3. THINK We treat the oxygen gas in this problem as ideal and apply the i1deal-gas law.

EXPRESS In solving the ideal-gas law equation pV = nRT for n. we first convert the
temperature to the Kelvin scale: 7' =(40.0+273.15)K =313.15 K. and the volume to SI
units: ¥, =1000 cm’ =107m’.

ANALYZE (a) The number of moles of oxygen present is

n=

1.01 x10° Pa)(1.000 x 107 m*
PV _ ( : )[ . ) = 3.88 x 10~ mol.
RT, (8.31J/mol-K)(313.15K)

(b) Similarly. the ideal gas law pV” = nRT leads to

pV. (1.06 x10°Pa)(1.500 x 10~ m’)
T, =—2L=- — = 493K.
nR - (3.88x107 mol)(8.31J/mol-K)

We note that the final temperature may be expressed in degrees Celsius as 220°C.

v V.
LEARN The final temperature can also be calculated by noting that P 1’:/; = p; L . or
i f
s O { 5 V(18 3N
T, = Prll Vs '1’;:‘ 1.06>«11{]'j Pa || lh{}{}cma (313.15K) = 493K .
p; UV, ) | 101x10" Pa )i 1000 cm™ |




7. (a) Equation 19-45 (which gives 0) implies O = W. Then Eq. 19-14, with T = (273 +
30.0)K leads to gives 0=-3.14 x 10° I, or | 0 |=3.14 x 10° .

(b) That negative sign in the result of part (a) implies the transfer of heat 1s_from the gas.



11. THINK The process consists of two steps: isothermal expansion. followed by
1sobaric (constant-pressure) compression. The total work done by the air 1s the sum of the
works done for the two steps.

EXPRESS Suppose the gas expands from volume V; to volume Vr during the isothermal
portion of the process. The work it does 1s

T v, dV V
W, = J;:IpdV = nRT J.K_‘ N nRT In Ff

I

where the ideal gas law pV = nRT was used to replace p with nRT/V. Now Vi = nRT/p;
and V= nRT/ps. so V,/V, = p,/ p,. Also replace nRT with p;¥’; to obtain

W, = pV In 2.
Py



During the constant-pressure portion of the process the work done by the gas is
Wy =p.(V,—V;). The gas starts in a state with pressure ps so this is the pressure

throughout this portion of the process. We also note that the volume decreases from 7 to
Vi. Now V= p;iVilps so

. Pr

szp;‘

ANALYZE For the first portion. since the mitial gauge pressure 1s 1.03 x 10° Pa,
p;=1.03x10°Pa+1.013 x 10° Pa=2.04 x 10° Pa.

The final pressure is atmospheric pressure: pr=1.013 x 10° Pa. Thus,

™
|

5
2.04 x 10" Pa Jz?.{]{}xl{]ﬁl

1.013 x 10’ Pa

W, =(2.04 x 10’ Pa)(0.14m’) ]_11[
Simularly, for the second portion. we have
W,=(p,—p,)V; =(1.013x10° Pa — 2.04x10” Pa)(0.14m") = —1.44x10" J.
The total work done by the gas over the entire process 1s
W =W, +W,=2.00 x 10° T +(~1.44 x 10* J) = 5.60 x 10° J.

LEARN The work done by the gas is positive when 1t expands. and negative when it
contracts.



13. (a) At point a, we know enough information to compute »:

oV (2500Pa)(1.0m’)

= = - _ =1.5mol
RT ~ (831 J/mol-K)(200K)

(b) We can use the answer to part (a) with the new values of pressure and volume, and
solve the 1deal gas law for the new temperature, or we could set up the gas law in terms of
ratios (note: ny = np and cancels out):

v, T, (7.
B’y _ 2 7 — (200K)
2, 2

nh-q

which yields an absolute temperature at b of 7, = 1.8% 10° K.

