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Chapter 36 
 

 

1. (a) We use Eq. 36-3 to calculate the separation between the first (m1 = 1) and fifth 

2( 5)m  minima: 

 2 1sin .
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Solving for the slit width, we obtain 
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(b) For m = 1, 
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The angle is  = sin
–1

 (2.2  10
–4

) = 2.2  10
–4

 rad. 

 

2. From Eq. 36-3, 
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3. (a) A plane wave is incident on the lens so it is brought to focus in the focal plane of 

the lens, a distance of 70 cm from the lens. 

 

(b) Waves leaving the lens at an angle  to the forward direction interfere to produce an 

intensity minimum if a sin  = m, where a is the slit width,  is the wavelength, and m is 

an integer. The distance on the screen from the center of the pattern to the minimum is 

given by y = D tan , where D is the distance from the lens to the screen. For the 

conditions of this problem, 
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This means  = 1.475  10
–3

 rad and  

 

y = (0.70 m) tan(1.475  10
–3

 rad) = 1.0  10
–3

 m. 

 

4. (a) Equations 36-3 and 36-12 imply smaller angles for diffraction for smaller 

wavelengths. This suggests that diffraction effects in general would decrease. 
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(b) Using Eq. 36-3 with m = 1 and solving for 2 (the angular width of the central 

diffraction maximum), we find 
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(c) A similar calculation yields 0.23° for  = 0.010 m. 

 

5. (a) The condition for a minimum in a single-slit diffraction pattern is given by  

 

a sin  = m, 

 

where a is the slit width,  is the wavelength, and m is an integer. For  = a and m = 1, 

the angle  is the same as for  = b and m = 2. Thus,  



a = 2b = 2(350 nm) = 700 nm. 

 

(b) Let ma be the integer associated with a minimum in the pattern produced by light with 

wavelength a, and let mb be the integer associated with a minimum in the pattern 

produced by light with wavelength b. A minimum in one pattern coincides with a 

minimum in the other if they occur at the same angle. This means maa = mbb. Since a 

= 2b, the minima coincide if 2ma = mb. Consequently, every other minimum of the b 

pattern coincides with a minimum of the a pattern. With ma =2, we have mb = 4. 

 

(c) With ma =3, we have mb = 6. 

 

6. (a)  = sin
–1

 (1.50 cm/2.00 m) = 0.430°. 

 

(b) For the mth diffraction minimum, a sin  = m. We solve for the slit width: 
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7. The condition for a minimum of a single-slit diffraction pattern is 

 

sina m   

 

where a is the slit width,  is the wavelength, and m is an integer. The angle  is 

measured from the forward direction, so for the situation described in the problem, it is 

0.60° for m = 1. Thus, 
9
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10. From y = mL/a we get 
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11. We note that 1 nm = 1 10
–9

 m = 1 10
–6

 mm. From Eq. 36-4, 
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This is equivalent to 266.7 rad – 84 = 2.8 rad = 160°. 

 

12. (a) The slope of the plotted line is 12, and we see from Eq. 36-6 that this slope should 

correspond to 
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(b) Consider Eq. 36-3 with “continuously variable” m (of course, m should be an integer 

for diffraction minima, but for the moment we will solve for it as if it could be any real 

number): 

 max max

2330 nm
sin 3.82

610 nm

a a
m 

 
     

                                          

which suggests that, on each side of the central maximum (centr = 0), there are three 

minima; considering both sides then implies there are six minima in the pattern.  

 

(c) Setting m = 1 in Eq. 36-3 and solving for  yields 15.2°. 

 

(d) Setting m = 3 in Eq. 36-3 and solving for  yields 51.8°. 

 

13. (a)  = sin
–1

 (0.011 m/3.5 m) = 0.18°. 

 

(b) We use Eq. 36-6: 
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(c) Making sure our calculator is in radian mode, Eq. 36-5 yields 
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23. THINK We apply the Rayleigh criterion to determine the conditions that allow the 

headlights to be resolved.  

 

EXPRESS By the Rayleigh criteria, two point sources can be resolved if the central 

diffraction maximum of one source is centered on the first minimum of the diffraction 

pattern of the other. Thus, the angular separation (in radians) of the sources must be at 

least R = 1.22/d, where  is the wavelength and d is the diameter of the aperture.  

 

ANALYZE (a) For the headlights of this problem, 
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R 3
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1.34 10 rad,
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or 41.3 10 rad , in two significant figures. 

 

(b) If L is the distance from the headlights to the eye when the headlights are just 

resolvable and D is the separation of the headlights, then D = LR, where the small angle 

approximation is made. This is valid for R in radians. Thus, 
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LEARN A distance of 10 km far exceeds what human eyes can resolve. In reality, our 

visual resolvability depends on other factors such as the relative brightness of the source 

and their surroundings, turbulence in the air between the lights and the eyes, the health of 

one’s vision.  

