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cation. Our reconsideration of a standard introductory
textbook theme shows that many generations of students
have been exposed to a well-meant but unsuitable attempt
of such an application to the important case of the harmon-
ic oscillator, which has certainly hindered the process of
understanding the workings of quantum mechanics much
more than it has furthered it.
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The statistical mechanics of a quantum harmonic oscillator can easily be formulated in terms of
Feynman path integrals in imaginary time. By straightforward integrations, the partition
function, the internal energy, and correlation functions are found. When time is discretized, the
same results can be obtained directly using Monte Carlo methods on a computer. In the zero
temperature limit, the usual quantum mechanical results are recovered.

I. INTRODUCTION

During the last decade, one has seen Feynman’s formu-

lation of quantum mechanics in terms of path integrals' -

arise from obscurity in the literature to the forefront of
today’s research in statistical physics and quantum field
theory. In addition to being in many ways conceptually
simpler than canonical methods involving noncommuting
operators in some abstract Hilbert space, it is also ideally
suited for numerical simulations on the powerful comput-
ers that are now generally available.

Among the many different Monte Carlo simulation
methods, the Metropolis algorithm? seems in many ways to
be the most popular, being fast and easy to translate into
computer code. Its widespread use today is to a large extent
due to its successful application in the ongoing investiga-
tions of quark confinement in lattice gauge theories.?

The same numerical methods can also be used in ordi-
nary quantum mechanics* and give a very concrete feeling
of dynamical effects such as zero-point fluctuations and
tunneling. Many of these effects can be investigated on an
ordinary microcomputer and are suitable for undergradu-
ate-courses in quantum mechanics or computational phys-
ics.”

In order to implement a Feynman path integration on a
computer, it is necessary to let the quantum mechanical
system develop in imaginary time, preferably over a theo-
retically infinite time interval. Since this is in practice im-

“possible on a finite computer, one actually ends up calcu-
lating finite temperature properties of the quantum
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system.® Nowadays, this is the standard method to obtain
finite temperature results for interacting quantum field
theories in numerical simulations.

Finite temperature quantum mechanics using path inte-
grals is most easily explained using the harmonic oscillator
as an example. The required formalism has already been
developed by Creutz and Freedman,* who used it primarily
to derive zero temperature results. For their actual analyti-
cal calculations they went back to canonical methods using
creation and annihilation operators for the oscillator. We
think that it is more consistent and illustrative, especially
for this simple system, to solve it completely using func-
tional methods.

In Sec. II, we briefly outline how finite temperature
properties of a quantum mechanical system can be found
by functional integration over Feynman paths. This for-
malism is applied in Sec. III to the harmonic oscillator

. where all quantum fluctuations can be obtained directly. If

the zero temperature limit is taken, one recovers the stan-
dard quantum mechanical results involying only the
ground state. In Sec. IV some of these results are obtained
from a Monte Carlo simulation based on the Metrapolis
algorithm and compared with the exact results we have at
finite temperature on a finite lattice.

I1. FINITE TEMPERATURE QUANTUM
MECHANICS

For a q\iantum mechanical system with Hamiltonian

H=(1/2m)p* + V(@) (1)
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in thermal equilibrium at temperature 7, the partition
function is

Z=tre #H (2)

with B=1/kT. In the coordinate basis with
(¢'|q) = 6(¢' — q), the trace is simply the integral
26 =" datale="1o). 3)

Comparing the density matrix operator exp( — BI/} ) with
the time evolution operator exp( — itH /#), we see that the
matrix element in (3) gives the transition amplitude for the
particle to move from position ¢ and back again to ¢ in an
imaginary time interval it = B#.

