1. THINK If the expansion of the gas is reversible and 1sothermal. then there’s no change
i internal energy. However. if the process 1s reversible and adiabatic. then there would
be no change in entropy.

EXPRESS Since the gas is ideal. 1fs pressure p is given in terms of the number of moles
7. the volume V. and the temperature 7 by p = nRT/V. If the expansion is isothermal. the
work done by the gas is

v, ndV V,
W=| pdV=nRT| —=nRIT'ln— .
Li b Li 4 V

1
and the corresponding change in entropy is AS = j(l/ T)dO=0Q/T. where Q is the heat

absorbed (see Eq. 20-2).
ANALYZE (a) With 7/, =2.00¥7 and T =400 K. we obtain

W =nRTn2.00=(4.00 mol)(8.31 J/mol-K)(400 K)In2.00=9.22x10° J.

(b) According to the first law of thermodynamics. AE;;; = O — W. Now the internal energy
of an 1deal gas depends only on the temperature and not on the pressure and volume.
Since the expansion is 1sothermal. AE; =0 and O = . Thus.

(c) The change in entropy AS 1s zero for all reversible adiabatic processes.

LEARN The general expression for AS for reversible processes 1s given by Eq. 20-4:

vy I
AS=S,—-S,=nRln| — |+nC,In| = |.

V. .
Note that AS does not depend on how the gas changes from its initial state 7 to the final
state f.



5. We use the following relation derived in Sample Problem 20.01 — “Entropy change of
two blocks coming to equilibrium:™

AS = mc‘hl{Tf .f'i';).
(a) The energy absorbed as heat is given by Eq. 19-14. Using Table 19-3. we find

J
kg-K

Q=c*mﬂ1’"=(386 J{z.oo ke)(75K)=5.79x10" J

where we have used the fact that a change in Kelvin temperature is equivalent to a change
in Celsius degrees.

(b) With 7r=373.15 K and T; = 298.15 K. we obtain

J 373.15
AS =(2.00 kg)| 386 ]11( ]: 173 J/K.
ke-K ) 129815

6. (a) This may be considered a reversible process (as well as isothermal). so we use AS =
Q/T where O = Lm with L =333 J/g from Table 19-4. Consequently.

3333 J/ gfal2.0
AS— g gf
273 K

=146J/K.

(b) The situation is similar to that described in part (a). except with L = 2256 J/g, m =
5.00 g. and 7= 373 K. We therefore find AS=30.2 /K.



7. (a) We refer to the copper block as block 1 and the lead block as block 2. The

equilibrium temperature 77 satisfies mici(Zy — ;1) + maco Ty — Tn) = 0. which we solve
for 75

. maly +meT, (50.0 g)(386 J/kg-K)(400 K)+(100 g)(128 J/kg-K)(200 K)
f mye, +m,c, (50.0 g)(386 T/kg-K)+(100 g)(128 J/kg-K)
=320K.

(b) Since the two-block system in thermally msulated from the environment. the change
in internal energy of the system is zero.

T (T
L + 1,0, In !
1 E

(c) The change in entropy 1s

AS=AS, +AS, =myc; In

320K
400 K )

= (50.0 g)(386 Js‘kg-K)hl(

320K
+(100 g)(128 .T.-"kg-K}]n[ 20 ]“J

200K

= +1.72 J/K.



9. The ice warms to 0°C. then melts. and the resulting water warms to the temperature of
the lake water. which i1s 15°C. As the ice warms. the energy it receives as heat when the
temperature changes by dT 1s dO = mcydI. where m 1s the mass of the ice and ¢; 1s the
specific heat of ice. If T; (= 263 K) 1s the initial temperature and 7 (= 273 K) 1s the final
temperature. then the change in its entropy is

T
AS :jd?Q: H.FCIL?GF?T:H}(’I hl?f:({}.{}lﬂ kg)(2220 J/kg-K)In

i

(2?3 K

J: 0.828 J/K.
263 K

Melting 1s an 1sothermal process. The energy leaving the ice as heat 1s mLgz. where Ly 1s
the heat of fusion for ice. Thus.
AS = O/T = mLy/T = (0.010 kg)(333 x 10° J/kg)/(273 K) = 12.20 J/K.

For the warming of the water from the melted ice. the change in entropy is

T
AS=mec, In—-L,
T

where ¢, 1s the specific heat of water (4190 J/kg - K). Thus.

288K

—
i

AS =(0.010 kg)(4190 J/kg-K) In [ ]= 2.24 JK.

The total change in entropy for the ice and the water it becomes 1s

AS=0828TK+1220JK+224J/K=1527 JK.



Since the temperature of the lake does not change significantly when the ice melts. the
change in its entropy 1s AS = Q/T. where O 1s the energy it receives as heat (the negative
of the energy 1t supplies the ice) and T is its temperature. When the ice warms to 0°C.

O=-mc, (T, —T;)=—(0.010 kg)(2220 J/kg- K)(10K)=-222 7.

