
PHYSICS 210B : NONEQUILIBRIUM STATISTICAL PHYSICS
HW SOLUTIONS #3 : STOCHASTIC CALCULUS

(1) Evaluate, for general α, the averages of the following stochastic integrals:

t∫
0

dW (s)W (s) s ,

t∫
0

dW (s)W 3(s) e−λs ,

t∫
0

dW (s)W 2k+1(s) .

Solution:

We evaluate the general stochastic integral,

Ik[φ] =

t∫
0

dW (s)W 2k+1(s) φ(s)

=
N−1∑
j=0

[
(1− α)W 2k+1

j φj + αW 2k+1
j+1 φj+1

](
Wj+1 −Wj

)
.

Therefore,

〈
Ik[φ]

〉
= α

N−1∑
j=0

φj+1

(〈
W 2k+2
j+1

〉
−
〈
WjW

2k+1
j+1

〉)

=
(2k + 2)!

2k+1(k + 1)!
· α

t∫
0

ds sk φ(s) .

Thus,

〈 t∫
0

dW (s)W (s) s
〉

= 1
2 αt

2

〈 t∫
0

dW (s)W 3(s) e−λs
〉

= 3α

t∫
0

ds s e−λs =
1

λ2
(
1− e−λt

)
+ t e−λt

〈 t∫
0

dW (s)W 2k+1(s)
〉

=
(2k + 2)!

2k+1(k + 1)!
· α t

k+1

k + 1
.

Note that in the limit λ → 0 the term in curly brackets on the RHS of the second integral
yields (λt)4/24 + O(λ5) after a cancellation of the first four terms in the Taylor expansion
of eλt, hence the integral becomes 3

4α t
4 in this limit, which is correct.
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(2) Derive Eqn. 3.105 of the lecture notes.

Solution:

Starting from

du = −β u dt+ β dW (t)

dz

dt
= iν z + iλ u(t) z ,

we obtained the solution

z(t) = z(0) exp

iνt+
iλ

β
u(0)

(
1− e−βt

)
+ iλ

t∫
0

dW (s)
(

1− e−β(t−s)
) .

We wish to compute the quantity Y (s) = limt→∞
〈
z(t+ s) z∗(t)

〉
. We therefore have

〈
z(t+ s) z∗(t)

〉
= |z(0)|2 eiνs exp

{
iλ

β
u(0) e−βt

(
e−βs − 1

)}
×

exp

{
− λ2

2

〈( t∫
0

dW (σ)
[
1− e−β(t−σ)

]
−

t+s∫
0

dW (σ)
[
1− e−β(t+s−σ)

])2〉}

We now invoke the result of Eqn. 3.27,

〈 t∫
0

dW (s) F (s)

t′∫
0

dW (s′)G(s′)

〉
=

t̃∫
0

ds F (s)G(s) ,

where t̃ = min(t, t′) , to obtain〈( t∫
0

dW (σ)
[
1− e−β(t−σ)

]
−

t+s∫
0

dW (σ)
[
1− e−β(t+s−σ)

])2〉
= t− 2

β

(
1− e−βt

)
+

1

2β

(
1− e−2βt

)
+ (t+ s)− 2

β

(
1− e−β(t+s)

)
+

1

2β

(
1− e−2β(t+s)

)
− 2t+

2

β

(
1− e−βt

)
+

2

β

(
1− e−βt

)
e−βs − 2

2β

(
1− e−2βt

)
e−βs

=
t→∞

s− 1

β

(
1− e−βs

)
,

where we have assumed s > 0. For s < 0 , it is clear that we must replace s with |s|. The
final result is

Y (s) = lim
t→∞

〈
z(t+ s) z∗(t)

〉
= |z(0)|2 exp

{
iνs− 1

2λ
2 |s|+ λ2

2β

(
1− e−β|s|

)}
.
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(3) For the colored noise example in §3.5.3 of the notes, compute numerically Ŷ (ω) and
plot your results as a function of ω− ν. Set λ ≡ 1 and plot your results for a representative
set of different values of the parameter β.