 

24. We use Eq. 36-12 with  = 2.5°/2 = 1.25°. Thus, 
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25. Using the notation of Sample Problem — “Pointillistic paintings use the diffraction of 

your eye,” the minimum separation is 
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26. Using the same notation found in Sample Problem — “Pointillistic paintings use the 

diffraction of your eye,” 

D
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32. (a) We use Eq. 36-12: 

 

    

  
1 1 1

3

1.22 1.22 1450m s1.22
sin sin sin 6.8 .

25 10 Hz 0.60m

sv f

d d


   

   
       

      

 

 

(b) Now f = 1.0  10
3
 Hz so 
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Since sin  cannot exceed 1 there is no minimum. 

 

33. Equation 36-14 gives the Rayleigh angle (in radians):  

 

1.22
R

D

d L


    

 

where the rationale behind the second equality is given in Sample Problem — 

“Pointillistic paintings use the diffraction of your eye.” 

 

(a) We are asked to solve for D and are given  = 1.40 × 10
9 

m, d = 0.200 × 10
3 

m, and 
32000 10  mL  .  Consequently, we obtain D = 17.1 m. 

 

(b) Intensity is power over area (with the area assumed spherical in this case, which 

means it is proportional to radius-squared), so the ratio of intensities is given by the 

square of a ratio of distances:   (d/D)
2
 = 1.37 × 10

10
. 

 

34. (a) Since  = 1.22/d, the larger the wavelength the larger the radius of the first 

minimum (and second maximum, etc). Therefore, the white pattern is outlined by red 

lights (with longer wavelength than blue lights). 

 

(b) The diameter of a water drop is 
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35. Bright interference fringes occur at angles  given by d sin  = m, where m is an 

integer. For the slits of this problem, we have d = 11a/2, so  

 

a sin  = 2m/11 . 

 

The first minimum of the diffraction pattern occurs at the angle 1 given by a sin 1 = , 

and the second occurs at the angle 2 given by a sin 2 = 2, where a is the slit width. We 
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should count the values of m for which 1 <  < 2, or, equivalently, the values of m for 

which sin 1 < sin  < sin 2. This means 1 < (2m/11) < 2. The values are m = 6, 7, 8, 9, 

and 10. There are five bright fringes in all. 

 

36. Following the method of Sample Problem — “Double-slit experiment with diffraction 

of each slit included,” we find 
3

6

0.30 10 m
6.52

46 10 m

d
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which we interpret to mean that the first diffraction minimum occurs slightly farther 

“out” than the m = 6 interference maximum.  This implies that the central diffraction 

envelope includes the central (m = 0) interference maximum as well as six interference 

maxima on each side of it.  Therefore, there are 6 + 1 + 6 = 13 bright fringes (interference 

maxima) in the central diffraction envelope. 

 

37. In a manner similar to that discussed in Sample Problem — “Double-slit experiment 

with diffraction of each slit included,” we find the number is 2(d/a) – 1 = 2(2a/a) – 1 = 3. 

 

38. We note that the central diffraction envelope contains the central bright interference 

fringe (corresponding to m = 0 in Eq. 36-25) plus ten on either side of it.  Since the 

eleventh order bright interference fringe is not seen in the central envelope, then we 

conclude the first diffraction minimum (satisfying sin = /a) coincides with the m = 11 

instantiation of Eq. 36-25: 

d = 
m

sin 
  =  

11 

 /a
  = 11 a . 

 

Thus, the ratio d/a is equal to 11. 

 

39. (a) The first minimum of the diffraction pattern is at 5.00°, so 
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(b) Since the fourth bright fringe is missing, d = 4a = 4(5.05 m) = 20.2 m. 

 

(c) For the m = 1 bright fringe, 
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Consequently, the intensity of the m = 1 fringe is 
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44. We use Eq. 36-25 for diffraction maxima: d sin  = m. In our case, since the angle 

between the m = 1 and m = –1 maxima is 26°, the angle  corresponding to m = 1 is  = 

26°/2 = 13°. We solve for the grating spacing: 

 

  1 550nm
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sin sin13

m
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45. The distance between adjacent rulings is  

 

d = 20.0 mm/6000 = 0.00333 mm = 3.33 m. 

 

(a) Let  sin 0, 1, 2,d m m      . Since |m|/d > 1 for |m|  6, the largest value of  

corresponds to | m | = 5, which yields  
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(b) The second largest value of  corresponds to |m| = 4, which yields  
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(c) The third largest value of  corresponds to | m | = 3, which yields  

 

 1 1 3(0.589 m)
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
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46. The angular location of the mth order diffraction maximum is given by m = d sin . 