When the ice melts.
O=-mL, =—-30.010 kef:333x10° J/ kgh=-3.33x10° J.
When the water from the ice warms.

Q=-mec,,cT.—T;h=-230.010 kgfa4190 J/ kg - Kfal5 Kf =-629 J.

- W=
The total energy leaving the lake water is

0=-2227-333x1007-620%x10°T=-—4.18x 10’ J.

The change in entropy 1s
_4.18x10° T
288 K

AS = =-14.51 J/K.

The change in the entropy of the ice—lake system 1s AS = (15.27 — 14.51) /K =0.76 J/K.



15. (a) The final mass of ice 1s (1773 g + 227 g)/2 = 1000 g. This means 773 g of water
froze. Energy in the form of heat left the system in the amount mLg. where m 1s the mass
of the water that froze and Lz 1s the heat of fusion of water. The process is 1sothermal. so

the change in entropy 1s

AS = O/T = —mLy/T=—(0.773 kg)(333 x 10° T/kg)/(273 K) = 943 J/K.

(b) Now, 773 g of ice 1s melted. The change in entropy is

As=L-"Lr _ o437
T T

(c) Yes, they are consistent with the second law of thermodynamics. Over the entire cycle.
the change i entropy of the water—ice system is zero even though part of the cycle is
urreversible. However. the system 1s not closed. To consider a closed system. we must
include whatever exchanges energy with the ice and water. Suppose it 1s a constant-
temperature heat reservoir during the freezing portion of the cycle and a Bunsen burner
during the melting portion. During freezing the entropy of the reservoir increases by 943
J/K. As far as the reservoir—water—ice system 1s concerned. the process is adiabatic and
reversible, so its total entropy does not change. The melting process 1s irreversible, so the
total entropy of the burner—water—ice system increases. The entropy of the burner either
increases or else decreases by less than 943 J/K.



18. (a) It is possible to motivate. starting from Eq. 20-3. the notion that heat may be
found from the integral (or “area under the curve™) of a curve in a TS diagram. such as
this ome. Either from calculus. or from geometry (area of a trapezoid). it 1s
straightforward to find the result for a “straight-line” path in the T'S diagram:

'1'}4‘3}'
o = S AS

= straight

i

which could. in fact, be directly motivated from Eq. 20-3 (but it is important to bear in
mind that this 1s rigorously true only for a process that forms a straight line in a graph that
plots T versus S). This leads to

0=(300K) (15 /K)=4.5<10°T
for the energy absorbed as heat by the gas.
(b) Using Table 19-3 and Eq. 19-45. we find

3
AE,_, ZH(ER]&TZ{E.{] mol)(8.31 J/mol-K)(200 K—400 K)=-5.0x10" J.

(c) By the first law of thermodynamics, W=0—-AE_ =45 kI—3-5.0 kIf=9.5 kJ.



23. With 7. = 290 k. we find

T, T, 290K
e=1-L = T,=—L -
T. l—& 1-0.40

which vields the (initial) temperature of the high-temperature reservoir: 7y = 483 K. If
we replace £ = 0.40 in the above calculation with £ = 0.50. we obtain a (final) high
temperature equal to 7;; =580 K. The difference is

I; -1, =580 K—-483 K=97 K.
25. We solve (b) first.

(b) For a Carnot engine. the efficiency is related to the reservoir temperatures by Eq. 20-
13. Therefore.
_ 75
TH=TH TLZ"'KZHIK
£ 0.22

which 1s equuvalent to 68°C.

(a) The temperature of the cold reservoiris I =Tg—-75=341 K-75K =266 K.



27. THINK The thermal efficiency of the Carnot engine depends on the temperatures of
the reservoirs.

EXPRESS The efficiency of the Carmot engine 1s given by

where T}, 1s the temperature of the higher-temperature reservoir, and I the temperature

of the lower-temperature reservoir, in kelvin scale. The work done by the engine 1s

7= 2|04
ANALYZE (a) The efficiency of the engine 1s

_L-T, _(235-119K

& = =0.236=23.6%
T, (235R273)K

We note that a temperature difference has the same value on the Kelvin and Celsius
scales. Since the temperatures m the equation must be m Kelvins, the temperature 1 the

denominator 1s converted to the Kelvin scale.

(b) Since the efficiency 1s given by &= |W]/|Qyl. the work done 1s given by

W|=¢e|0.|=0.236(6.30x10"T)=1.49x10* T.
H

LEARN Expressing the efficiency as s, =1-1; /T;. we see that &, approaches umty

(100% efficiency) in the limit 7; /T — 0. This 1s an impossible dream. An alternative

version of the second law of thermodynamics 1s: there are no perfect engines.



29. (a) The net work done 1s the rectangular “area™ enclosed in the p¥” diagram:

W=V =V, )(2—2y) = (2, =V, ) (22, = 2) = Vo2,
Inserting the values stated in the problem. we obtain W= 2.27 kJ.