In order to write (3) as a functional integral, we now
repeat the standard procedure for real times."** We parti-
tion the time interval 5% into N segments, each of duration
a so that 5% = Na. Inserting complete sets of coordinate
eigenstates corresponding to each of these short time inter-
vals, the original matrix element can be written as a prod-
uct of N, transition amplitudes of the form
(¢'|lexp( — aH /#)|q). In the limit where the lattice dis-
tance a is very small, one finds for the partition function

2(8) = [ Dgexp( — 4 1q1/h. 4)
Here,
N o0
DqECNH f dg, (5)
n=1v— oo
is the integration measure with C = (m/2mra#i) 172 and
N
Alg)= Y a(T5 @ —a) V@) 6
n=1

is the discretized expression of the action integral in imagi-
nary time. Because of the trace in (2), we now have the
periodic boundary condition g, , = ¢,. A typical path or
configuration in this approximation is shown in Fig. 1. In
the limit a— 0, N— o« with 3 fixed, the action (6) takes the
ordinary continuum form

3% m
Alq] = f df(7 7+ V(q)), 7
0

where 7 is imaginary or Euclidean time equal to na when @
is finite.

From the partition function Z(f), we immediately ob-
tain the free energy F(B) from Z = exp( — SBF). The inter-
nal energy U(f3) is the expectation value of the kinetic ener-
gy T'= — m@*/2 plus the potential energy ¥(g). From the
virial theorem, one has

(T) =4qV") (8)

for bounded motion. Expectation values are now calculat-
ed as in ordinary statistical mechanics. For example, the
average potential energy is

(V) =_;—JDqV(q)e“’”. 9)

Instead of using the virial theorem, one can directly obtain
the kinetic energy from the expectation value of the time-
split product of the squared velocity,"*

(TY= —m/28*((¢u 11 —4.)(qn — gu_1)),  (10)

where the different terms are given by the correlation func-
tiOﬂ Cn—m = (qnqm> :
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Fig. 1. The broken line is the discrete approximation to the path of a
quantum particle going from g, to gy, , = gq,.

In the zero temperature limit S— o, the internal energy
U equals the ground state energy E,. Taking this limit in
the imaginary time formalism is in fact the method used to
calculate ground state energies in numerical simulations.**

ITI. THE HARMONIC OSCILLATOR

The path integral (4) for the partition function can be
written as a product of simple Gaussian integrals for the
harmonic oscillator with the potential ¥(q) = ymw’q*. It
can be evaluated directly’ using a recursive method. We
will instead diagonalize the integrand by introducing the
discrete Fourier components u, of the position coordinates

N
g, = N—l/2 2 ukei(Zﬂ/N)kn. (11)

k=1
Using the completeness relation

ei(Zfr/N)(k~k‘)n=N5kk” (12)

n=1

we also have the inverse transform

u, = N~ 1/2 i q.€ — i(Zﬂ/N)kn.
n=1
Requiring the coordinates g, to be real restricts the number

of independent, complex Fourier components %, to equal
N.

Now,
N N
2 *
an = Zukuk
n=1 k=1
and

< s 27
Z (i1 —4,) = ZZu’,‘:uk(l —cos—k)
K=1 N

n=1

so that the action (6) becomes diagonal:

y 2
A =M N 2(1—cos—-—k)+aza)2]u .(13)
[q] 2a k§=:1 k N k
The integration measure (5) is now
N o0
k=1v -

where the Jacobian A = |dg,/du,|. Using (11) and (12),
one finds AA*=1,ie, A= 1.
The net result of the integration can be written as

Z(B) = (det M)~ !/? (15)
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with
il 217' 2.2
det M = H[Z(l—cos-—k)+aw]. (16)
K=1 N
Setting
cosh x = 1 + ld*»®
and
R=e"*=1+410%" — aw(l + 1d%*)"?, (17

the product in the determinant (16) can be simplified using
the identity
N

II (coshx—cos2—1:rrk)=2“N(costh— 1), (18)

k=1
which is derived in the Appendix. It gives
Z(B)=R"?/(1—R"). (19)
We will also need the correlation function
C, = (49, :9,)- Using (11), we see that its Fourier trans-
form is just the expectation value
afi Sk
(ufu, ) =—
m 2[1 —cos(2n/N)k ] + d’w

which gives
afi X _cos(27/N)ks
2Nm =, cosh x — cos(2n/N)k

One way to carry out this summation is shown in the Ap-
pendix. We can write the result as

