
PHYSICS 220 : GROUP THEORY
FINAL EXAMINATION

This exam is due in my office, 5438 Mayer Hall, at 10 am, Friday, June 15. You are allowed
to use the course lecture notes, the Lax text, and the character tables (link from lecture
notes web page), but no other sources, and please do not discuss the exam with anyone
other than me. If you have any urgent questions regarding the exam, send me email.

[1] Show that the Lie algebra structure constants are given by the expression
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with f(x,y) the group composition function. Thus, the structure constants depend on the
parameterization of the associated Lie group G, but are representation-independent.

Solution :

Let D(x) = D(g(x)) be a representation of G. From the relation ∂D
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On the other hand, since D(x)D−1(x) = 1 for all x, taking the differential we have dD−1 =
−D−1 (dD)D−1, and the above equation becomes
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Now evaluate the above equation at x = xe to obtain the result[
Xa , Xb

]
= f c

ab Xc

where

f c
ab =

(
∂S c

b

∂xa

∣∣∣∣
xe

− ∂S c
a

∂xb

∣∣∣∣
xe

)
.

We see that the structure constants are independent of the representation D, but are de-
pendent on the coordinatization of G.
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[2] Consider a chromium ion in a D3d environment.

(a) First consider the case of Cr2+, with electronic configuration [Ar] 3d4. Hund’s first two
rules say that S = 2 and L = 2 (D). According to Hund’s third rule, what is the atomic
ground state term?

(b) The character table for the double group D′3d is given in Tab. 1. With an even number
of electrons, only the unbarred elements, which comprise D3d, need be considered1. Ignoring
spin-orbit, decompose D into irreps of D3d (the decomposition will be the same as in D′3d).
Then decompose the ΓS=2 spin representation into irreps of D3d . Finally, decompose the
product Γ2 ×D = 5D into irreps of D3d . You may find the tables in the first appendix to
chapter six to be useful.

(c) Starting on the dominant LS coupling end, decompose 5D first into O(3) irreps via
addition of angular momentum. Then decompose your result into D′3d irreps and show
your result agrees with that of part (b).

(d,e,f) Repeat parts (a), (b) and (c) for Cr3+, with electronic configuration [Ar] 3d3 , where
Hund’s first two rules tell us S = 3

2 and L = 3 . Now you need to worry about the double
group.

Hint : This problem is quite similar to problem 3 on the Spring 2016 exam, the solutions
of which are available on the Spring 2018 Homework page. Studying that solution should
help you approach this problem, but please note that the group considered in S16 was D4,
which is a proper point group, hence there was no need to evaluate the parity η. D3d is not
a proper point group.

Solution :

(a) For Cr1+ with electronic configuration [Ar] 3d4, Hund’s rules say S = 2, L = 2, and
J = |L− S| = 0, so the ground state term is 5D0.

(b) The valence electrons are in the 3d shell, hence l = 2 and the parity is η = (+1)4 = +1.
The spin representation ΓS=2 is the same as D+. To decompose a reducible representation
Ψ , we use the result

nΓ (Ψ) =
1

NG

∑
C
NC χ

Γ ∗(C)χΨ (C) ,

which follows from the Great Orthogonality Theorem (see ch. 2 of the Lecture Notes),
to determine the number of times a given irrep Γ occurs in the decomposition of Ψ .
Decomposing Ψ = D+ into D3d irreps, we find D+ = A1g ⊕ 2Eg. Thus,

Γ2 ×D+ =
(
A1g ⊕ 2Eg

)
×
(
A1g ⊕ 2Eg

)
= A1g ⊕ 4Eg ⊕ 4Eg × Eg
= 5A1g ⊕ 4A2g ⊕ 8Eg .

1Remember D3d has 12 elements and D′3d has 24 elements since it is the double group of D3d.
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D′3d E 3C ′2 2C3 I 3σd 2S6 E 3C
′
2 2C3 I 3σd 2S6