(c) As in the previous part, we choose to approach this using the gas law in ratio form:

V. T . (25kPa | 3.0m’"
P¥c _Zc o1 _(200K) 2 ==
rvV, T L 2.5kPa || 1.0m" |

which yields an absolute temperature at ¢ of T, = 6.0x10° K.

(d) The net energy added to the gas (as heat) 1s equal to the net work that 1s done as 1t
progresses through the cycle (represented as a right triangle in the p¥ diagram shown in
Fig. 19—2[})_ This, m turn, 1s related to = “area” inside that trmangle (with
area = +(base)(height)), where we choose the plus sign because the volume change at

the largest pressure 1s an increase. Thus,

1
Ope =W, =—(2.0m’) (5.0 x10°Pa)=5.0x10"J.

-~



14. Since the pressure is constant the work 1s given by W= p(¥> — V). The mitial volume
is V; = (AT, — BT;")/ p. where T; = 315 K is the initial temperature, 4 =24.9 J/K and B =

0.00662 J/K*. The final volume is ¥, = (4T, — BT;)/p . where T> =315 K. Thus

W=AT-T)-B(I; -T;)
= (24.9 J/K)(325 K- 315 K) - (0.00662 I/K)[(325 K)® - (315 K)*] =207 I.



42. The internal energy is

3
E-t:EHRT— (1.0mol)(8.31 J/mol-K)(273K)=3.4x10"TI.



44. Two formulas (other than the first law of thermodynamics) will be of use to us. It 1s
straightforward to show. from Eq. 19-11. that for any process that 1s depicted as a straight
/ine on the pV diagram. the work 1s
.f' h

Pi TPy

LA ‘ AV

-

W =

straight —

\

which includes. as special cases. W = pAV for constant-pressure processes and =0 for
constant-volume processes. Further, Eq. 19-44 with Eq. 19-51 gives

E,. = n‘f g\]‘RT = {Ef 1:‘;?1/’

where we have used the ideal gas law in the last step. We emphasize that, in order to
. . . . | 7

obtain work and energy in joules. pressure should be in pascals (N/m™) and volume

should be in cubic meters. The degrees of freedom for a diatomic gas i1s /= 5.

(a) The internal energy change is

E

e —Epn = ((2.0x10° Pa)(4.0m*)—(5.0x10° Pa)(2.0m*))

{p-:'Vc _p:’!I/;I' ] -

2 |
ka |

=-5.0x10° 7.

(b) The work done during the process represented by the diagonal path 1s



5
!

|(V.-7,) = (3.5x10°Pa)(2.0m’)

A

. _(pﬁpﬁ
2

: ediag -
which yields Wiae = 7.0 <10° . Consequently, the first law of thermodynamics gives
Ogee =AE, +Wy,, =(=5.0x10" +7.0x10%) T=2.0x10" I.

(c) The fact that AEj,; only depends on the initial and final states. and not on the details of
the “path” between them, means we can write AE_ =E__—E__ =-50x10" T for the

mdirect path. too. In this case. the work done consists of that done during the constant
pressure part (the horizontal line in the graph) plus that done during the constant volume

part (the vertical line):
W =(50x10°Pa)(2.0m’)+0=1.0x10" T.
Now. the first law of thermodynamics leads to

=AE_ +W_, . =(-5.0x10°+1.0x10*) J=5.0x10° J.

O



47. (a) The work 1s zero in this process since volume i1s kept fixed.
(b) Since Cp= %R for an 1deal monatomic gas. then Eq. 19-39 gives O =+374 1.

(€) AEy=Q— W=+37417.

(d) Two moles are equivalent to N =12 x 10% particles. Dividing the result of part (c) by
N gives the average translational kinetic energy change per atom: 3.11 x 10722 7T.



54. The fact that they rotate but do not oscillate means that the value of f given in Table
19-3 1s relevant. In Section 19-11. 1t is noted that = C,/Cy so that we find = 7/5 m this
case. In the state described in the problem. the volume 1s

_ nRT (2.0mol)(8.31 J/mol-K )(300K)

- =0.049 m’ .
p 1.01x10° N/m’

Vv

Consequently.

