Lectures 6: null hypethesis tests |l.



Null hypothesis testing:

e Computing a p-value requires a null hypothesis, a test statistic (together with deciding
whether the researcher is performing a one-tailed test or a two-tailed test), and data.
Even though computing the test statistic on given data may be easy, computing the
sampling distribution under the null hypothesis, and then computing its cumulative
distribution function (CDF) is often a difficult computation. Today, this computation is
done using statistical software and computational power.

e \When the null hypothesis is true, the probability distribution of the p-value is uniform on
the interval [0,1]. By contrast, if the alternative hypothesis is true, the distribution is
dependent on sample size and the true value of the parameter being studied.

The distribution of p-values for a group of studies is called a p-curve. The curve is
affected by four factors: the probability that a study is examining a true hypothesis
rather than a false hypothesis, the power of the studies investigating true hypotheses,
the Type 1 error rates, and publication bias. A p-curve can be used to assess the
reliability of scientific literature, such as by detecting publication bias or p-hacking.



frequentist view of null hypothesis (DNA example):

Count nucleotides A,C,G, T on SacCer Chr4:

Take the file SacSerChr4.txt (on
course web site).

Count the letters A,C,G,T.
You should get:

A = 476750
C = 289341

G = 291352 _ :
T = 474471 Are these counts consistent with the model

pa=pc =pc =pr =0.257

(Of course not! But we'll check.)

Are they consistent with the model
pa=pr~03l pc=pg~0197

That’s a deeper question! You might think yes,
because of A-T and C-G base pairing.




frequentist view of null hypothesis (DNA example):

As always, the starting point is to write down a model. Bayesian: What is
the probability of hypothesis. Frequentist: What is the probability of a test
statistic for a null hypothesis.

A possible model is multinomial: At each position an i.i.d. choice of A,C,G,T,
with respective probabilities adding up to 1.

Almost equivalent (and simpler for now) is 4 separate binomial models: At
each position an i.i.d. choice of A vs. not A with some probability p,.
Then do separately for pe, pPg, Pt

The counts are all so large that the normal approximation is highly

accurate:
Bin(n, p) ~ Normal(np, \/ np(l —p))

Why? CLT applies to binomial because it's sum of Bernoulli r.v.’s: N
tries of an r.v. with values 1 (prob p) or O (prob 1-p).

p=px1+(1—p)x0=p

0?=pxX(1—p)*+(1—p) x(0—p)?=p1-p)



frequentist view of null hypothesis (DNA example):

Let’s dispose of the silly (all p's = 0.25):

The test statistic: the value of the observed count under the null hypothesis
that it is binomially (or equivalent normally) distributed with p=0.25.

uw=0.25N

0 = \/025 x0.75N t-value = number of standard deviations

t = p-value = tail probability (here, 2-tailed)
g —— s e
/ 2 | o |1\ 2 3
P = 2[1 — PNormal(Itl)] o
t-value p-value
A 174965 | =0 The null hypothesis is (totally,
infinitely, beyond any possibilit
C -174.715 | =0 Y -y | yb Y
of redemption!) ruled out.
G -170.963 | =0
T 170.713 ~ 0




frequentist view of null hypothesis (DNA example):

The not-silly model: A and T occur with identical probabilities, as do C and G.

The test statistic: Difference between A and T (or C and G) counts under
the null hypothesis that they have the same p, which we will estimate in the

obvious way (which is actually an MLE).

par = 5(na+nr)/N

pecc = 5(nc +ng)/N

na ~ Normal(Npar, /Npar(l — par))
ny ~ Normal(Npar, /Npar(1l — par))
= n4 — np ~ Normal(0, \/2NﬁAT(1 — Par))

_— AN

the difference of two Normals is the variance of the sum (or
itself Normal difference) is the sum of the

variances




frequentist view of null hypothesis (DNA example):

