
PHYSICS 210B : NONEQUILIBRIUM STATISTICAL PHYSICS

HW SOLUTIONS #4 : DIFFUSION

(1) A diffusing particle is confined to the interval [0, L]. The diffusion constant is D and
the drift velocity is v

D
. The boundary at x = 0 is absorbing and that at x = L is reflecting.

(a) Calculate the mean and mean square time for the particle to get absorbed at x = 0 if
it starts at t = 0 from x = L. Examine in detail the cases v

D
> 0 , v

D
= 0 , and v

D
< 0.

(b) Compute the Laplace transform of the distribution of trapping times for the cases
v

D
> 0 , v

D
= 0 , and v

D
< 0, and discuss the asymptotic behaviors of these distribu-

tions in the limits t→ 0 and t→ ∞.

Solution:

(a) We studied first passage problems in §4.2.5. The distribution function for exit times is

given by −∂tG(x, t), where G(x, t) =
L∫

0

dx′P (x′, t |x, 0) satisfies the backward FPE,

∂G

∂t
= D

∂2G

∂x2
+ v

D

∂G

∂x
= L†G .

The boundary conditions are G(0, t) = 0 and ∂xG(x, t)
∣
∣
x=L

= 0. The mean nth power of
the exit time, Tn(x) = 〈tnx〉 , therefore satisfies

L† Tn(x) = L†

∞∫

0

dt tn
(

− ∂G(x, t)

∂t

)

= nL†

∞∫

0

dt tn−1G(x, t)

= n

∞∫

0

dt tn−1 ∂G(x, t)

∂t
= −nTn−1(x) ,

with L† T1(x) = −1 , i.e. T0(x) = 〈t0x〉 = 1.

With x = 0 absorbing and x = L reflecting, we have

T1(x) =
1

D

x∫

0

dy

ψ(y)

L∫

y

dz ψ(z) ,

where ψ(x) = exp
(
v

D
x/D

)
(use Eqn. 4.53 with A = v

D
and B = 2D). We then have

T1(x) =
D

v2
D

(
1 − e−v

D
x/D

)
evD

L/D − x

v
D

.

One can check that this solution satisfies the boundary conditions T1(0) = 0 and T ′
1(L) = 0.
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It is convenient to define the length scale ℓ = D/|v
D
| and the time scale τ = D/v2

D
. We

henceforth measure all lengths in units of ℓ and all times in units of τ . We therefore mea-
sure the moments Tn in units of τn. The mean escape time is

T1 = eσL − eσ(L−x) − σx ,

where σ = sgn(v
D
) . Note that for σ > 0 the drift is away from the absorbing boundary,

and the mean escape time is T1 ∼ eL , where L is the length in units of D/|v
D
|. This grows

exponentially with |v
D
|. When σ < 0 the exponential terms are dominated by the linear

term forL−x≫ 1 , and T1 ≈ x, or in dimensionful units, T1 ≈ x/v
D

, which says the particle
exits in a time similar to what would expect for D = 0, when there is pure ballistic motion.
When v

D
= 0 our length and time scales are divergent, which means the dimensionless

quantities L and x are infinitesimal. We then expand to get T1 = 1
2x(2L − x). Restoring

units recovers T1 = x(2L− x)/2D in terms of dimensionful quantities.

To find T2(x), we solve L† T2(x) = −T1(x) . This means that the dimensionless T2(x) satis-
fies

T ′′
2 + σ T ′

2 = 2
[

eσ(L−x) − eσL + σx
]

.

We can solve this by a spatial Laplace transform on the interval x ∈ [0,∞) , later imposing
the conditions T2(0) = T ′

2(L) = 0. We define

Ť2(α) =

∞∫

0

dx T2(x) e
−αx .

Then

∞∫

0

dx T ′′
2 (x) e−αx = −T ′

2(0) − αT2(0) + α2 Ť2(α)

∞∫

0

dx T ′
2(x) e

−αx = −T2(0) + α Ť2(α) .