To be able to observe the fifth-order maximum, we must let sin |m=5 = 5/d < 1, or 

 

   
d

5

100

5
635

.
.

nm / 315
nm  

 

Therefore, the longest wavelength that can be used is = 635 nm.  

 

47. THINK Diffraction lines occur at angles  such that d sin  = m, where d is the 

grating spacing,  is the wavelength and m is an integer. 

 

EXPRESS The ruling separation is  

 

d = 1/(400 mm
–1

) = 2.5  10
–3

 mm. 
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for the amplitude of the resultant wave. Since the intensity of a wave is proportional to 

the square of the electric field, we may write I AE 0

2 2
1 2cosb g , where A is a constant 

of proportionality. If Im is the intensity at the center of the pattern, for which  = 0, then  

I AEm  9 0

2 . We take A to be I Em / 9 0

2  and obtain 

 

I
I Im m    
9

1 2
9

1 4 4
2 2cos cos cos .  b g c h  

 

55. THINK If a grating just resolves two wavelengths whose average is avg and whose 

separation is , then its resolving power is defined by R = avg/.  

 

EXPRESS As shown in Eq. 36-32, the resolving power can also be written as Nm, where 

N is the number of rulings in the grating and m is the order of the lines.  

 

ANALYZE Thus avg/ = Nm and 

 

  
avg 3656.3nm

3.65 10 rulings.
1 0.18nm

N
m


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LEARN A large N (more rulings) means greater resolving power. 

 

56. (a) From R Nm    we find 

 

 
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(b) We note that d = (4.0  10
7
 nm)/23100 = 1732 nm. The maxima are found at 
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57. (a) We note that d = (76  10
6
 nm)/40000 = 1900 nm. For the first order maxima  = 

d sin , which leads to 

 
F
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I
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Now, substituting m = d sin / into Eq. 36-30 leads to  

 

D = tan / = tan 18°/589 nm = 5.5  10
–4

 rad/nm = 0.032°/nm. 

 

(b) For m = 1, the resolving power is R = Nm = 40000 m = 40000 = 4.0 × 10
4
. 
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64. We use Eq. 36-34. For smallest value of , we let m = 1. Thus, 

 

min sin
pm

pm

F
HG
I
KJ  

L
N
MM

O
Q
PP   1 1

3

1 30

2 0 30 10
2 9

m

d




sin
.

. .
b gb g
c h  

 

65. (a) For the first beam 2d sin 1 = A and for the second one 2d sin 2 = 3B. The 

values of d and A can then be determined: 

 

d B 

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3

2

3 97

2 60
17 10

2

2
sin sin

.
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(b)   2 2

12 sin 2 1.7 10 pm sin 23 1.3 10 pm.A d        

 

66. The x-ray wavelength is  = 2d sin  = 2(39.8 pm) sin 30.0° = 39.8 pm. 

 

67. We use Eq. 36-34.  

 

(a) From the peak on the left at angle 0.75° (estimated from Fig. 36-46), we have 

 

   1 12 sin 2 0.94 nm sin 0.75 0.025nm 25 pm.d       

 

This is the shorter wavelength of the beam. Notice that the estimation should be viewed 

as reliable to within ±2 pm.  

 

(b) We now consider the next peak: 

 

    2 2 094 115 0038 382d sin . sin . .  nm nm pm.b g  

 

This is the longer wavelength of the beam. One can check that the third peak from the left 

is the second-order one for 1. 

 

68. For x-ray (“Bragg”) scattering, we have 2d sin m = m .  This leads to 

 

2d sin 2

 2d sin 1
   = 

2 

1 
            sin 2 = 2 sin 1 . 

 

Thus, with 1= 3.4°, this yields 2 = 6.8°.  The fact that 2 is very nearly twice the value 

of 1 is due to the small angles involved (when angles are small, sin 2 / sin 1  = 2/1). 

 

69. Bragg’s law gives the condition for diffraction maximum: 

 

2d msin    
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where d is the spacing of the crystal planes and  is the wavelength. The angle  is 

measured from the surfaces of the planes. For a second-order reflection m = 2, so 

 

 9

10
2 0.12 10 m

2.56 10 m 0.26nm.
2sin 2sin 28

m
d








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    


 

 

70. The angle of incidence on the reflection planes is  = 63.8° – 45.0° = 18.8°, and the 

plane-plane separation is d a 0 2 .  Thus, using 2d sin  = , we get 

 

a d0 2
2 0 260

2 188
0570  





sin

.

sin .
.



nm
nm.  

 

71. THINK The criterion for diffraction maxima is given by the Bragg’s law. 

 

EXPRESS We want the reflections to obey the Bragg condition: 2d sin  = m, where  

is the angle between the incoming rays and the reflecting planes,  is the wavelength, and 

m is an integer. We solve for : 

 

 
F
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KJ 





F
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
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ANALYZE (a) For m = 2 the above equation gives  = 29.7°. The crystal should be 

turned 45 29.7 15.3       clockwise.  

