Solutions to problems from kinetic theory of gases

1 Problem 1

We assume the gas is an ideal gas whose velocities are distributed according to the Maxwell-Boltzmann distribution for the speeds $f(v)$. For a certain gas at a specific temperature,

$$
f(v)dv \propto v^2 e^{-\frac{mv^2}{2k_B T}} dv
$$

i.e., for the same dv

$$
\frac{f(v_1)}{f(v_2)} = \left(\frac{v_1}{v_2}\right)^2 e^{-\frac{m(v_1^2 - v_2^2)}{2k_B T}}
$$
\n
$$
\Rightarrow \ln \frac{f(v_1)}{f(v_2)} = 2 \ln \frac{v_1}{v_2} - \frac{m(v_1^2 - v_2^2)}{2k_B T}
$$
\n
$$
\Rightarrow T = \frac{v_1^2 - v_2^2}{\frac{2k_B}{m} \left(2 \ln \frac{v_1}{v_2} - \ln \frac{f(v_1)}{f(v_2)}\right)}
$$

In this problem, $v_1 = 2000$ m/s, $v_2 = 1000$ m/s, $f(v_1) = 2$ $f(v_2)$, $k_B/m =$ 8311/28 m^2/s^2 K. Plugging in the values, we get $T = 7290$ K.

2 Problem 2

The components of velocities, e.g. v_x , of an ideal gas under Maxwell-Boltzmann statistics are isotropic and have a Gaussian probability distribution e.g. $g(v_x)$. Note that there is no v_x^2 prefactor as there is for $f(v)$. Probability distributions of velocities in all three directions have the same prefactors and functional form. The number of particles with velocities between v_x and $v_x + dv_x$ is

$$
g(v_x)dv_x \propto e^{-\frac{mv_x^2}{2k_BT}}dv_x
$$

$$
\Rightarrow \frac{g(v_x)}{g(v_y)} = e^{-\frac{m(v_x^2 - v_y^2)}{2k_BT}}
$$

$$
\Rightarrow \ln \frac{g(v_x)}{g(v_y)} = -\frac{m(v_x^2 - v_y^2)}{2k_BT}
$$

$$
\Rightarrow T = -\frac{v_x^2 - v_y^2}{\frac{2k_BT}{m} \left(\ln \frac{g(v_x)}{g(v_y)}\right)}
$$

In this problem, $v_x = 500 \text{ m/s}, v_y = 1000 \text{ m/s}, g(v_x) = 2 \text{ g}(v_y), k_B/m =$ 8311/32 m^2/s^2 K. Plugging in the values, we get $T = 2083K$.

3 Problem 3

We will use a subscript of '1x' for He and '2x' for O_2 . The probability distribution for the x component of velocity for a gas with molecular mass m at temperature T is given by,

$$
g(v_x)dv_x = \left(\frac{m}{2\pi k_BT}\right)^{1/2} e^{-\frac{mv_x^2}{2k_BT}} dv_x
$$

Due to isotropicity, the probability distribution for the y and z components are similar. Now, we have

$$
g(v_{1x})dv_{1x} = g(v_{2x})dv_{2x}
$$

\n
$$
\Rightarrow m_1^{1/2}e^{-\frac{m_1v_{1x}^2}{2k_BT}}dv_{1z} = m_2^{1/2}e^{-\frac{m_2v_{2x}^2}{2k_BT}}dv_{2x}
$$

\n
$$
\Rightarrow \frac{1}{2}\ln\frac{m_1}{m_2} + \ln\frac{dv_{1x}}{dv_{2x}} = \frac{1}{2k_BT}(m_1v_{1x}^2 - m_2v_{2x}^2)
$$

\n
$$
\Rightarrow T = \frac{v_{1z}^2 - \frac{m_2}{m_1}v_{2x}^2}{\frac{2k_B}{m_1}(\frac{1}{2}\ln\frac{m_2}{m_2} + \ln\frac{dv_{1x}}{dv_{2x}})}
$$

Plugging in the numbers, $v_{1x} = 900 \text{ m/s}, v_{2x} = -450 \text{ m/s}, dv_{1x} = 5 \text{ m/s}, dv_{2x}$ $= 10$ m/s, $m_1 = 4$ u, $m_2 = 32$ u, $k_B/m_1 = 8311/4$ m^2/s^2K , we get $T = 112.48$ K.

4 Problem 4

We can use the same expression for the temperature found in Problem 1 and solve for m instead of T while setting $f(v_1) = f(v_2)$ i.e.,

$$
m = \frac{4 \ln \frac{v_1}{v_2} k_B T}{v_1^2 - v_2^2}
$$

Plugging in $v_1 = 300$ m/s, $v_2 = 600$ m/s, $T = (20 + 273)$ K = 293 K, k_B = 8311 u m^2/s^2K which gives $m = 25$ u. For the root-mean-square velocity, we use the formula

$$
v_{rms} = \sqrt{\frac{3k_BT}{m}}
$$

to get $v_{rms} = 540$ m/s.