Assuming Re α+ σ > 0, we have

∞∫

0

dx
[

eσ(L−x) − eσL + σx
]

e−αx =
eσL

α+ σ
− eσL

α
+

σ

α2
.

We therefore have

α(α + σ) Ť2(α) = A+
eσL

α+ σ
− eσL

α
+

σ

α2
,

where we have used T2(0) = 0, and where the constant A ≡ T ′
2(0), which is yet to be

determined. Therefore

T2(x) = 2

∮
dα

2πi

{

A

α(α + σ)
− σ eσL

α2(α+ σ)2
+

σ

α3(α+ σ)

}

eαx .
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We now employ the method of partial fractions:

1

α(α+ σ)
=

1

σ

(
1

α
− 1

α+ σ

)

=
σ

α
− σ

α+ σ

1

α2(α+ σ)2
=

(
1

α
− 1

α+ σ

)2

=
1

α2
+

1

(α+ σ)2
− 2σ

α
+

2σ

α+ σ

1

α3(α+ σ)
=

1

α2

(
σ

α
− σ

α+ σ

)

=
σ

α3
− σ

α

(
σ

α
− σ

α+ σ

)

=
σ

α3
− 1

α2
+
σ

α
− σ

α+ σ
.

We can now basically read off the form for T2(x):

T2(x) = 2σA
(
1 − e−σx

)
+ 2 eσL

(
2 − 2 e−σx − σx− σx e−σx

)
+ x2 − 2σx+ 2 − 2 e−σx .

To fix A, we set T ′
2(L) = 0:

T ′
2(L) = 2Ae−σL + 4L− 4 sinhL ⇒ Ae−σL = 2 sinhL− 2L .

Then

T2(L) = L2 − 4 + 2 (1 − 3σL) eσL + 2 e2σL

= 5
12 L

4 + 3
10 σL

5 + O(L6) ,

where the second line says that in v
D

→ 0 limit we have T2(L) = 5L4/12D2 (with ap-
propriate dimensions). Note again that for σ = +1, when the drift is away from the
absorbing boundary, the mean square escape time behaves to leading order as T2(L) ∼
(D/v2

D
) exp(2Lv

D
/D) , whereas when σ = −1 and the drift is toward the absorbing bound-

ary, the mean square escape time behaves as a power law T2(L) ≃ (L/v
D
)2.

(b) The probability distribution of exit times is W (x, t) = −∂G(x, t)/∂t, where

G(x, t) =

L∫

0

dx′ P (x′, t |x, 0) ,

as discussed in §4.2.5 of the notes. The Laplace transform W̌ (x, z) therefore satisfies

L† W̌ (x, z) = z W̌ (x, z) ,

with boundary conditions

W̌ (0, z) = 1 ,
∂W̌ (x, z)

∂x

∣
∣
∣
∣
x=L

= 0 .

The first of these boundary conditions comes from the fact that W (0, t) = δ(t) , since a
particle starting at the left boundary is immediately absorbed. The resulting equation for
W̌ (x, z) ,

D
∂2W̌

∂x2
+ v

D

∂W̌

∂x
− z W̌ = 0 ,

3



has the general solution W̌ (x, z) = A+ e
λ+ x +A− e

λ
−

x , where

λ±(z) = − v
D

2D
±

√
(
v

D

2D

)2

+
z

D
.

Accounting for the boundary conditions, we have

W̌ (x, z) =
λ+ e

λ+L eλ−
x − λ− e

λ
−

L eλ+x

λ+ e
λ
+

L − λ− e
λ
−

L
.

Define

ℓ ≡ D

|v
D
| , τ ≡ D

v2
D

, u ≡
√

1 + 4τz ⇒ z =
u2 − 1

4τ
.

