PHYSICS 210A: STATISTICAL PHYSICS HW ASSIGNMENT #6

(1) Consider the equation of state

$$p\sqrt{v^2 - b^2} = RT \, \exp\left(-\frac{a}{RTv^2}\right) \, .$$

- (a) Find the critical point (v_c, T_c, p_c) .
- (b) Defining $\bar{p}=p/p_{\rm c}$, $\bar{v}=v/v_{\rm c}$, and $\bar{T}=T/T_{\rm c}$, write the equation of state in dimensionless form $\bar{p}=\bar{p}(\bar{v},\bar{T})$.
- (c) Expanding $\bar{p}=1+\pi$, $\bar{v}=1+\epsilon$, and $\bar{T}=1+t$, find $\epsilon_{\mathrm{liq}}(t)$ and $\epsilon_{\mathrm{gas}}(t)$ for $-1\ll t<0$.
- (2) You are invited to contemplate the model

$$\hat{H} = -J \sum_{\langle ij \rangle} \hat{\boldsymbol{n}}_i \cdot \hat{\boldsymbol{n}}_j$$

on a regular lattice of coordination number z, where each local moment \hat{n}_i can take on one of 2n possible values: $\hat{n}_i \in \{\pm \hat{e}_1, \dots, \pm \hat{e}_n\}$, where $\hat{e}_i \cdot \hat{e}_j = \delta_{ij}$. You may assume J > 0.

- (a) Making the mean field *Ansatz* $m = \langle \hat{n}_i \rangle$, find the dimensionless free energy density $f(m,\theta)$, where $\theta = k_{\rm B}T/zJ$ and f = F/NzJ.
- (b) Consider two possible orientations for the moment: $m_{\rm A}=m\,(1,0,\ldots,0)$, in which the moment lies along one of the \hat{e}_i directions, and $m_{\rm B}=m\,(\frac{1}{\sqrt{n}},\ldots,\frac{1}{\sqrt{n}})$, in which the moment makes an angle $\cos^{-1}\left(\frac{1}{\sqrt{n}}\right)$ with each of the \hat{e}_i . Which configuration will have the lower free energy?
- (c) Analyze the mean field theory and show that for $n \leq 3$ there is a second order transition. Find the critical temperature $\theta_c(n)$.
- (d) Show that for n > 3 the transition is first order. Numerically obtain $\theta_{\rm c}(n)$ for n = 4, 5, 6.

Hint: The case n = 3 is examined in example problem 7.16.

(3) A *ferrimagnet* is a magnetic structure in which there are different types of spins present. Consider a sodium chloride structure in which the A sublattice spins have magnitude $S_{\rm A}$ and the B sublattice spins have magnitude $S_{\rm B}$ with $S_{\rm B} < S_{\rm A}$ (e.g. S=1 for the A sublattice but $S=\frac{1}{2}$ for the B sublattice). The Hamiltonian is

$$\hat{H} = J \sum_{\langle ij \rangle} \boldsymbol{S}_i \cdot \boldsymbol{S}_j + g_{\mathrm{A}} \mu_0 H \sum_{i \in \mathcal{A}} S_i^z + g_{\mathrm{B}} \mu_0 H \sum_{j \in \mathcal{B}} S_j^z$$

where J > 0, so the interactions are antiferromagnetic.

(a) Work out the mean field theory for this model. Assume that the spins on the A and B sublattices fluctuate about the mean values

$$\langle oldsymbol{S}_{ ext{A}}
angle = m_{ ext{A}} \, \hat{oldsymbol{z}} \qquad , \qquad \langle oldsymbol{S}_{ ext{B}}
angle = m_{ ext{B}} \, \hat{oldsymbol{z}}$$

and derive a set of coupled mean field equations of the form

$$\begin{split} m_{\text{\tiny A}} &= F_{\text{\tiny A}}(\beta g_{\text{\tiny A}} \mu_0 H + \beta J z m_{\text{\tiny B}}) \\ m_{\text{\tiny B}} &= F_{\text{\tiny B}}(\beta g_{\text{\tiny B}} \mu_0 H + \beta J z m_{\text{\tiny A}}) \end{split}$$

where z is the lattice coordination number (z=6 for NaCl) and $F_{\rm A}(x)$ and $F_{\rm B}(x)$ are related to Brillouin functions.

(b) Show graphically that a solution exists, and find the criterion for broken symmetry solutions to exist when H=0, *i.e.* find $T_{\rm c}$. Then linearize, expanding for small $m_{\rm A}$, $m_{\rm B}$, and H, and solve for $m_{\rm A}(T)$ and $m_{\rm B}(T)$ and the susceptibility

$$\chi(T) = -\frac{1}{2} \frac{\partial}{\partial H} (g_{\mathrm{A}} \mu_0 m_{\mathrm{A}} + g_{\mathrm{B}} \mu_0 m_{\mathrm{B}})$$

in the region $T > T_c$. Does your T_c depend on the sign of J? Why or why not?