A1g 1 1 1 1 1 1 1 1 1 1 1 1

A2g 1 −1 1 1 −1 1 1 −1 1 1 −1 1

Eg 2 0 −1 2 0 −1 2 0 −1 2 0 −1

A1u 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1

A2u 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

Eu 2 0 −1 −2 0 1 2 0 −1 −2 0 1

Θg 1 i −1 1 i −1 −1 −i 1 −1 −i 1

Θ∗g 1 −i −1 1 −i −1 −1 i 1 −1 i 1

∆g 2 0 1 2 0 1 −2 0 −1 −2 0 −1

Θu 1 i −1 −1 −i 1 −1 −i 1 1 i −1

Θ∗u 1 −i −1 −1 i 1 −1 i 1 1 −i −1

∆u 2 0 1 −2 0 −1 −2 0 −1 2 0 1

P+ 3 −1 0 3 −1 0 3 −1 0 3 −1 0

D+ 5 1 −1 5 1 −1 5 1 −1 5 1 −1

F+ 7 −1 1 7 −1 1 7 −1 1 7 −1 1

G+ 9 1 0 9 1 0 9 1 0 9 1 0

Γ1/2 2 0 1 2 0 1 −2 0 −1 −2 0 −1

Γ3/2 4 0 −1 4 0 −1 −4 0 1 −4 0 1

Γ5/2 6 0 0 6 0 0 −6 0 0 −6 0 0

Γ7/2 8 0 1 8 0 1 −8 0 −1 −9 0 −1

Γ9/2 10 0 −1 10 0 −1 −10 0 1 −10 0 1

Table 1: Character table for D′3d, extended to include the last nine representations.

Here we have used A1g × Ψ = Ψ for any representation Ψ , and Eg × Eg = A1g ⊕A2g ⊕ Eg,
which is readily derived using the decomposition formula.

(c) Now let’s first compute Γ2×D+ in SO(3). This is easy – just multiply two spin-2 irreps
to get

Γ2 ×D+ = S+ ⊕ P+ ⊕D+ ⊕ F+ ⊕G+ ,
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i.e. 2× 2 = 0⊕ 1⊕ 2⊕ 3⊕ 4 . Decomposing these SO(3) irreps into irreps of D3d, we find

S+ = A1g

P+ = A2g ⊕ Eg
D+ = A1g ⊕ 2Eg

F+ = A1g ⊕ 2A2g ⊕ 2Eg

G+ = 2A1g ⊕A2g ⊕ 3Eg .

Thus we obtain
5D+ = Γ2 ×D+ = 5A1g ⊕ 4A2g ⊕ 8Eg ,

as in part (a).

(d) Now we come to Cr3+, with electronic configuration [Ar] 3d4, Hund’s rules tell us that
S = 3

2 , L = 3, and J = |L− S| = 3
2 , so the ground state term is 4F3/2 .

(e) The parity is again η = +1 = (+1)3. We first decompose the spin irrep Γ3/2 . From
the entries in the extended character table, obtained Tabs. 6.20 and 6.21 of the Lecture
Notes, we find

Γ1/2 = ∆g

Γ3/2 = Θg ⊕Θ∗g ⊕∆g

Γ5/2 = Θg ⊕Θ∗g ⊕ 2∆g

Γ7/2 = Θg ⊕Θ∗g ⊕ 3∆g

Γ9/2 = 3Θg ⊕ 3Θ∗g ⊕ 3∆g .

At the moment, we only need the decomposition of Γ3/2, as well as that of F+, which we

found in part (c). We therefore have

Γ3/2 × F+ =
(

Θg ⊕Θ∗g ⊕ 2∆g

)
×
(
A1g ⊕ 2A2g ⊕ 2Eg

)
= 5Θg ⊕ 5Θ∗g ⊕ 9∆g ,

where we use the partial multiplication table Tab. 2, which is easily constructed by multi-
plying and decomposing D′3d irreps. Note that there are 5 + 5 + 9 · 2 = 28 = 4 · 7 states (4
from S = 3

2 and 7 from L = 3).

(f) Finally, start from the strong LS coupling side, and multiply the SO(3) irreps corre-
sponding to S = 3

2 and L = 3. We get

3
2 × 3 = 3

2 ⊕
5
2 ⊕

7
2 ⊕

9
2 .

The decomposition of each of these is given in the solution to part (e). Summing up their
decompositions, we once again arrive at

4F+
3/2 = 5Θg ⊕ 5Θ∗g ⊕ 9∆g .
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D′3d A1g A2g Eg

Θg Θg Θ∗g ∆g

Θ∗g Θ∗g Θg ∆g

∆g ∆g ∆g Θg ⊕Θ∗g ⊕∆g

Table 2: Products of spin and spinless gerade irreps of D′3d irreps.

[3] The n-string braid group Bn has (n− 1) generators {τ1, . . . , τn−1} obeying the relations

τi τj = τj τi if |i− j| > 1

τi τi+1 τi = τi+1 τi τi+1 (1 ≤ i ≤ n− 2) .

(a) Find all one-dimensional unitary representations of Bn, for all n.

(b) Find all two-dimensional unitary representations of B3. Recall that a general element
g ∈ SU(2) may be written as g = a + ibn̂ · σ, where a2 + b2 = n̂2 = 1 and σ are the
Pauli matrices. Recall also that σa σb = δab + iεabc σ

c.

(c) Show that

τi =


Ii−1 0 0 0

0 1− t t 0

0 1 0 0

0 0 0 In−i−1

 , (1)

comprises an n-dimensional representation of Bn for any t ∈ R. This is known as the
Burau representation. The Burau representation is faithful for n = 2 and n = 3, but
is known to be not faithful for n ≥ 5. Whether it is faithful for n = 4 is an open
problem.