Then the eigenvalues λ± are

λ± =







(−1 ± u)/2ℓ if v
D
> 0

±
√

z/D if v
D

= 0

(1 ± u)/2ℓ if v
D
< 0 .

For v
D

= 0, we have

W̌ (x, z) =
ex
√

z/D + e(2L−x)
√

z/D

1 + e2L
√

z/D
.

The closest pole to z = 0 lies at 2L
√

z/D = iπ, which means z = −π2D/4L2. Upon
taking the inverse Laplace transform, and evaluating at x = L for convenience, we find

W (L, t) ∼ e−π2Dt/4L2

, which says that the characteristic escape time is tesc ∼ L2/D, as we
found in part (a).

When v
D

6= 0, it is helpful to eliminate z in favor of the variable u defined above. For
v

D
> 0, we have

W̌ (x, z) =
(1 + u) e−u(L−x)/2ℓ − (1 − u) eu(L−x)/2ℓ

(1 + u) e−uL/2ℓ − (1 − u) euL/2ℓ
e−x/2ℓ .

The pole in the denominator occurs for

euL/ℓ =
1 + u

1 − u
⇒ L

2ℓ
u = tanh−1 u .

Assuming L≫ ℓ, the solution lies at u = 1 − ε with ε ≃ 2 e−L/ℓ , hence

z =
u2 − 1

4τ
≃ −1

τ
e−L/ℓ .

Thus, W (L, t) ∼ e−γt with γ−1 ≃ τ eL/ℓ exponentially large in L/ℓ, as found in part (a).

4



When v
D
< 0, we have

W̌ (x, z) =
(1 + u) eu(L−x)/2ℓ − (1 − u) e−u(L−x)/2ℓ

(1 + u) euL/2ℓ − (1 − u) e−uL/2ℓ
ex/2ℓ .

The poles of the denominator lie at values of u such that

euL/ℓ =
1 − u

1 + u
.

With u = −iw, this yields (L/2ℓ)w = − tan−1w, whose only solution lies at w = 0. In fact,
this pole is cancelled by the numerator.

(2) Consider a continuum model of a polymer, where the position R(s) =
(
a/

√
d
)
W (s),

where W (s) = {W1(s), . . . ,Wd(s)} is a d-dimensional Wiener process, with s ∈ [0, N ],
where N is the length of the polymer in units of the persistence length a. The density, in
units of mass per persistence length, is

ρ(r) =

N∫

0

ds δ
(
r − R(s)

)
.

Show that the structure factor S(k) = N−1
〈∣
∣ρ̂(k)

∣
∣2

〉
, where ρ̂(k) is the Fourier transform

of the density, is of the Debye form,

S(k) = 2 (R0/a)
2 f(k2R2

0/2d) ,

where f(x) =
(
e−x − 1 + x

)
/x2.

Solution:

The Fourier transform of ρ(r) is ρ̂(k) =
N∫

0

ds e−ik·R(s) , and therefore the structure factor is

S(k) =
1

N

N∫

0

ds

N∫

0

ds′
〈
eik·(R(s′)−R(s))

〉

=
1

N

N∫

0

ds

N∫

0

ds′ exp

{

− kαkβa2

2d

〈(
Wα(s) −Wα(s′)

)
(W β(s) −W β(s′)

)〉
}

.

Now
〈
Wα(s)W β(s′)

〉
= min(s, s′) δαβ , hence

S(k) =
1

N

N∫

0

ds

N∫

0

ds′ exp

{

− k2a2

2d

(
s+ s′ − 2min(s, s′)

)

}

=
2

N

N∫

0

ds

s∫

0

ds′ e−k2a2(s−s′)/2d =
4d

k2R2
0

N∫

0

ds
(
1 − e−k2R2

0
s/2Nd

)

=
4Nd

k2R2
0

(

1 − 2d

k2R2
0

(
1 − e−k2R2

0
/2d

))

= 2 (R0/a)
2 f

(
k2R2

0/2d
)

,
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where f(x) =
(
e−x − 1 + x

)
/x2.

