Time integration issues

Time integration methods

Want to numerically integrate an ordinary differential equation (ODE)

y = f(y)

Note: y can be a vector

Example: Simple pendulum

A /
4 — —— Sl &¥

[

Yo = Y1 =«

- - U1
- Yf(y)(_g Sil’lyo)

l

A numerical approximation to the ODE is a set of values {YOa Yi1,Y2,-. }

attimes {{g,%1,%o2,...}

There are many different ways for obtaining this.

Explicit Euler method
Ynt+1 = Yn + f(yn)At

Simplest of all

Right hand-side depends only on things already non, explicit method

The error in a single step is O(At2), but for the N steps needed for a finite
time interval, the total error scales as O(At) !

Never use this method, it's only first order accurate.

Implicit Euler method

Unt+1l = Yn T f(ynJrl)At

* Excellent stability properties
* Suitable for very stiff ODE

« Requires implicit solver for y,,,

Implicit mid-point rule

yn Jr ynJrl) At

ynJrlynJVf(9

« 2" order accurate
* Time-symmetric, in fact symplectic

* But still implicit...

Runge-Kutta methods

whole class of integration methods 4" order accurate.
2" order accurate ki = f(Yn,tn)
L ko = [y, +k1AL/2,t, + At/2)
t=) \ by = f(yn + kA2, 1, + ALJ2)
ky = f(yn +]fl 2 ke = flyn + ksAt/2, 1, + Ab)
_ 1T R ki ke ks kK

The Leapfrog For a second order ODE: X — f (X)

“Drift-Kick-Drift” version “Kick-Drift-Kick” version
At At
- U 1 = U L) —
J"H—I—% — mn+®n? n+ts5 n+f(n) 9
At
Untl = Unt f(anr%)At Tpnt1 — Tp+ KESEDY
B Al At
Tl = Tpylt Uty] v = U1 b f(33n+1)7

« 2"9 order accurate
* symplectic

e can be rewritten into time-centred formulation

AE [|El

AE/IE

2 _I T T | T T TTTTTT 1 TrT T T TTTTT | TrT1T T T T TTT T T I_'
The IeapfrOg IS behaV|ng mUCh better - fourth-order Runge-Kutta .
than one might expect... ~ =009 .
1= .]
INTEGRATING THE KEPLER PROBLEM - 200 orbits]
T T] T T T T I T T T T T - 502.8 StEPS ! D].'bit]
0.4 | fourth-order Runge-Kutta _ - 2011.0 forces / orbit .
: : o E
02— — ; E
00r g 1 e
02 . - :
= - - (only every LO-th orbit drawn) .
: : _2 _I 1 I 1 | | I N N S T N | i | T T | | |)T | I 111 I_'

|] -1 0 1 2
_0-4 L l l l 2 :I I TT | FrT7T T T T T T T1TT 1 T TTTTTTTT | rT 7T T T T T T1TT1 | T 1T I:
0 50 100 150 200 - Leapfrog (fixed stepsize) :
rounds - .
010 L R R B] C =09 5
- Leaptrog (fixed stepsize) . 1 200 orbits E
0.05 —] E 2010.6 steps / orbit E
i i o —
0 TR0 00000000000 0000 00 A R | = .
- At] - .
B LTyl — Tn + Un? i C .
ool R L L B]
- Al - -]
: Tap1 = Tyl b Unpioo T - -
0. 100 EID 1[|l] ' 1|50 ' 200 ; {only every L0-th orbit drawn) E
l‘cunds _2 _I 1 11 | 110 0901111 i I N I | | | T) I A | | L1 |_|

-1 0 1 2

When compared with an integrator of the same

order, the leapfrog is highly superior
INTEGRATING THE KEPLER PROBLEM

AE/E

AE/|E]

1

-0.05

-0.10

second-order Runge-Kutta

0.4

0.2

0.0

¥ L] | T T ¥ L] I T
Leapfrog (fixed stepsize)

