PHYSICS 210B : NONEQUILIBRIUM STATISTICAL PHYSICS
HW SOLUTIONS #2 : STOCHASTIC PROCESSES

(1) Show that for time scales sufficiently greater than v~! that the solution z(t) to the
Langevin equation & + vy = 7(t) describes a Markov process. You will have to construct
the matrix M defined in Eqn. 2.60 of the lecture notes. You should assume that the random
force 7(t) is distributed as a Gaussian, with (n(s)) = 0 and (n(s) n(s')) = I'd(s — §').

Solution:

The probability distribution is
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In the limit where ¢ and ¢ are both large compared to 4!, we have M(t, ¢') = 2D min(t, t'),

where the diffusions constantis D = I/ 2+2. Thus,
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To find the determinant of M, subtract row 2 from row 1, then subtract row 3 from row 2,
etc.The result is
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Note that the last row is unchanged, since there is no row NV + 1 to subtract from it Since
M is obtained from M by consecutive row additions, we have
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The inverse is
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This yields the general result
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where ty = co and ¢, ; = 0. Now consider the conditional probability density
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Subtracting, and evaluating the ratio to get the conditional probability density, we find
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which depends only on {z,t,, z,,,}, i.e. on the current and most recent data, and not on
any data before the time ¢,. Note the normalization:
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(2) Provide the missing steps in the solution of the Ornstein-Uhlenbeck process described
in §2.4.3 of the lecture notes. Show that applying the method of characteristics to Eqn. 2.78
leads to the solution in Eqn. 2.79.

Solution:

We solve R
oP
9t +
using the method of characteristics, writing t = ¢(s) and k = k. (s), where s parameterizes
the curve (tc(s), kc(s)), and ( parameterizes the initial conditions, which are ¢(s = 0) = 0
and k(s = 0) = (. The above PDE in two variables is then equivalent to the coupled system
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Solving, we have
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and therefore
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We now identify f(¢) = P(ke "'t = 0), hence

P(k,t) = exp {— 2%(1 - 6—25t)k2}ﬁ<k, 0) .

(3) Consider a discrete one-dimensional random walk where the probability to take a step
of length 1 in either direction is p and the probability to take a step of length 2 in either
direction is 1(1 — p). Define the generating function

P(k,t)= Y P,(t)e ",

where P, (t) is the probability to be at position n at time t. Solve for P(k, t) and provide an
expression for P, (t). Evaluate ", n? P,(t).



Solution:

We have the master equation
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Upon Fourier transforming,
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where
Ak) =1—pcos(k) — (1 — p)cos(2k) .

One then has
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The average of n? is given by
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Note that P(0,t) = 1 for all £ by normalization.

(4) Numerically simulate the one-dimensional Wiener and Cauchy processes discussed in
§2.6.1 of the lecture notes, and produce a figure similar to Fig. 2.3.

Solution:

Most computing languages come with a random number generating function which pro-
duces uniform deviates on the interval « € [0, 1]. Suppose we have a prescribed function
y(x). If z is distributed uniformly on [0, 1], how is y distributed? Clearly

dx

p(y) dy| = |p(x)dz| = ply) = & p(z)

where for the uniform distribution on the unit interval we have p(z) = ©(z) ©(1 — x) . For
example, if y = —Inz, then y € [0,00] and p(y) = e™¥ which is to say y is exponentially
distributed. Now suppose we want to specify p(y). We have
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where y, is the minimum value that y takes. Therefore, y = F~!(x), where F~! is the
inverse function.

To generate normal (Gaussian) deviates with a distribution p(y) = (47 De)~ /2 exp(—y?/4D¢),
we have
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We now have to invert the error function, which is slightly unpleasant.

A slicker approach is to use the Box-Muller method, which used a two-dimensional version
of the above transformation,
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This has an obvious generalization to higher dimensions. The transformation factor is the
Jacobian determinant. Now let z; and x, each be uniformly distributed on [0, 1], and let
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which says that y; and y, are each independently distributed according to the normal
distribution p(y) = (47 De) /% exp(—y?/4De). Nifty!

For the Cauchy distribution, with
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Figure 1: (a) Wiener process sample path W (). (b) Cauchy process sample path C(t). From
K. Jacobs and D. A. Steck, New J. Phys. 13, 013016 (2011).

and therefore
y = F~'(z) = etan (rz — %)

(5) Due to quantum coherence effects in the backscattering from impurities, one-dimensional
wires don’t obey Ohm’s law in the limit where the “inelastic mean free path’ is greater than
the sample dimensions, which you may assume here. Rather, let R(L) = e?R(L)/h be the
dimensionless resistance of a quantum wire of length L, in units of h/e? = 25.813k). The
dimensionless resistance of a quantum wire of length L + § L is then given by

R(L +6L) = R(L) + R(5L) + 2 R(L) R(4L)
+2cosay/R(L) [1+R(L)] R(5L) [1 + R(GL)]

where « is a random phase uniformly distributed over the interval [0, 27). Here,
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is the dimensionless resistance of a small segment of wire, of length /L < ¢, where / is the
‘elastic mean free path’.

(a) Show that the distribution function P(R, L) for resistances of a quantum wire obeys
the equation
orP 1 0 oP
oL %M{R(HR)M} :
(b) Show that this equation may be solved in the limits R <« 1 and R > 1, with

1
P(R,z) = 2 e R/*



for R <« 1, and .
P(R, Z) _ (47TZ)_1/2 ﬁ 6—(lnR—z)2/4z
for R > 1, where z = L/2/ is the dimensionless length of the wire. Compute (R) in

the former case, and (InR) in the latter case.

Solution:

(a) From the composition rule for series quantum resistances, we derive the phase averages

(R) = (1+2R(1)) ‘;i;j

((6R)?) = (1+ 272(L))2 <Z§)2 +2R(L) (1+R(L)) % (1 + iﬁ)
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20
whence we obtain the drift and diffusion terms
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Note that 2F (R) = dF5/dR, which allows us to write the Fokker-Planck equation as
orP 0 {R(l +R) 8P}
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(b) Defining the dimensionless length z = L/2¢, we have
oP 0 opP
5 = 872{R(l +R) 872} .
In the limit R < 1, this reduces to
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which is satisfied by P(R, z) = 2! exp(—R/z). For this distribution one has (R) = 2.

In the opposite limit, R > 1, we have
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where v = InR. This is solved by the log-normal distribution,
P(R,z) = (4mz)"'/? e~ (t2)?/4z

Note that
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One then obtains (InR) = z.