(3) Verify that the distribution

Π
[
h(x)

]
= exp

{

− D

Γ

∞∫

−∞

dx

(
∂h

∂x

)2
}

solves the functional Fokker-Planck equation for the one-dimensional KPZ equation.

Solution:

The functional Fokker-Planck equation for the d = 1 KPZ system,

∂h

∂t
= D

∂2h

∂x2
+ 1

2λ

(
∂h

∂x

)2

+ η(x, t)

is given in Eqn. 6.106 of the notes:

∂Π
[
h(x), t

]

∂t
=

∫

dy

(

1
2Γ

δ2

δh(y)2
− δ

δh(y)
J(y)

)

Π
[
h(x), t

]
,

where

J = D
∂2h

∂x2
+ 1

2λ

(
∂h

∂x

)2

.

To verify the solution, define

W
[
h(x)

]
=
D

Γ

∞∫

−∞

dx

(
∂h

∂x

)2

,

so Π[h] = e−W [h] . Taking the functional derivative,

δW

δh(y)
= −D

Γ
h′′(y) ⇒ δΠ

δh(y)
=
D

Γ
h′′(y)Π .

Thus,
Γ

2

δ2Π

δh(y)2
= D δ′′(0)Π +

2D2

Γ
h′′(y)2Π .

Next, we compute

− δ

δh(y)

{[

Dh′′(y) + 1
2λh

′(y)2
]

Π

}

= −Dh′′(0)Π − λh′(y) δ′(0)Π −
[

Dh′′(y) + 1
2λh

′(y)2
](2D

Γ
h′′(y)

)

Π

and adding these results we obtain
{
Γ

2

δ2

δh(y)2
− δ

δh(y)
J(y)

}

Π[h] = −Dλ
Γ

h′(y)2 h′′(y)Π − λh′(y) δ′(0)Π

= − d

dy

(
Dλ

3Γ
h′(y)3 + λ δ′(0)h(y)

)

Π ,
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and since the y-dependent term on the RHS is a total derivative, we have1

∞∫

−∞

dy

{
Γ

2

δ2

δh(y)2
− δ

δh(y)
J(y)

}

Π[h] = 0 ,

where J(y) = Dh′′(y)+ 1
2λh

′(y)2. This says thatΠ[h] is a solution to the functional Fokker-
Planck equation.

We can now see why one dimension is special in this regard. Mutatis mutandis, if we
apply the same procedure to the case where W [h] = D

Γ

∫
ddx (∇h)2, we obtain a term

(∇h)2 ∇2h , which is the higher dimensional generalization of h′(y)2 h′′(y) obtained above.
But (∇h)2 ∇2h is a scalar, in which all the spatial indices are contracted; it is not equal to
the (vector) gradient of any function!

Finally, let’s see how the above functional Fokker-Planck equation results from the contin-
uum limit of an appropriate discrete model. Consider the coupled SODEs

∂hn

∂t
=
D

a2

(
hn+1 + hn−1 − 2hn

)
+

λ

2a2

(
hn+1 − hn

)2
+ a−1/2 ηn(t) ,

where
〈
ηn(t) ηn′(t′)

〉
= Γ δnn′ δ(t− t′) . Notice the discrete derivatives in the above expres-

sion:

hn+1 − hn

a
≈ ∂h

∂x
,

hn+1 + hn−1 − 2hn

a2
=

1

a

(
hn+1 − hn

a
− hn − hn−1

a

)

≈ ∂2h

∂x2
.

We saw in §3.4.3 how the multicomponent SDE dua = Aa dt+βab dWb(t) with
〈
dWa(t) dWb(t)

〉
=

δab dt gives rise to the Fokker-Planck equation ∂tP = − ∂
∂ua

(Aa P ) + 1
2

∂2

∂ua ∂u
b

[
(ββt)ab P

]
.

