The speed of the waves on the cord can be found from Eq. 15-2, v = \/F, /uz. The distance between
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the children is the wave speed times the elapsed time.
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(a) The power transmitted by the wave is assumed to be the same as the output of the oscillator.
That power is given by Eq. 15-6. The wave speed is given by Eq. 15-2. Note that the mass per
unit length can be expressed as the volume mass density times the cross sectional area.
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(b) The frequency and amplitude are both squared in the equation. Thus is the power is constant,

and the frequency doubles, the amplitude must be halved, and so be [0.25cm|.

Consider a wave traveling through an area S with speed v, much like Figure 15-11. Start with Eq.
15-7, and use Eq. 15-6.
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(a) We start with Eq. 15-6. The linear mass density is the mass of a given volume of the cord
divided by the cross-sectional area of the cord.
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(b) The speed of the wave is found from the given tension and mass density, according to Eq. 15-2.

P=2rwf’4 = 27[2f2A2,u1/FT/,u =27 [P A’ \| uF,
= 27" (120Hz)" (0.020m)’ {/(0.10kg/m) (135N) = [420 W

(a) The only difference is the direction of motion.
D(x,t)=0.015sin(25x +1200¢)
(b) The speed is found from the wave number and the angular frequency, Eq. 15-12.
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P=21"pSVf’A* ; u =pS - P=21"wf’A

The traveling wave is given by D =0.22 sin(5.6x + 34t).
(a) The wavelength is found from the coefficient of x.
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(b) The frequency is found from the coefficient of ¢.
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(c) The velocity is the ratio of the coefficients of ¢ and x.
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Because both coefficients are positive, the velocity is in the negative x direction|.
(d) The amplitude is the coefficient of the sine function, and so is

0.22m|.
(e) The particles on the cord move in simple harmonic motion with the same frequency as the
wave. From Chapter 14, v_ =D =27 fD.
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The minimum speed is when a particle is at a turning point of its motion, at which time the
speed is 0.

26. The displacement of a point on the cord is given by the wave, D(x,t) =0.12 sin(3.0x - 15.01). The
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velocity of a point on the cord is given by —.
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D(0.60m,0.20s) = (0.12m)sin (3.0m™)(0.60m)-(15.0s)(0.20s) | =|-0.11m
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34. Find the various derivatives for the linear combination.

D(x,t)=CD, +C,D, =C,f,(x,t)+C,f, (x,1)
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To satisfy the wave equation, we must have 0 0

5 ——. Use the fact that both f, and f, satisfy
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the wave equation.
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Thus we see that Z—? = iz (Z? , and so D satisfies the wave equation.
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