0.05

0.00

100 150
rounds

c
8
N
3

2

||II||II||I||II||III||II|II||I|||II||II

IIII|IIIIIIIII1IIIIIIIII|IIIIIIIII

e=10.9
51 orbits

second-order Runge- Kutta

2784.6 steps / orbit
5569.2 forces / Drbit

{only every L0-th orbit drawn)

III|IIIIIIIIIiIIIIIIIII|IIIIIIIII|IIII

\"‘--_-"'/b

-1

0

1

2

|I||II||III||II|II||I|||II||II|

e=0.9
200 orbits

{only every L0-th orbit drawn)

IIII|IIIIIIIIIiIIIIIIIII|IIIIIIIII|IIII

Leapfrog (fixed stepsize)

2010.6 steps / orbit

III|IIIIIIIII1IIIIIIIII|IIIIIIIII|IIII

1

I.IJlIIJlIIleIJIIJlIlllIIJlII

) O |

1

0

1

2

Even for rather large timesteps, the leapfrog maintains

qualitatively correct behaviour without long-term secular trends

INTEGRATING THE KEPLER PROBLEM

AE T IE]

0.10

0.05—

0.00

-0.05

_0. 10 1 1 1 1

T T T L | T T T
| Leapfrog (fixed stepsize)

50 100
rounds

150

200

What is the underlying mathematical reason for the very good
long-term behaviour of the leapfrog ?
HAMILTONIAN SYSTEMS AND SYMPLECTIC INTEGRATION

2
p; 1
H(Ppy-- s Py Xty ey Xn) = D — + §Zmimj¢(X¢—Xj)

If the integration scheme introduces non-Hamiltonian perturbations, a completely different long-term
behaviour results.

The Hamiltonian structure of the system can be preserved in the integration if each step is
formulated as a canoncial transformation. Such integration schemes are called symplectic.

Hamilton's equations

dXi

Poisson bracket

0A OB 0A OB = {x;, H}
A B} = — dt
t4.Bj ; (axi op;, Opi 3Xz')
dp; |
dt _ {pz: H}
Hamilton operator System state vector
Hf ={f H} 1) = |x1(1), ..., %, (1), P1(1),...,Pn(t), 1)
Time evolution operator
t+ At
|t1> — U(tl, tO) |t0> U(t + At,t) = exp (‘/t Hdt)

The time evolution of the system is a continuous canonical transformation generated by the Hamiltonian.

Symplectic integration schemes can be generated by applying
the idea of operating splitting to the Hamiltonian

THE LEAPFROG AS A SYMPLECTIC INTEGRATOR

Separable Hamiltonian
H = Hyin + Hpot

Drift- and Kick-Operators
t+At . :
D(At) = exXp (/ dt Hkin) = { EZ b
t i

11

K(At) / Man N
= eXp t = B) Iy

¢ pe Pi — Di— 2;mymy %‘;‘;’)At
The drift and kick operators are symplectic transformations of phase-space !

The Leapfrog
3 At At
Drift-Kick-Drift: U(At) =D (7) K(At)D (7)
Kick-Drift-Kick: U(At) = K (%) D(AH) K (%)

Hamiltonian of the 77 _ 7 1 . oo At?
T rr err —
1

! 3
numerical system: 12 {{Hkina Hyor} s Hign + §Hpot} + O(A??)

When an adaptive timestep is used, much

of the symplectic advantage is lost
INTEGRATING THE KEPLER PROBLEM

AEE]

AE/IE

0.4

0.0

0.2

0.4

0.4

0.2

0.0

0.4

||II||II||I||II||III||II|II||I|||II||II

IIII|IIIIIIIII1IIIIIIIII

DKD, variable step

e=0.9
200 orbits
230.4 steps / orbit

JlIIJlIIJ|.IJlIIJlIIjlll]ll]l.ll]llIJlIIl

N
3

¥ T T T I T T T T T T T T I
_DKD, variable step]
02— —
B 1 I 1 1 1 1 | 1 1 I 1 |
0 50 100 150
rounds
B ¥ L] T T | T T ¥ L ¥ L] T T I]
_KDK, variable step]
L. I B i
0 50 100 1560 200
rounds

— (Going to KDK reduces the error by a factor

4. at the same cost !