In our case, we have ua → hn , βab →
√

Γ/a δnn′ , and

Aa → An =
D

a2

(
hn+1 + hn−1 − 2hn

)
+

λ

2a2

(
hn+1 − hn

)2
.

The corresponding Fokker-Planck equation is then

∂P

∂t
=

∑

n

{

− ∂

∂hn

(An P ) +
Γ

2a

∂2P

∂h2
n

}

= a
∑

n

{

− 1

a

∂

∂hn

(An P ) +
Γ

2a2

∂2P

∂h2
n

}

.

We rewrite the RHS on the second line as we did in order to make contact with the contin-
uum functional Fokker-Planck equation, where a

∑

n →
∫
dy.

We now seek a stationary solution. We again take P = e−W , with

W =
D

Γa

∑

n

(hn+1 − hn)2 .

1We could also appeal to the fact that δ(y) is even and insist that δ′(0) = 0. This is a bit dicey because δ(y)
is really a distribution and not a proper function.
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From the chain rule, ∂P
∂hn

= −P ∂W
∂hn

. We now have the following:

∂W

∂hn

=
2D

Γa
(2hn − hn+1 − hn−1

)
,

∂An

∂hn

= −2D

a2
+
λ

a2
(hn − hn+1) .

We therefore have

−1

a

∂

∂hn

(AnP ) =

−a−1P ∂An/∂hn
︷ ︸︸ ︷(

2D

a3
− λ

a3
(hn − hn+1)

)

P +

An
︷ ︸︸ ︷(
D

a2

(
hn+1 + hn−1 − 2hn

)
+

λ

2a2

(
hn+1 − hn

)2
)

·

−a−1∂P/∂hn
︷ ︸︸ ︷(

− 2D

Γa2

(
hn+1 + hn−1 − 2hn

)
P

)

as well as
∂2P

∂h2
n

=
∂

∂hn

(

− P
∂W

∂hn

)

= −P ∂2W

∂h2
n

+ P

(
∂W

∂hn

)2

so that
Γ

2a2

∂2P

∂h2
n

= −2D

a3
+

2D2

Γa4

(
2hn − hn+1 − hn−1

)2
P

When we add these results in the sum of the multivariable FPE, the two terms on the RHS
immediately above cancel with corresponding terms in the expression for − 1

a
∂

∂hn
(AnP ).

Before canceling, it is good to notice that −2/a3 is the lattice equivalent of δ′′(0). After
canceling, we have

a
∑

n

{

− 1

a

∂

∂hn

(An P ) +
Γ

2a2

∂2P

∂h2
n

}

= λ
1

a

∑

n

(
hn+1 − hn

a

)

P

− Dλ

Γ
a

∑

n

(
hn+1 − hn

a

)2(hn+1 + hn−1 − 2hn

a2

)

P .

The first term is identified with −λ δ′(0)
∫
dy h′(y), with δ′(0) = 1/a2. This identification

is due to our asymmetric definition of the lattice derivative at n as (hn+1 − hn)/a . At
any rate, the sum

∑

n(hn+1 − hn) vanishes, if we assume the field hn vanishes at spatial
infinity, or periodic boundary conditions are employed. The last term is the lattice version

of (Dλ/Γ )
∫
dy h′(y)2 h′′(y)P , which vanishes because h′(y)2 h′′(y) = 1

3

(
h′(y)3

)′
is a total

derivative. However, it is only a total derivative in the continuum, and not on the lattice,
therefore our function P ({hn}) is not a stationary solution of the many variable Fokker-
Planck equation.

(4) Consider the Mullins equation,

∂h

∂t
= −ν∇4h+ η ,

where ∇4 = (∇2)2.
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(a) Use dimensional analysis and linearity to show how the interface width w(t) scales
with the parameters and time. For what dimensions does the noise roughen the
interface?

(b) Compute the interface width and the two point correlation function in dimensions
d = 1, d = 2, and d = 3.