Solution:

We may derive an expansion for Ŷ (ω) as follows. First, for convenience we set |z(0)|2 = 1.
Then we have

Y (s) = exp

{
iνs− 1

2λ
2 |s|+ λ2

2β

(
1− e−β|s|

)}

= eiνse−λ
2|s|/2 eλ

2/2β
∞∑
n=0

1

n!

(
− λ2

2β

)n
e−nβ|s|

Taking the Fourier transform, we have

Ŷ (ω) = eλ
2/2β

∞∑
n=0

1

n!

(
− λ2

2β

)n 2 (nβ + 1
2λ

2)

(ω − ν)2 + (nβ + 1
2λ

2)2
.

Define the parameter ε ≡ λ2/2β , and define rescaled frequencies ω̄ ≡ ω/β and ν̄ ≡ ν/β.
Then Ŷ (ω) = β−1Ŷε(δ), where δ = ω̄ − ν̄ and

Ŷε(δ) = 2 exp(ε)
∞∑
n=0

(−ε)n

n!

n+ ε

δ2 + (n+ ε)2

= 2

∞∫
0

dτ cos(δτ) exp
{
− ε

(
e−τ − 1 + τ

)}
.

Figure 1: The integral Ŷε(δ) from problem (3).
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Note that f(τ) = e−τ − 1 + τ is nonnegative and monotonically increasing for τ ≥ 0, with
f(0) = 0 . For ε� 1, we can expand f(τ) = 1

2τ
2 +O(τ3) and obtain

Ŷε(δ) '
√

2π

ε
e−δ

2/2ε (ε→ 0) .

We evaluate numerically via Mathematica, viz.

Y[x , a ] := NIntegrate[ 2 Cos[x ∗ y] Exp[−a ( Exp[−y]− 1 + y ) ], {y, 0, Infinity}]
Plot3D[ Y[x, a], {x, 0, 1}, {a, 0.25, 1}, PlotRange→ Full]

The resulting plot is shown in Fig. 1.

(4) Consider the following stochastic differential equation,

dx = −βx dt+
√

2β(a2 − x2) dW (t) ,

where x ∈ [−a, a].

(i) Find the corresponding Fokker-Planck equation.

(ii) Find the normalized steady state probability P(x).

(iii) Find and solve for the eigenfunctions Pn(x) and Qn(x). Hint: learn a bit about
Chebyshev polynomials.

(iv) Find an expression for
〈
x3(t)x3(0)

〉
, assuming x0 ≡ x(0) is distributed according to

P(x0).

Solution:

(a) From §3.3.4 of the notes, assuming the stochastic differential equation is in the Itô form
(parameter α=0),

∂P

∂t
= − ∂

∂x

(
fP ) +

1

2

∂2

∂x2
(
g2P

)
,

with f(x) = −βx and g(x) =
√

2β(a2 − x2). Thus,

∂P

∂t
= β

∂

∂x
(xP ) + β

∂2

∂x2
[
(a2 − x2)P

]
.

At the boundaries x = ±a the diffusion constant vanishes, and the drift is into the interval,
hence the boundaries are reflecting.

(b) We set the LHS of the FPE to zero to find the steady state solution. Assuming no cur-
rents at the boundaries, we have P (x, t→∞) = P(x) , where the equilibrium distribution
P(x) satisfies the first order equation

0 = xP +
d

dx

[
(a2 − x2)P

]
.
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This may be rewritten as

d

dx
ln
[
(a2 − x2)P

]
= − x

a2 − x2
=

d

dx
1
2 ln(a2 − x2) ,

and therefore
P(x) =

1

π

1√
a2 − x2

,

which is normalized with
a∫
−a
dx P(x) = 1.

(c) The eigenfunctions Pn(x) satisfy LPn(x) = −λnPn(x) , with Qn(x) = Pn(x)/P(x) satis-
fying L†Qn = −λnQn. It is useful to measure distances in units of a and times in units of
β−1. Then the FPE is ∂tP = LP , where our Fokker-Planck operator is

L =
d

dx
x+

d2

dx2
(1− x2) .

