Instructors: Patrick H. Diamond

Email: diamondph@gmail.com

Phone: (858) 534-4025

Office location: Structural and Engineering Research Facility

(SERF), Room 436 (4th Floor, south side) Office hours: Open, but <u>best to email or call first</u> On the Web: <u>https://fapp.ucsd.edu/index.html</u>

Massimo Vergassola

Email: massimo@physics.ucsd.edu

Phone: (858) 534-3653

Office location: Urey Hall (UH), Room 7262 Office hours: Open, but <u>best to email or call first</u> On the Web: http://vergassolalab.ucsd.edu

Course Assistant: Peggy McCoy

Email: mmccoy@ucsd.edu Phone: (858) 534-4478

Lectures: Tu Th 11:00-12:20pm Mayer Hall 5623

Lecture notes and supplementary materials available online at:

https://courses.physics.ucsd.edu/2018/Winter/physics116_216/index.html

Recommended Texts:

 Landau LD, Liftshitz EM. 1987. Fluid Mechanics (2nd Ed.), Volume 6 of Course of Theoretical Physics. Pergamon Press (now an imprint of Elsevier).

- Acheson DJ. 1990. *Elementary Fluid Dynamics*. Clarendon Press; Oxford University Press.
- Lighthill MJ. 1986. An Informal Introduction to Theoretical Fluid Mechanics. Clarendon Press.

Grade: The final grade will be based on a combination of problem sets, participation and an oral final exam. Oral final exam will be scheduled during Finals Week.

Course Topics

- 1) Overview, Equations, Ideal Fluids
 - Overview of fluid phenomena
 - Euler equations, potential flow
 - Induced mass, quasi-momentum
- 2) Vorticity and Viscous Flow
 - Kelvin's Theorem, vorticity induction, vortex dynamics
 - Viscous flow: constitutive relation, Stokesian dynamics and drag, clamshell theorem
- 3) Instabilities
 - Interfacial: Kelvin-Helmholtz, Rayleigh-Taylor
 - Convection, including rotation and Taylor–Proudman Theorem
- 4) Boundary Layers and Wakes
 - Laminar wake
 - Blasius boundary layer
 - Basics of drag and lift
- 5) Turbulence I: K41 and Beyond
 - Basic ideas, K41, 4/5 Law
 - Richardson phenomenology, anomalous exponents
- 6) Turbulence II: Macroscopics
 - Pipe flow turbulence, Prandtl's law of the wall
 - Turbulent wakes
 - Closure theories of eddy viscosity
- 7) Module 1: Atmospheric Fluids and Turbulence
- 8) Module 2: TBA
- 9) Module 3: TBA
- 10) Module 4: TBA