 

(b) For m = 1 the above equation gives  = 14.4°. The crystal should be turned 

45 14.4 30.6       clockwise.  

 

(c) For m = 3 the above equation gives  = 48.1°. The crystal should be turned 

48.1 45 3.1      counterclockwise.  

 

(d) For m = 4 the above equation gives  = 82.8°. The crystal should be turned 

82.8 45 37.8       counterclockwise.  

 

LEARN Note that there are no intensity maxima for m > 4 as one can verify by noting 

that m/2d is greater than 1 for m greater than 4. 

 

72. The wavelengths satisfy  

 

m = 2d sin  = 2(275 pm)(sin 45°) = 389 pm. 

 

In the range of wavelengths given, the allowed values of m are m = 3, 4. 
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64. We use Eq. 36-34. For smallest value of , we let m = 1. Thus, 

 

min sin
pm

pm

F
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I
KJ  

L
N
MM

O
Q
PP   1 1

3

1 30

2 0 30 10
2 9

m

d




sin
.

. .
b gb g
c h  

 

65. (a) For the first beam 2d sin 1 = A and for the second one 2d sin 2 = 3B. The 

values of d and A can then be determined: 

 

d B 

 

3

2

3 97

2 60
17 10

2

2
sin sin

.


pm
pm.

b g
 

 

(b)   2 2

12 sin 2 1.7 10 pm sin 23 1.3 10 pm.A d        

 

66. The x-ray wavelength is  = 2d sin  = 2(39.8 pm) sin 30.0° = 39.8 pm. 

 

67. We use Eq. 36-34.  

 

(a) From the peak on the left at angle 0.75° (estimated from Fig. 36-46), we have 

 

   1 12 sin 2 0.94 nm sin 0.75 0.025nm 25 pm.d       

 

This is the shorter wavelength of the beam. Notice that the estimation should be viewed 

as reliable to within ±2 pm.  

 

(b) We now consider the next peak: 

 

    2 2 094 115 0038 382d sin . sin . .  nm nm pm.b g  

 

This is the longer wavelength of the beam. One can check that the third peak from the left 

is the second-order one for 1. 

 

68. For x-ray (“Bragg”) scattering, we have 2d sin m = m .  This leads to 

 

2d sin 2

 2d sin 1
   = 

2 

1 
            sin 2 = 2 sin 1 . 

 

Thus, with 1= 3.4°, this yields 2 = 6.8°.  The fact that 2 is very nearly twice the value 

of 1 is due to the small angles involved (when angles are small, sin 2 / sin 1  = 2/1). 

 

69. Bragg’s law gives the condition for diffraction maximum: 

 

2d msin    
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where d is the spacing of the crystal planes and  is the wavelength. The angle  is 

measured from the surfaces of the planes. For a second-order reflection m = 2, so 

 

 9

10
2 0.12 10 m

2.56 10 m 0.26nm.
2sin 2sin 28

m
d









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

 

 

70. The angle of incidence on the reflection planes is  = 63.8° – 45.0° = 18.8°, and the 

plane-plane separation is d a 0 2 .  Thus, using 2d sin  = , we get 

 

a d0 2
2 0 260

2 188
0570  


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

nm
nm.  

 

71. THINK The criterion for diffraction maxima is given by the Bragg’s law. 

 

EXPRESS We want the reflections to obey the Bragg condition: 2d sin  = m, where  

is the angle between the incoming rays and the reflecting planes,  is the wavelength, and 

m is an integer. We solve for : 

 

 
F
HG
I
KJ 





F
HG

I
KJ
 




sin sin

.

.
. .1 1

9

9

0125 10

2 0 252 10
0 2480

m

d

m
m




m

m

c h
c h  

 

ANALYZE (a) For m = 2 the above equation gives  = 29.7°. The crystal should be 

turned 45 29.7 15.3       clockwise.  

 

(b) For m = 1 the above equation gives  = 14.4°. The crystal should be turned 

45 14.4 30.6       clockwise.  

 

(c) For m = 3 the above equation gives  = 48.1°. The crystal should be turned 

48.1 45 3.1      counterclockwise.  

 

(d) For m = 4 the above equation gives  = 82.8°. The crystal should be turned 

82.8 45 37.8       counterclockwise.  

 

LEARN Note that there are no intensity maxima for m > 4 as one can verify by noting 

that m/2d is greater than 1 for m greater than 4. 

 

72. The wavelengths satisfy  

 

m = 2d sin  = 2(275 pm)(sin 45°) = 389 pm. 

 

In the range of wavelengths given, the allowed values of m are m = 3, 4. 




