  7.3937  4.3376  4.4010 5.1724
7.4109  5.3677  6.7028  6.2003  7.5707
4.1230 3.8914  5.2323  5.5042 7.1479
3.6790  0.3509 1.4197  1.7585 2.4476
~3.8635 2.5731 —0.7367 0.5627 1.6379
—0.1864 2.7004  2.1487  2.3513  1.4833
~1.0138 4.9794  0.1518 2.8683 1.6269
6.9523  5.3073  4.7101  5.4374 4.6108
6.5075  6.3495  7.2762  5.9453  4.6993
X=19 6.1550 5.8950 5.7501  5.2173 4.9980 [
45010  4.7860  5.4382  4.8803  7.2040
5.5741  5.5139  5.8869  7.2756 5.8449
6.6430  4.5224  5.5028  4.5672 5.8718
6.0019  7.1912  6.4181  7.2248 8.4153
7.3109  5.1305 6.8719 5.2686  5.8055
5.3602  6.4120  6.0721  5.2740 7.2329
7.0012  7.0766  5.9750  6.6001 7.2135
4.9585 5.9042 5.9273  6.5762  5.3702
| 4.7654  6.4668  6.1983  4.3450 5.3261 |

We have pur = 5 and x = 4.9970.




bootstrap review and bias  from Lecture 12

Bootstrap estimate of the standard Error

Example A

© B = 1000 bootstrap samples {x*(©)}
© B = 1000 replications {x*(b)}
© Bootstrap estimate of the standard error:

~ 1
~ Emoo x*(b) — x*()]° | °
PP — 0.2212
S€B=1000 = 1000 — 1 0

where x*(-) = 5.0007. This is to compare with se(x) =




bootstrap review and bias  from Lecture 12

Distribution of 8

When enough bootstrap resamples have been generated, not only the
standard error but any aspect of the distribution of the estimator 6 = t(F)

could be estimated. One can draw a histogram of the distribution of 8 by
using the observed 6*(b), b=1,---,B.

Example A

8

Figure: Histogram of the replications {x*(b)}s=1...5.




bootstrap review and bias  from Lecture 12

Bootstrap estimate of the standard error

Definition
The ideal bootstrap estimate sez(6*) is defined as:

lim seg = sep(6")
B—oc

sex(0*) is called a non-parametric bootstrap estimate of the standard
error.




bootstrap review and bias  from Lecture 12

Bootstrap estimate of the standard Error

How many B in practice ?
you may want to limit the computation time. In practice, you get a good
estimation of the standard error for B in between 50 and 200.
Example A
B 10 20 50 100 500 1000 | 10000
seg | 0.1386 | 0.2188 | 0.2245 | 0.2142 | 0.2248 | 0.2212 | 0.2187

Table: Bootstrap standard error w.r.t. the number B of bootstrap samples.




bootstrap review and bias  from Lecture 12

Bootstrap estimate of bias

Definition
The bootstrap estimate of bias is defined to be the estimate:

Biasz(0) =Ez[s(x*)] — t(F)

=0*(-)—0

Example A

B 10 20 50 100 500 1000 | 10000

@Eg)?*) 5.0587 | 4.9551 | 5.0244 | 49883 | 4.9945 | 5.0035 | 4.9996

Bias 0.0617 | -0.0419 | 0.0274 | -0.0087 | -0.0025 | 0.0064 | 0.0025

Table: Bias of x* (X = 4.997 and pr = 5).




Jackknife sampling from Lecture 13

Comparison of Jackknife and Bootstrap on an example

Example A: § = X
F(X) =1{)-2 N(p=1,a=2) + 0.8 N(u=6,a=l) X = (Xl, S ,Xloo).

@ Bootstrap standard error and bias w.r.t. the number B of bootstrap
samples:

B 10 20 50 100 500 1000 | 10000
Seg | 0.1386 | 0.2188 | 0.2245 | 0.2142 | 0.2248 | 0.2212 | 0.2187

——

Biasg | 0.0617 | -0.0419 | 0.0274 | -0.0087 | -0.0025 | 0.0064 | 0.0025

o Jackknife: §8j,c, = 0.2207 and Biasj,c, = 0

~

o Using textbook formulas: sep = 7 = 0.2196 (% = 0.2207).




Jackknife sampling from Lecture 13

Jackknife estimation of the bias

© Compute the n jackknife subsamples x(1), - -, X(p) from x.
© Evaluate the n jackknife replications 9(,-) = s(x(i))-

© The jackknife estimation of the bias is defined as:
B'ia\'sjack — (n — 1)(6() - 9)

where é() = 1 E?=1 é(,)

n




Jackknife sampling from Lecture 13

Jackknife estimation of the bias

@ Note the inflation factor (n — 1) (compared to the bootstrap bias
estimate).

o O = x is unbiased so the correspondence is done considering the
an 1(":_")2

plug-in estimate of the variance 42

@ The jackknife estimate of the bias for the plug-in estimate of the
variance is then:



Jackknife sampling from Lecture 13

Histogram of the replications

Example A
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Figure: Histograms of the bootstrap replications {é*(b)}be{l,... B=1000} (left),
and the jackknife replications {é(i)},-e{l,... =100} (right).