Solution:

(a) We have
[ν] = L4 T−1 , [Γ ] = LdH2 T−1 , [t] = T .

The interface width is w(t) =
〈
h2(x, t)

〉1/2
, so [w] = H , and we conclude

w(t) ∝ Γ 1/2 ν−d/8 t(4−d)/8 .

The interface is rough, i.e. its width increases with time, in dimensions d ≤ 4 (we expect a
logarithm in d = 4 dimensions). Recall that for the Edwards-Williamson model, roughen-
ing only occured for d ≤ 2.

(b) Fourier transforming the position variable, the Mullins equation becomes

∂ĥ(k, t)

∂t
= −νk4 ĥ(k, t) + η̂(k, t) .

The Fourier space correlator of the stochastic noise is
〈
η̂(k, t) η̂(−k

′, t′)
〉

= (2π)d Γ δ(k − k
′) δ(t− t′) .

Directly integrating the Mullins equation in Fourier space yields

ĥ(k, t) = ĥ(k, 0) e−νk4t +

t∫

0

ds η̂(k, s) e−νk4(t−s) .

Assuming we start from a flat surface with h(x, 0) = 0, we have

〈
h(x, t)h(x′, t′)

〉
=

∫
ddk

(2π)d

∫
ddk′

(2π)d
ei(k·x−k

′·x′)

t∫

0

ds

t′∫

0

ds′ e−νk4(t−s) e−νk′4(t′−s′) (2π)d Γ δ(k − k
′) δ(s − s′)

= Γ

∫
ddk

(2π)d
eik·(x−x′)

t<∫

0

ds e−νk4(t+t′−2s)

=
Γ

2ν

∫
ddk

(2π)d
eik·(x−x′) 1

k4

{

e−νk4|t−t′| − e−νk4(t+t′)
}

,

where t< = min(t, t′). Thus, if we define r = x − x
′, we have

C(r, t, t′) =
〈
h(r, t)h(0, t′)

〉
=

Γ

2ν

Ωd

(2π)d

∞∫

0

dk kd−5 fd(kr)
{

e−νk4|t−t′| − e−νk4(t+t′)
}

,
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where

fd(z) =







cos z if d = 1

J0(z) if d = 2

Γ(d/2) (2/z)
d

2
−1Jd

2
−1

(z) if d > 2

andΩd = 2πd/2
/
Γ(d/2) is the area of the unit sphere in d dimensions2. Note that fd(0) = 1.

The integral for C(r, t, t′) is convergent in the infrared because the term in curly brackets
vanishes as k4 in the k → 0 limit.

In dimensions d < 4 the interface width is given by

w2(t) =
Γ

2ν

Ωd

(2π)d

∞∫

0

dk kd−5
(
1 − e−2νk4t

)

=
Γ

2(4 − d)ν

Ωd Γ(d/4)

(2π)d
(
2νt

)1− d

4 ,

which agrees with the scaling analysis in part (a). The two-point correlator C(x − x
′, t, t′)

is given by

Cd=1(x− x′, t, t′) =

√
2π Γ

4ν
|x− x′|3

∞∫

0

du
cos u

u7/2

[

e−ζu4 − e−Zu4
]

Cd=2(x − x
′, t, t′) =

πΓ

2ν
|x − x

′|2
∞∫

0

du
J0(u)

u3

[

e−ζu4 − e−Zu4
]

Cd=3(x − x
′, t, t′) =

πΓ

ν
|x − x

′|
∞∫

0

du
sinu

u3

[

e−ζu4 − e−Zu4
]

,

with

ζ =
ν |t− t′|
|x − x′|4 , Z =

ν (t+ t′)

|x − x′|4 .

For the equal time correlation functions
〈
h(x, t)h(x′, t)

〉
, set ζ = 0 in the above expres-

sions, and Z = 2νt/|x − x
′|4.

2Note Ωd=1 = 2.
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