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ψ0 on a closed boundary. Steady state:

v · ∇q = ν∆q
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So we have
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∇ψ · ndl 6= 0

circulation in closed streamline.
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Particles
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Here f (charge density) plays a role of vorticity, q = ∆ψ, (ψ
-stream function) while the particle Hamiltonian

H =
p2

2m
+ eφ = ε
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ε is a �stream function�. If φ is independent of t, H = ε = const.
Any stationary solution f (x , p) = f [H (x , p)]
Use ε = H as a new variable labeling each individual orbit (stream
line). Better than ε, is the action variable

J =

˛
p (ε, x) dx , S (x) =

ˆ x

p (ε, x) dx

p =
√

2m (ε− eφ)

angle: α = ∂S
∂J , can be obtained through di�erentiation wrt ε. It is

convinient to scale α mod2π. f (α + 2π) = f (α) . The
transformation from x , p to α, J is canonical
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becomes (Poisson bracket is an invariant of canonical transforms)
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but H = H (J) , and ∂H/∂J = Ω (J)

∂f

∂t
+ Ω

∂f

∂α
∼ ν ∂

2f

∂J2
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For ν = 0 (following the logic of PB theorem except
time-dependent ν → 0 solution),

f (α, J, t) = f (α− Ωt, J, 0) = F0 (J) +
∑
n

Fn (J) e in(α−Ωt)

F0 = 〈f (t = 0)〉α
Phase mixing: Fn → 0, t →∞, small ν.



∂Fn
∂t
∼ −ν

(
dΩ

dJ

)2

n2t2Fn

All modes with n 6= 0, decay as

Fn ≈ F 0

n exp

{
−ν
3

(
dΩ

dJ

)2

n2t3

}
Critical: Ω′ 6= 0.
The longest survivor F1 spreads α at the rate

δα2 ∼ ν
(
dΩ

dJ

)2

t3

To show this consider an initial distribution as a �blimp� of size
δα� 1 it dissolves as follows:
All of F 0

n are of ∼ 1. E.g. for for an initial f = δ (α) , F 0
n = 1/2π,

recall Poisson formula:∑
n

δ (α− 2πn) =
1

2π

∑
n

e inα



The slolution for

f (α, J, t)− F0 (J) =
1

2π

∑
n

e in(α−Ωt)− ν
3
( dΩ

dJ )
2
n2t3

many n′s may contribute, so∑
n

→
ˆ

dn

BUT: the phase function

Φ = in (α− Ωt)− ν

3

(
dΩ

dJ

)2

n2t3

has a critical point on a complex n− plane. We may deform the
integration path (analytic function under the integral) and pass it
through the maximum of Φ on the new path (saddle point). This
will be at

n =
3

2

i (α− Ωt)

ν
(
dΩ
dJ

)2
t3



ˆ
dne in(α−Ωt)− ν

3
( dΩ
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2
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t3/2
exp

[
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4

(α− Ωt)2

ν
(
dΩ
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]
Note that the solution conserves

´
dα as long as it is narrow at

α− Ωt, gives δ (α) for t → 0.
Recall now the di�usion

∂f

∂t
= D∆f

and its solution for a point source δ (r) at t=0:

f =
1√

4πDt3
exp

[
− r2

4Dt

]
Here we have α− Ωt instead of r (moving point at a speed Ω) but
also spreading as

(α− Ωt)2 ∝ ν
(
dΩ

dJ

)2

t3

See LN 11a, simpler derivation of a similar result:



stream line along y di�usion across, in r

〈
δy2
〉
∼ ν

(
∂Vy

∂r

)2

t3

Characteristic mixing time for trapped particles δα ∼ 2π

τ−1mix ∼

{
ν

(
∂Vy

∂r

)2
}1/3

Let us assume that the beam is monoenergetic initially,
Vb = V = V0. If the wave is growing slowly, one can write
m (V − ω/k)2 − 2eφ = const, so that
δV ≈ (eφ/m) (V0 − ω/k)−1. In course of time, while φ grows,
particles with V > V0 overtake the wave and get bunched in
decelerating phase of the wave, which thus requires that initially
V0 > ω/k . As a result, the beam is broken down into clusters near
the decelerating phases of the wave which further increases the
wave amplitude due to the increased beam modulation.
When the wave amplitude is high enough to trap the beam clusters
into potential troughs, the wave ceases to grow. Indeed, as it



follows from the analysis of Landau damping, when bunched
particles bounce o� the decelerating phase of the wave, more
particles will move slower than the wave and the latter will even
decay for a while until the situation is reversed again. The particle
phase mixing will suppress the bunching e�ect and the wave
amplitude oscillations decay.
The condition for the beam particles to be trapped is that in the
time when they cross the trapping area (wave length) the wave
amplitude should grow signi�cantly

k
∣∣∣V − ω

k

∣∣∣ ∼ γ,
or

eφ/m ∼ γ2/k2.

The growth rate

γ ∼ ωp

(
nb
n0

)1/3

The saturation wave energy thus amounts to (square and use the



beam resonance condition) kVb = ωp

E 2

4π
∼ mV 2

b n0

(
nb
n0

)4/3

∼ mV 2

b nb

(
nb
n0

)1/3

.
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