C, = (#2mQ)[(R*+R"~%)/(1—R
where

02 = 0*(1 + Jd°0?).
Our result for the correlation function together with (19)
for the partition function was also derived by Creutz and
Freedman® using the transfer matrix and operator methods
to diagonalize it.

Having found the correlation function for the oscillator
quantum, we can now also calculate the internal energy U,

whichequalsthesum (7') + (¥ ).Forthe potentlal energy,
we have immediately

(V) =ima’C,, (22)

which will also be the result for (7°) as seen from the virial
theorem (8) when the potential is quadratic. Alternatively,
we could have used the time-split expression (10) for the
kinetic energy, which now gives

(T) == (m/zaz)(C0+ Cz - 2C|). (23)

Using the expression (21) for C,, it is easy to see that this
result is consistent with the virial theorem aslong as aw < 1.

We can now check our expressions for the quantum har-
monic oscillator at finite temperature against standard re-
sults derived from quantum mechanics in the continuous
time limit where a—»0, N— o with Na = B4 finite. From
(17), we then have R " = exp( — B#iw). The partition
function takes the well-known form

(20)

s =

M1, (21)

Z(B) = 1/2 sinh(}ffw),
ie.,
Z(B) — i e—ﬂhw(n+!/2). (24)

In this limit, we have recovered all the energy levels of the
oscillator.
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Similarly, the correlation function (21) simplifies to
C(1) = (#i/2mw) [cosh(}pfiw — wT)/sinh (JFAw) 1, (25)

where the time separation 7 = sa. The expectation value
(22) of the potential energy is then

(V') = Yiw coth(JB#wm), (26)

which will also be the expectation value of the kinetic ener-
gy. This consequence of the virial theorem follows again
from (23) where we now on the right side simply have the
double derivative of the correlation function,
(T) =mC"(0). The total internal energy is therefore
twice this result or

U = i + fiw/ (¢ — 1). 27

In the zero temperature limit, 8- oo, it is just the ground
state energy E, = fiw.

In numerical simulations, the ground state energy for a
general potential can be obtained more directly from the
partition function (3). Inserting a complete set of energy
eigenstates, we see that

Z(ﬂwqul%(q)lze‘m

in the zero temperature limit S— . Here, ¢,(g) is the
ground state wavefunction. Similarly, when the tempera-
ture is finite, the logarithm of the partition function gives
directly the free energy. It was obtained along these lines in
one of the earliest Monte Carlo simulations of the harmon-
ic oscillator.® In Sec. IV, we will present a few similar re-
sults based on the same algorithm.

(28)

IV. MONTE CARLO SIMULATION

In order to calculate expectation values like (9) numeri-
cally, we use the Metropolis algorithm. It is discussed in
detail for this particular problem by Creutz and Freed-
man.* Starting from some arbitrary configuration, as in
Fig. 1, we choose to consider a point g,,. A random value ¢/,
is now generated in the interval (¢, — A,q, + A), where
the width A is related to the time step a. It is introduced to
avoid spending time on unimportant configurations. If the
algorithm accepts this new value, g, is replaced by ¢.,. To
improve convergence to equilibrium, this procedure was
repeated a certain number of times 7 on the same point ¢,
before proceeding to the next lattice point. In our simula-
tion, we chose 7 = 5. Going through all the points in the
lattice is one Monte Carlo iteration. This new configura-
tion can be updated again in further iterations.

After a certain number of iterations, thermal equilibri-
um is obtained. For our problem, it is easily characterized
by having {g,) = 0, where the expectation value is now
simply the average of ¢, in a large set of such configura-
tions. To avoid correlations between nearby configura-
tions, we perform a few extra iterations between each of
these measurements.