In MATLAB the calculation now looks like this:

dif = [count(1l)-count(3); count(2)-count(4) ] A = 476750
pdiff = [pnuc(l); pnuc(2)] C = 289341
mu = [0; O]; G = 291352
sig = sqrt(2 .* pdiff .* (1 - pdiff) .* len) T =474471
tval = (dif - mu) ./ sig
pval = 2*¥(1-normcdf(abs(tval),0,1))
dif = 2-tailed
:%ﬁ Why? Because, we're discovering genes!
pdiff = E—
0. 3097 - —l- - + strand
0.1889 -
mu = L —— -strand
0
0 The fluctuating “units” are indeed not single bases.
s7ig = Rather, they are genes which, individually, do not
809.3402 have (or prefer) A=T, C=G. Their placement on
685.1154 one strand or the other is random.
tval = N
-2.8159 :
> 9353 Surprise! |
pval = > The model is ruled out
0.0049 with high significance
0.0033
(small p-value)!




Null hypothesis testing (Bayesian):

Here are three Bayesian criticisms of tail tests:

(1) Their result depends on the choice of test or (more argumentatively) what was
in the mind of the experimenter

These are called “stopping rule paradoxes”. &
Hypothesis H,: a coin is fair with P(heads)=0.5

Data: in 10 flips, the first 9 are heads, then 1 tail.
regardless of the order in the outcome

Analysis Method |. Data this extreme, or more so, should

occur under H, only
2-sided tail test of 9 or more identical

9 heads or more 1+10+10+1 — 0.0214

210

(you lose: referee wants p<0.01 and tells you to get more data)



Null hypothesis testing (Bayesian):
Analysis method Il.

“I forgot to tell you,” says the experimenter, “‘my protocol was
to flip until a tail and record N (=9), the number of heads.”

UnderH, p(N)=2""+1)
p(>N) =201+ 3+ 1 +-.)=27N
P(>9) =279 =0.00195

(Nature hold the presses!)

Stopping rule effects are a serious methodological issue in biomedical
research, where for ethical reasons stopping criteria may depend on
outcomes in complicated and unpredictable ways, or be ad hoc after
the experiment starts (and rightly so — see next slide!)



Null hypothesis testing (Bayesian):
What would be a Bayesian approach?
H, is the hypothesis that prob = p.

P(H,) is its probability. flat prior

P(H,|data) < P(data|H,)P(H,) o« p’(1 — p)
p°(1 —p)

P(H,|data) =
Sy p°(1 — p)dp

The curve is the answer.
45 - . . 1 We might, however, summarize it in
various ways:

351

Likelihood (or posterior probability) ratio:

P(H0,5|data) . 0.1074
P(Hpax|data)  4.2616

25F

= 0.0252

15F

Bayes tail probability:

05F

0.5
/ P(H,|data)dp = 0.0059
0



Null hypothesis testing (Bayesian):

For an example in which we might use a more
sophisticated prior, suppose the data is 10 heads in a row.

“Hmm. When people make me watch them flip coins, 95% of the
time it’s a (nearly) fair coin [A], 4% of the time it’s a double-headed
[B] or double-tailed coin [C], and 1% of the time something else

weird is happening [D].”
Case A:  0.95 x (0.5)1° =0.00093  0.043
Case B 0.02 x 119 =0.02 0.915
Case C  0.02 x 019 =0 0.000

Case D 0.01 x [ p'%dp = 0.00091 0.042

This kind of analysis is not usually publishable, unless you can justify your
choice of prior on the basis of already published data. (In such a case it is
dignified by the term “meta-analysis”.) However, it is a good way to live
your life, especially if you are a person who likes to make bets!



Null hypothesis testing (Bayesian):

(Can you remember that we were listing three Bayesian
criticisms of tail tests?)

(2) Not suitable for comparing hypotheses quantitatively.
Best you can do is rule one out, leaving the other viable.
Ratio of p-values is not anything meaningful!

you should go learn about Likelihood Ratio tests, but | personally think
that Bayes odds ratio is easier to compute and easier to interpret

(3) The sanctification of certain p-values (e.g., the magic
p=0.05 value) is naive and misleading.

(on the one hand) 1 in 20 results are wrong! Imagine
if we built nuclear power plants to this low a standard.

(on the other hand) the large majority of results with p=0.10
are in fact correct. These could sometimes be acted on.