That's what's
done in
GADGET-1
{only every L0-th orbit drawn)
IIII|IIIIIIIIIiIIIIIIIII|IIIIIIIIIIIIII
-1 0 1 2

|I||II||III||II|II||I|||II||II|

e=0.9
200 orbits
245.3 steps / orbit

{only every L0-th orbit drawn)

IIII|IIIIIIIIIiIIIIIIIII|IIIIIIIII|IIII

KDK, variable step

III|IIIIIIIII1IIIIIIIII|IIIIIIIII|III

ll]lll]llljlll]lIJlIlllIIJlIIJ

) O |

1

0

1

2

For periodic motion with adaptive timesteps, the DKD leapfrog shows
more time-asymmetry than the KDK variant

LEAPFROG WITH ADAPTIVE TIMESTEP

forwards backwards
P VAN A
DKD I T I | I
force force force force
| asymmetry
forwards backwards
KDK I—i i
force force force

asymmetry

. N E_I I T 1 | T T T T T TTT1 1 IrT T T T T 1T rTT T T T T T1TT1 17T I_'
The key for obtaining better long- - _ .
term behaviour is to make the - KDK, symmetric .
choice of timestep time-reversible - =09 1
15 : E
INTEGRATING THE KEPLER PROBLEM - 200 orbits]
E 251.3 steps / orbit E
o E
Atl Atg N :
force force force s -
; (only every LO-th orbit drawn) E
Atl _I_ At2 f(a V) —E_I 1 1 1 | 114 0§ 1 1 11 i S S N I | O T | | | N I N N | | 11 I_'
p— -1 0 1 2
2 3

oo T T T T —)

. KDK, symmetric -

0_05:— —:

s :

% 0.00 i I

—0_05:— —:

—0_10: S S S S S S S S T S]

0 50 100 150 200

rounds

Symmetric behaviour can be
obtained by using an implicit
timestep criterion that depends on

the end of the timestep 1
INTEGRATING THE KEPLER PROBLEM
0
.
0 2
Quinn et al. (1997)

* Force evaluations have to be thrown away in this
scheme

* reversibility is only approximatively given

* Requires back-wards drift of system - difficult to
combine with SPH

I I T 1 | T T T T T TTT1 1 IrT T T T T 1T | rTT T T T T T1TT1 | 17T I'

- DSKD (Quinn et al.) That's what B

N PKDGRAV 1

- =09 (presumably) uses]

L 200 orbits i

| 288.8 steps / orbit N

4327 forces [orbit .

; (only every LO-th orbit drawn) E

I 1 1 1 | 11 0 0 F 1 1 11 i S S N I | O T | | | N I N N | | 11 I'

-1 0 1 2
o0 !

| DSKD (Quinn et al.) i
0.05— -

5 - |

— 0_m p—

3 A
_0_05__ __
o0l .o |

0 50 100 150 200

rounds

Pseudo-symmetric behaviour can
be obtained by making the
evolution of the expectation value
of the numerical Hamiltonian time
reversible

INTEGRATING THE KEPLER PROBLEM

KDK scheme
At
A force force
p (change step) = 1 — At./At

Gives the best result at a given number of
force evaluations.

I T | T T T T T T T1TT 1 rT T T 1T T T TT | rT1r17T 1711 TT T I'
- Power2 - KDK - pseudosymmetric]
- =09 That's what -
200 orbits GADGET-II -
- _ is using 1
L 2952 steps / orbit .
; (only every LO-th orbit drawn) E
I 1 1 | | | N) N O A | i | S N T | | |) T I | | 11 I'
-1 0 1 2
0.10[N L B A S A B
| Power2 - KDK - pseudosymmetric -
0.05— -
5 . |
=~ 0.00
47 §
_0_05 __ __
ool . o
0 50 100 150 200

rounds

Collisionless dynamics in an expanding universe is described by a
Hamiltonian system
THE HAMILTONIAN IN COMOVING COORDINATES

Conjugate momentum P = CLQJ:C

Pi
H(plv"'apnaxla'--axn?t)=ZW+§ (I(t)