Solution :

(a) Let D(Bn) be a one-dimensional unitary representation of Bn. It is then commutative,
since each element of Bn is represented by a unimodular complex number. From the second
of the relations, we have

D(τi τi+1 τi) = D2(τi)D(τi+1) = D(τi)D
2(τi+1) = D(τi+1 τi τi+1) .

Thus, D(τi) = D(τi+1) for all i ∈ {1, . . . , n− 2}, which means

D(τi) = eiθ

for all i ∈ {1, . . . , n− 1}, where θ ∈ [0, 2π) .
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Figure 1: Braid group relations and construction of a braid group element.

(b) B3 has two elements, which we call g = σ1 and h = σ2. We write

g = a+ ib m̂ · σ , h = c+ id n̂ · σ ,

where a2 + b2 = c2 + d2 = m̂2 = n̂2 = 1. There is one group relation, viz.

ghg = hgh =⇒ ghg−1 = h−1gh .

This latter form of the relation is convenient since it involves conjugation. Now it is useful
to derive the relation

(a+ ib m̂ · σ)(n̂ · σ)(a− ib m̂ · σ) = (a2 − b2) n̂ · σ − 2ab m̂× n̂ · σ + 2b2(m̂ · n̂) m̂ · σ .

From this we derive

ghg−1 = (a+ ib m̂ · σ)(c+ id n̂ · σ)(a− ib m̂ · σ)

= (a2 + b2) c+ id
[
(a2 − b2) n̂− 2ab m̂× n̂+ 2b2 (m̂ · n̂) m̂

]
· σ

and

h−1gh = (c− id n̂ · σ)(a+ ib m̂ · σ)(c− id n̂ · σ)

= (c2 + d2) a+ ib
[
(c2 − d2) m̂− 2cd m̂× n̂+ 2d2 (m̂ · n̂) n̂

]
· σ .

We may now invoke a2 + b2 = c2 + d2 = 1. Equating these expressions gives a = c, and we
may also equate the vectors contracted with σ in each expression. Taking their dot product
with m̂ × n̂ gives abd = bcd, i.e. (a − c)bd = 0, which again gives a = c. Taking their dot
products with m̂ and n̂, respectively, yields the equations

d m̂ · n̂ = b
[
c2 − d2 + 2d2 (m̂ · n̂)2

]
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and
b m̂ · n̂ = d

[
a2 − b2 + 2b2 (m̂ · n̂)2

]
.

Using (m̂× n̂)2 + (m̂ · n̂)2 = 1, we may write these two equations as

d m̂ · n̂ = b− 2bd2 (m̂× n̂)2

b m̂ · n̂ = d− 2db2 (m̂× n̂)2 .

Taken together, these imply b2 = d2, i.e. d = ±b. Thus, we have two possibilities:

(i) c = a, d = +b, and m̂ · n̂ = 1− 2b2 (m̂× n̂)2.

(ii) c = a, d = −b, and m̂ · n̂ = 2b2 (m̂× n̂)2 − 1.

Let us write m̂ · n̂ ≡ cosα, in which case (m̂× n̂)2 = sin2α. We then have

sin2 α = 1− cos2α =
1∓ cosα

2b2
,

where the upper sign applies to case (i) and the lower sign to case (ii). In each case, there
are two roots, at

cosα = ±1 , cosα = ±
(

1

2b2
− 1

)
.

The second solution requires b2 ≥ 1
4 . We thus have the following possibilities:

(i) c = a, d = b, n̂ = m̂ i.e. cosα = 1 . Then

g = h = a+ ib m̂ · σ .

This representation is abelian. It is equivalent to the case c = a, d = −b, n̂ = −m̂
i.e. cosα = −1 .

(ii) c = a, d = b with b2 ≥ 1
4 , and m̂ · n̂ = 1

2b2
− 1. Then

g = a+ ib m̂ · σ , h = a+ ib n̂ · σ .

This representation is nonabelian. It is equivalent to the case c = a, d = −b with
b2 ≥ 1

4 , and m̂ · n̂ = 1− 1
2b2

.

(c) Define the matrices

A =

1− t t 0
1 0 0
0 0 1

 , B =

1 0 0
0 1− t t
0 1 0

 .

Then

AB =

1− t t (1− t) t2

1 0 0
0 1 0


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and

(AB)A =

1− t t (1− t) t2

1− t t 0
1 0 0

 = B(AB) .

[4] The point groups D4d and D6d are relevant to molecular chemistry, but are not among
the 32 crystallographic point groups. Why not? [50 quatloos extra credit]

Solution :

D4d contains an eightfold rotation and D6d a twelvefold rotation, neither of which can be a
symmetry for any Bravais lattice according to the crystallographic restriction theorem.
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