The eigenfunctions Qn(x) satisfy L†Qn = −λnQn. Thus,

(1− x)2
d2Qn
dx2

− x dQn
dx

= −λnQn .

This is Chebyshev’s equation. The solution are the Chebyshev polynomials Tn(x), and the
eigenvalues are λn = n2. The eigenfunctions Pn(x) are given by Pn(x) = P(x)Qn(x) , with
P(x) = π−1(1− x2)−1/2.

A good place to learn about Chebyshev polynomials is Wikipedia. The Chebyshev poly-
nomials of the first kind are an orthonormal family of functions

{
Tn(x)

}
on the interval

x ∈ [−1, 1], satisfying the recurrence relation

T0(x) = 1 , T1(x) = x , Tn+1(x) = 2xTn(x)− Tn−1(x) .

They satisfy the differential equation

(1− x2)d
2Tn
dx2

− x dTn
dx

+ n2 Tn = 0 .

There are several generating functions for the
{
Tn(x)

}
:

1− tx
1− 2tx+ t2

=
∞∑
n=0

tn Tn(x)

etx cos
(
t
√

1− x2
)

=
∞∑
n=0

tn

n!
Tn(x)

−1
2 ln
(
1− 2tx+ t2

)
=

∞∑
n=1

tn

n
Tn(x) .
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The orthogonality relation is

1

π

1∫
−1

dx√
1− x2

Tm(x)Tn(x) =


0 if m 6= n

1 if m = n = 0
1
2 if m = n 6= 0 .

The first few Tn(x) are

T0(x) = 1 T6(x) = 32x6 − 48x4 + 18x2 − 1

T1(x) = x T7(x) = 64x7 − 112x5 + 56x3 − 7x

T2(x) = 2x2 − 1 T8(x) = 128x8 − 256x6 + 160x4 − 32x2 + 1

T3(x) = 4x3 − 3x T9(x) = 256x9 − 576x7 + 432x5 − 120x3 + 9x

T4(x) = 8x4 − 8x2 + 1 T10(x) = 512x10 − 1280x8 + 1120x6 − 400x4 + 50x2 − 1

T5(x) = 16x5 − 20x3 + 5x T11(x) = 1024x11 − 2816x9 + 2816x7 − 1232x5 + 220x3 − 11x .

The general solution of the Fokker-Planck equation is then

P (x, t) =
∞∑
n=0

An P(x)Tn(x) e−n
2t .

The coefficients An are obtained from initial data P (x, 0), viz.

A0 =

1∫
−1

dx P (x, 0) , An>0 = 2

1∫
−1

dx P (x, 0) Tn(x) .

(d) From the conclusion of §4.2.4 of the notes, we have that

P (x, t |x0, 0) =
∑
n

Qn(x0)Pn(x) e−λnt ,

where P0(x) = P(x) and Pn>0(x) =
√

2Tn(x)P(x). Thus, assuming x0 is distributed
according to P(x0),

〈
x3(t)x3(0)

〉
=

1∫
−1

dx0 P(x0)x
3
0

1∫
−1

dx P (x, t |x0, 0)

=
∑
n

∣∣〈x3 ∣∣Pn 〉∣∣2 e−n2t ,

where 〈
x3
∣∣Pn 〉 =

√
2

1∫
−1

dx P(x)x3 Tn(x) = 1√
2

(
1
4 δn,3 + 3

4 δn,1

)
,
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since x3 = 1
4 T3(x) + 3

4 T1(x). Thus,〈
x3(t)x3(0)

〉
= 1

32 e
−3t + 9

32 e
−t .

Note that
〈
x6(0)

〉
= 5

16 , which agrees with the calculation

〈
x6(0)

〉
=

1∫
−1

dx0 P(x0)x
6
0

=
1

π

π∫
0

dθ cos6θ =
1

26

(
6

3

)
= 5

16 .
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