Drift- and Kick operators

D(t + At,t) = exp (/;+At dt Hkiﬂ) = { E: : Eﬁ + By (At g
K(t+At, t) = exp (ftt+At dt Hpot) = { : : 2 -, mimj%;::j) ftt—l—At %t
Choice of timestep
For linear growth, fixed step in log(a) timestep is then a constant At — Aloga

appears most appropriate... fraction of the Hubble time H(a)

The force-split can be used to construct a symplectic integrator where
long- and short-range forces are treated independently

TIME INTEGRATION FOR LONG AND SHORT-RANGE FORCES

Separate the potential into a long-range and a short-range part:

H = Z

a(t) *3 r a(t)

sz . Z mim; Qs (x; —%x;) 1 Z m;m; o (X; — X;)

The short-range force can then be evolved in a symplectic way on a
smaller timestep than the long range force:

00 =K (5) [() 2 (5) 5 ()] 0 (5)

long-range long-range
: force-kick force-kick
drift |
At

! RN, !

short-range short-range short-range short-range short-range short-range short-range
force-kick force-kick force-kick force-kick force-kick force-kick force-kick

Issues of floating point
accuracy

A space-filling Peano-Hilbert curve is used in GADGET-2 for a novel
domain-decomposition concept

HIERARCHICAL TREE ALGORITHMS

Fiducial global quad tree
-~ T
Peano-Hilbert curve T —_
o .
A — T~
T -
| HpEE [" T
| < - —
| 1 11 |
s E@{ @Kgﬁg :% Y-
Ml lm %
I T J 11 111
. \ éa \ / / Eﬂ \
onebebdath e i AL Dl D T i DB el i s
N R R N e
. - . Tree on Process 1] }\R\KH
Domains are obtained by cutting the /f ‘ —
Peano-Hilbert curve into segments /,, T
e
anlluniFyullnn -
mellsedian il Tl eleBt b
N . & 2222222022222 22K ¥ Yoviwy
] :
T e | Tree onProcess 3 _
= ; ~
aﬁ p
i
LR LA LI |

The FLTROUNDOFFREDUCTION option can make simulation results binary
invariant when the number of processors is changed

INTRICACIES OF FLOATING POINT ARITHMETIC

On a computer, real numbers are approximated by floating point numbers

Bit

31 24j23 1615 8|7 0
a 32 bit float S|E[E|E|[E|E|E[E|E NN {NA A AARA A (W] PN (P [P PA (A [IA AT AL IA [AA 1 | A
Exponent Mantisse
Vorzeichen
v= (-1 (I mgmym,...) 270 7°

Mathematical operations regularly lead out of the space of these numbers.
This results in round-off errors.

One result of this is that the law of associativity for simple additions doesn't
hold on a computer.

A+(B+C) # (A+B)+C

As a result of parallelization, partial forces may be computed by several
Processors

THE FORCE SUM IN THE TREE ALGORITHM

The tree-walk results in typically several hundred partial forces

Partial force
Situation 1:
000000 000000 00000000¢
cpu 0 ij 1 cpu 2
A B C
Situation 1:

000000000000 000000OOO

cplu 0 cpi 1
A' B'

When the domain decomposition is changed, round-off differences are introduced
into the results

A+B+C #* A +PB’

Using double-double precision, the round off difference can be eliminated
THE FORCE SUM USING DOUBLE-DOUBLE PRECISION

The tree-walk computes several hundred partial forces, which are all double precision values. The set of numbers is
identical when the domain decomposition or number of processors is changes.

000000 000000 000000000

cp¢u 0 cpiJ 1 cp¢u 2
A B C

Each CPU now computes the sum in quad precision (128 bit, with 96 bit mantisse, “double-double”)

Then the result is added, obtaining a quad precision result, with a typical round-off error of a few times 10-34. As
before, this round-off may change when the number of CPUs is changed.

However, now we reduce the precision of the result to double-precision, i.e. we round to the nearest
representable double-precision floating point number.

Since the mean relative spacing of such numbers is 10-17, much larger than the double-double round off, we always
round to the same number. (Except in one out of 107 cases, which is very very rare.)

For the final result we then have
A+B+C = A'+B'