In our calculations, we decided to find the internal ener-
gy U= (H ) of the oscillator. From the virial theorem (8),
we know that it is simply the expectation value
U= mw*{q*). From (21) and (22), we find

U=ifiw[o(l+RY)/Q(1 —R™M]. (29)

It is first calculated on lattices with N = 4 and 50 points,
respectively, in the time direction. The results are shown in
Fig. 2 together with the exact results. For B#iw > 2, we find

- very good agreement. This is obtained by first performing
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500 iterations to obtain equilibrium and then averaging
over 200-300 measurements with 5-10 intermediate itera-
tions. With V = 50, we are in the continuum limit for these
values of B; increasing N does not noticeably change the
results. In the zero temperature limit, #— «, we recover
the standard ground state energy E, = ifiw.

When f%iw < 2, i.e., at high temperatures, there are large
fluctuations in the measured values and the agreement with
the exact results is not too good. We discovered that in this
region it took many more iterations to achieve thermal
equilibrium; the results in Fig. 2 were obtained after 5000
iterations and with 20 intermediate iterations between each
measurement. At these high temperatures, the system can
be said to move much slower, the fast quantum fluctuations
are now dominated by much slower thermal fluctuations.

In order to see how high temperatures slow the simula-
tion, we show in Fig. 3 three typical equilibrium configura-
tions with N = 100 at Sfiw = 50, 3, and 0.6. At very low
temperatures, we see the fast quantum fluctuations around
g =0. At somewhat higher temperatures, S#iw = 3, the
particle has a much slower thermal oscillation around
g =0 on top of which we see the much faster quantum
fluctuations. With increasing temperatures, the thermal
fluctuations become so slow that the whole configuration is
in general displaced away from g = 0 as for S#iw = 0.6 in
Fig. 3. Thermal averages in this region require a large en-
semble of configurations separated by many iterations in

2.0 -
N=50
AL = .
he
ok ]
o
° [y L ol i 1 A (| L i
y 2 4 [ ] . 8 ’
1 i W
2.0 -1

ghw

Fig. 2. Internal energies for the discretized harmonic oscillator at different
temperatures. Points are from the Monte Carlo simulations while the
curves represent the analytic expressions. The N = 50 results are almost
indistinguishable from the continuum results at these temperatures.
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order to have thermal equilibrium with (g) = 0. This takes
relatively much time on a typical minicomputer.

These long relaxation times are a direct consequence of
the physics of the system at high temperature. In the simu-
lation, one then has a corresponding small lattice distance a
in the time direction. Looking back at the action (6), one
sees that this makes the kinetic energy more important rel-
ative to the potential energy. Since the change in the action
must not be too large for an update of a coordinate to be
accepted, it means that most resulting positions are very
close to their original values. It takes correspondingly
many more iterations to generate really different configu-
rations. This is completely in accord with the picture one
has about the high-temperature limit in statistical mechan-
ics following from path integrals.'

In order to check the calculations at high temperatures,
we actually performed another Monte Carlo simulation on
a larger and faster computer. We chose N = 2 since our
analytical results then approximate very well the contin-
uum limit when S#iw < 1. The necessary relaxation time to
obtain thermal equilibrium increases rapidly with increas-
ing temperatures. For Sfiw = 0.3, we generated 100 000
configurations and measured for every 100 over the last
30 000 while for Sfiw = 0.2 we used the last 120 000 con-

4 ?
1k
q o} :
-1H -
L )
phw =50 -
q
3l phw=3 -
2k .
q
phw =0.6
1 - -
0o 80 700
n

Fig. 3. Typical paths at three different temperatures obtained in the
Monte Carlo simulation. While the points on the low-temperature path,
Bhiw = 50, are fluctuating around ¢ = O, they are all displaced away from
the equilibrium position ¢ = 0 at the high temperature Sfiw = 0.6.
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gle