22

5 NI fran2 314 < 3 .
pV” =(1.01%x10°N/m" )(0.049m’ ) =1.5x10°N-m™".



55. (a) Let p;. V;. and T; represent the pressure. volume. and temperature of the initial state
of the gas. Let pr Vs and Trrepresent the pressure, volume. and temperature of the final

state. Since the process is adiabatic p,J; = pV, . so

14

43L '; (]_23“11]213-63“11*14 atm.
L0.76 L)
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14
Vf
We note that since 7; and V' have the same units. their units cancel and py has the same
units as p;.



59. Since AEjy does not depend on the type of process.

(‘&Eﬁlt )pathl = (ﬂEmI }Paﬂl 1
Also. since (for an ideal gas) it only depends on the temperature variable (so AE;y = 0 for
1sotherms). then

("ﬂ‘Eiﬂt )pathl - Z(Mmt )adiabat .
Finally. since Q = 0 for adiabatic processes. then (for path 1)

= _W=-4017

( mt }adial:uatic expansion

( nt }adiahatit COMprassion

Therefore, (AE,, }pathj =—40J+25J=-157.



63. In the following. C;, =3 R is the molar specific heat at constant volume. C, =3 R is

the molar specific heat at constant pressure, AT 1s the temperature change, and » 1s the
number of moles.

The process 1 — 2 takes place at constant volume.

(a) The heat added 1s
3 3 .
O=nC; ﬁT:EHR AT = E{_l.0011101](8.511:"111:::-1-K}(GDOK—SOOK}: 3.74x10° 7.

(b) Since the process takes place at constant volume, the work W done by the gas is zero.
and the first law of thermodynamics tells us that the change in the internal energy is

AE_ =0=3.74x10I.



(¢) The work W done by the gas is zero.
The process 2 — 3 1s adiabatic.

(d) The heat added is zero.

(e) The change in the internal energy 1s

3 3 .
AE_, = HC},ﬂTzEHR&T:5{_1.{}011101}(8.31J.-"11101-K}(455K—600K]:—1.81><103 T

(f) According to the first law of thermodynamics the work done by the gas 1s
W=0-AE_ =+1.81x10°J.

The process 3 — 1 takes place at constant pressure.
(g) The heat added 1s

O=nCAT = “—;nRﬁ.T = %{1 .00mol)(8.317/mol-K) (300K —455K) =—-3.22x10° I.
(h) The change in the internal energy is

AE , =nC AT = %J?R:S.T = %(1 .00mol)(8.317/mol-K) (300K —455K)=-1.93x10°T.
(1) According to the first law of thermodynamics the work done by the gas 1s

W=0-AE_ =-322x10"T +1.93x10°T =—1.29x10° .

() For the entire process the heat added 1s

0=374x10°T +0-322x10°T =52017,

(k) The change in the internal energy 1s



AE,, =3.74%10° T—-1.81x10° T—1.93x10° T = 0.

(I) The work done by the gas is

W=0+1.81x10°J-1.29x10°T =520 7.
(m) We first find the initial volume. Use the 1deal gas law p;V; = nRT; to obtain

_ nRI; (1.00mol)(8.31J/mol-K)(300K)

4 3
)2 (1.013x10" Pa)

=246%x107 m’.

. . iy ) ~
s (n) Since 1 — 2 is a constant volume process. V5 =V; =246 = 107 m’. The pressure for
state 2 1s

po = nRI, (1.00mol)(8.31J/mol-K)(600K)

I 2.46x107°m’ — 20l Ra.

This 1s approximately equal to 2.00 atm.
(0) 3 — 1 1s a constant pressure process. The volume for state 3 1s

_ nRI;  (1.00mol)(8.317/moel-K)(455K)

Vs 5
P 1.013x10" Pa

=3.73%x107° m’.

(p) The pressure for state 3 is the same as the pressure for state 1: p; = p, = 1.013 » 10’
Pa (1.00 atm)




