Physics 141 Lecture 1 and Lab 1
David Moore, 1/8/2018

Contents
1 One Particle Central Force

1.1 Acceleration Vector
1.2 Numerics e e e

L

1 One Particle Central Force

1.1 Acceleration Vector

Suppose a single particle of mass m is at position #, and is attracted gravita-
tionally to a single fixed particle of mass M at position Zy. There is a force
vector on T, denoted a.

=
[wo]
Qo =

The magnitude of acceleration is ||@|| = ﬁ The direction of acceleration
is from ¥, to Xy, so it points in the direction of Zy — Z. One way to remember
the sign is to think of putting # at the origin. We have the magnitude and
direction of the acceleration, so we can find the vector itself:
a=cm o
1o — 2|

The quantity GM has units of length cubed per time squared, and it’s the
quantity that is easily experimentally measurable. G is known to four or five
digits, but GMg (G times the mass of the sun) is known to ten or eleven digits!
GM is called the standard gravitational parameter for a given body.

As an aside, how do you do the same process if instead of one free body you
have N free bodies interacting with each other? Sum the forces!

Py e P
w2 CMEE
J=1.#i /

The distance from particle ¢ to particle j is the same as the distance from
j to i, and we ignore the j = i case, so there are actually only (/N choose
2) = N(N — 1)/2 calculations. Try plugging in N = 10'°, the particle number
in some modern simulations. Not even modern supercomputers can run the
brute force method*!

LA back of the envelope estimate tells me, with a few tens of teraflops of computing power,
it would take months to half a year to do finish all of these distance calculations = one
timestep. The thing is you need thousands of timesteps to get a useful result.

N(N -1
<N) = g distances

.//_\o
e

1.2 Numerics

Let’s run a simulation of our one body orbiting around a sun using Euler’s
method. I'm going to omit vector arrows, but keep in mind that z, v, and a(z)
are all vectors here. We want to solve the second order ODE % = a(z). This is
equivalent to solving the two first order ODEs & = v, © = a(z). We have initial
conditions vy and xg at t = 0. Let’s use a fixed timestep 6t, and let x, denote
the position of the particle at time ndt.

One way to approximate the solution is using the Euler scheme:

Tp41 — Tn . Un41 — Un
TR ———— = v —— =alx
5t " ot (@n)
Then. ..
Tpi1l = Ty + 0t - vy, Upt1 = U + 0t - a(xy,)

As we saw in the javascript applet in class, this is a pretty bad method. We
should get an elliptical orbit, but the result isn’t elliptical at all!l

For a function f(t), the quantity 3 (f(t+dt) — f(t)) is a pretty bad approxi-
mation to the derivative at ¢, and the error is proportional to §t. You can prove
this by using Taylor expansions:

S+ 6) = £(0) = 1'(6) + O(61)

There has to be a better way, and the better way is the leapfrog method.
We can get something accurate to second order in dt if we use a bit of intu-
ition: when we find the slope of a line segment, we're really finding a good
approximation to the slope at the midpoint of the line segment.

=
o
8
o
<
ks
i

You can prove the following formula if you Taylor expand both sides about

W =f (t + %) +0(5t%)

Then we have the following approximations:
e . Unt1/2 = Un—1/2
z%zvnﬂ/z UZ%:Q(%)

which we turn into the Leapfrog numerical scheme:

Unt1/2 = Un_1/2 + 0t - a(zy,) Tpg1 = Ty + 61 Upp12
Leapfrog is a great algorithm for four reasons:
1. It’s second-order (whereas Euler is only first-order),

2. It only uses one force evaluation per timestep (force evaluations are ex-
pensivel),

3. It is time-reversible (unlike Euler),

4. It’s symplectic, meaning it conserves phase space volume.

The power of the method is demonstrated by the Javascript implementation
we went over class.