Fig. 4. High-temperature results for the internal energy. Points are from
the Monte Carlo simulation. The curve represents the analytic expression.
These N = 2 results are almost indistinguishable from the continuum re-
sults at these temperatures.

figurations in a series of 800 000 iterations. These high-
temperature results are shown in Fig. 4. The numerical
values all agree with the analytical ones to within 5%. We
can conclude that the discrepancy in the high-temperature
results presented in Fig. 2 is due to the relatively small
number of configurations generated and used in calculat-
ing the averages.

V. DISCUSSION AND CONCLUSION

The harmonic oscillator at zero temperature has been for
a long time an ideal example to illustrate the main proper-
ties of path integrals and to demonstrate the different
mathematical methods required for their evaluation. This
quantum mechanical problem is so simple and exactly solv-
able because the corresponding path integral is just an infi-
nite product of ordinary Gaussian integrals. We have
shown here that the same holds true at finite temperatures
where one gets the results almost for free.

For this particular problem, the Monte Carlo simula-
tions add little new at low temperatures. But it was some-
what surprising to find the very long amounts of time the
system needed to reach equilibrium at higher tempera-
tures. It gives a very good illustration of how the quantum
and thermal fluctuations manifest themselves in a system
of this type.

From these relatively long computer simulations re-
quired for this simple problem, one is led to question
whether the Metropolis algorithm really is the optimal one
for quantum mechanical systems where the number of de-
grees of freedom is so low. We chose to use this particular
algorithm here since it ties in so naturally with the Feyn-
man path integral. But today there are many other algor-
ithms available that are used with great success in statisti-
cal mechanics and quantum field theory. It would be of
interest to apply them to more elementary problems of the
kind we have considered here.

APPENDIX

The identity (18) can be proven by considering the func-
tion F(x) = cos Nx — 1. It has zeros for x = 27#/N)k,
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k =1,2,...,N. Since cos Nx can be written as a polynomial
of degree N in cos x, we have immediately
N 27
cosNx——1=2N_'H(cosx—cos—k>, (AD)
K=1 "N
where the prefactor is determined by comparing the coeffi-
cients of e** on both sides. For N = 2, this identity repre-
sents a generalization of cos2x —1= —2sin’x
=2(cos x — 1) (cos x + 1). Now letting x be imaginary,
we have (18).
Using the Poisson summation formula, we can express

the sum (20) as an infinite sum of the Fourier components
F, of the function

F(u,s) = e**/(cosh x — cos u)

= i F,(s)e™, (A2)
ie.,
27rd
F )= | 2% Fus)e ™ (A3)
' o 27

Now, choosing u = (2#/N)k with k= 1,2,...,N, we
have

N ©
ZF('gzk’s)zN 2 FNm(S))
=1 \N m=
which is the desired summation formula. We have here
used (12), which picks out the Fourier components F,, (s)
with n = Nm, m =0, + 1, + 2 in the finite sum.

In our case, we see that F,(s) =f, _,, where £, is the
Fourier component of the simpler function F(u,s = 0), i.e.,

f _ 27 ﬁli e inu
" Jo 27 coshx—cosu
This integral is most easily done introducing the variable
z = e", which translates it into a contour integral around
|z| = 1 in the complex plane

f=2 4z z_ )
2mi (z—R)(R ™ '—2)
Here, R = e~ *as given in (17). Since R < 1, we have only
one pole at z= R when n<0, giving f, =R ~"/aQ). For
n> 0, one similarly finds f, = R "/a(). These two results
can be combined to give, for all n,

F,(s) =R'"*/aQ. (A7)

From (A4), we now see that the correlation function ( 10)
is reduced to a geometric series

#i
- R|Nm-—s[’
2mQ ,,,32_ w

which gives the result (21).

(A4)

(AS5)

(A6)
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