Jackknife sampling from Lecture 13

Histogram of the replications

Example A

0
45

Figure: Histograms of the bootstrap replications {5*(b)}be{1,... B=1000} (left),
and the inflated jackknife replications {1/n — l(é(,-) — 9(.)) + 9(.)},-6{1,... .n=100}
(right).




Jackknife sampling

Delete-d Jackknife samples

Definition
The delete-d Jackknife subsamples are computed by leaving out d
observations from x at a time.

@ The dimension of the subsample is n — d.

@ The number of possible subsamples now rises ( Z ) = d!(:id)!.

@ Choice: y/n<d<n—1




Jackknife sampling

Delete-d jackknife

n

@ Compute all ( J

) d-jackknife subsamples x(1), -+, x(,) from x.
© Evaluate the jackknife replications 9(,-) = s(x(jy)-

© Estimation of the standard error (when n = r - d):

1/2

S€d—jack = ( ; ) Zi:(é(i) - 0(-))°

i i) .

2
n
d

where §(.) =




Jackknife sampling optional reading material

Relationship between jackknife and bootstrap

@ When n is small, it is easier (faster) to compute the n jackknife
replications.

e However the jackknife uses less information (less samples) than the
bootstrap.

e In fact, the jackknife is an approximation to the bootstrap!



Jackknife sampling optional reading material

Relationship between jackknife and bootstrap

@ Considering a linear statistic :
0 =s(x)=p+1>0, alx)
=K+ % D im1 Qi

Mean 8§ = x ]

The mean is linear p = 0 and a(x;) = a; = x;, Vi€ {l,-,n}.

@ There is no loss of information in using the jackknife to compute the
standard error (compared to the bootstrap) for a linear statistic.
Indeed the knowledge of the n jackknife replications {6, }, gives the

value of  for any bootstrap data set.

@ For non-linear statistics, the jackknife makes a linear approximation to
the bootstrap for the standard error.



Jackknife sampling optional reading material

Relationship between jackknife and bootstrap

@ Considering a quadratic statistic

§ =s(x)=p+13" alx)+ LB(xx)

Variance 6 = 52 '

62 =157 (xi — x)? is a quadratic statistic.

@ Again the knowledge of the n jackknife replications {s(é(;))}, gives

the value of § for any bootstrap data set. The jackknife and
bootstrap estimates of the bias agree for quadratic statistics.



Jackknife sampling optional reading material

Relationship between jackknife and bootstrap

The Law school example: 8 = corz(x, y).
The correlation is a non linear statistic.
@ From B=3200 bootstrap replications, seg_3o90 = 0.132.

@ From n = 15 jackknife replications, sejzcx = 0.1425.

o Textbook formula: sep = (1 — corr’)/+/n — 3 = 0.1147




Jackknife sampling

Summary

@ Bias and standard error estimates have been introduced using
jackknife replications.

e The Jackknife standard error estimate is a linear approximation of the
bootstrap standard error.

@ The Jackknife bias estimate is a quadratic approximation of the
bootstrap bias.

@ Using smaller subsamples (delete-d jackknife) can improve for
non-smooth statistics such as the median.



Jackknife sampling Matlab code

%% Jackknife Resampling
%

% Copyright 2015 The MathWorks, Inc.

%%
% Similar to the bootstrap is the jackknife, which uses resampling to

% estimate the bias of a sample statistic. Sometimes it is also used to
% estimate standard error of the sample statistic. The jackknife is

% implemented by the Statistics and Machine Learning Toolbox(TM) function
% |jackknife].

%%

% The jackknife resamples systematically, rather than at random as the

% bootstrap does. For a sample with |[n| points, the jackknife computes

% sample statistics on |n| separate samples of size |n|-1. Each sample is
% the original data with a single observation omitted.

%%

% In the bootstrap example, you measured the uncertainty in estimating the
% correlation coefficient. You can use the jackknife to estimate the bias,
% which is the tendency of the sample correlation to over—-estimate or

% under-estimate the true, unknown correlation. First compute the sample
% correlation on the data.

load lawdata

rhohat = corr(lsat,gpa)

Next compute the correlations for jackknife samples, and compute their
mean.
rng default; % For reproducibility
jackrho = jackknife(@corr, lsat,gpa);
meanrho = mean(jackrho)

o o of

%%

% Now compute an estimate of the bias.
n = length(lsat);

biasrho = (n-1) * (meanrho-rhohat)

%%
% The sample correlation probably underestimates the true correlation by
% about this amount.