(b) We compute the energy added as heat during the “heat-intake™ portions of the cycle
using Eq. 19-39, Eq. 19-43, and Eq. 19-46:

/ -
A A e R e

L2 . 2 Ta Tﬂ
3T, 517 1 3 5
=nRT | =| -1+ =L ||=p .| =(2-1)+=(4-2
Hf ] 2[1; 1;]; )
13
=—n,V,
2};’00

where. to obtain the last line. the gas law in ratio form has been used. Therefore. since W
= poVo. we have Qg = 13W/2 = 14.8 KkI.

(¢) The efficiency 1s given by Eq. 20-11:

e= =2 _0154=154%.
Os] 13

(d) A Camot engine operating between T, and T, has efficiency equal to

L1 _0750=75.0%
T 4

where the gas law 1n ratio form has been used.

(e) This 1s greater than our result in part (c). as expected from the second law of
thermodynamics.



33. THINK Our engine cycle consists of three steps: 1sochoric heating (@ to b). adiabatic
expansion (b to ¢). and 1sobaric compression (¢ to a).

EXPRESS Energy is added as heat during the portion of the process from a to b. This
portion occurs at constant volume (73). so Og = nCy AT. The gas 1s a monatomic 1deal
gas. so (), =3R/2 and the ideal gas law gives

AT = (1/nR)(py Vs — pa Vo) = (1/nR)(pp — Pa) V5.

Thus. Oy =%( Dy — pﬂ)Vb. On the other hand. energy leaves the gas as heat during the

portion of the process from ¢ to @. This is a constant pressure process. so

.V, pr J ('.p
O, =nC AT =nC (I -T)=nC a4 _zec = V-V ).
-t d p(” ) F{F.’R nk- Rp“{" ‘")

where C, 1s the molar specific heat for constant-pressure process.

ANALYZE (a) I} and pp are given. We need to find p,. Now p, 1s the same as p. and
points ¢ and b are connected by an adiabatic process. With p_ V. = p,J; for the adiabat,
we have ( ¥ =5/3 for monatomic gas)

p 4 1 503
=p =| b = —— 1 (1.013x10° Pa)=3.167x10* Pa.

Thus, the energy added as heat 1s

3 3
Ou =E(pb - P,)V, ==(1.013x10° Pa—3.167x10" Pa)(1.00x10™ m*)=1.47x10" J.

2
(b) The energy leaving the gas as heat going from ¢ to @ is

5 5 2
0 =3P, (P;—I{,):“E[S.IGTMEF‘ Pa)(~7.00)(1.00x107 m’)=—-5.54x10 T .

or | QL|:5.54:'<102 J. The substitutions V, -V, = V,— 8.00 V/, =—7.00 V, and CF =3R

were made.



(c) For a complete cycle. the change in the internal energy 1s zero and
W=0=0.-0,=147x10°T-5.54x10°7=9.18 x 10° J.
(d) The efficiency 1s
£= WI0x=(9.18 x 10° 1)/(1.47 x 10° J) = 0.624 = 62.4%.

LEARN To summarize. the heat engine in this problem intakes energy as heat (from. say.
consuming fuel) equal to |Oy| = 1.47 kI and exhausts energy as heat equal to |Op| =554 I.

its efficiency and net work are £=1-|0, |/|Oy| and W =|0y4|—|O.|. The less the

exhaust heat | ©O; |. the more efficient 1s the engine.



34. (a) Using Eq. 19-54 for process D — A gives

Py

3_,)

i

oV =pV, — (SVE})? = oV

which leads to 8 =32 = » =5/3. The result (see Sections 19-9 and 19-11) implies the
gas 1s monatomic.,

(b) The 1nput heat 1s that absorbed during process 4 — B:

- _ (5 Iy _ 5 _ 5
Oy =nC,AT=n (ER] T, (F_]J_”RTA (E] [2—])—%%(5]

A

and the exhaust heat 1s that liberated during process C — D:

5 1] 5 1 5
O, =nCAT=n|=R|T,|1-==|=nRT,| = |(1-2)=—=pV,| =
T [_2 J D( I}J D(EJ( ) 4p”[2J
where in the last step we have used the fact that 7, =17, (from the gas law in ratio form).
Therefore. Eq. 20-12 leads to

@)

-

—

=75%.

]

R LN IR
4

Ok



37. THINK The performance of the refrigerator 1s related to its rate of doing work.

EXPRESS The coefficient of performance for a refrigerator 1s given by

X - what we want |QL|
~ what we pay for B |H| '

where O 1s the energy absorbed from the cold reservoir as heat and 7 1s the work done
during the refrigeration cycle. a negative value. The first law of thermodynamics yields

On + OL— W= 0 for an integer number of cycles. Here Og 1s the energy ejected to the hot
reservoir as heat. Thus, O = W— Ogn. On 1s negative and greater in magnitude than 7, so
|OL| = Ol — [W]. Thus,

K = |QH | —|
Hr

The solution for |] 1s |W] = |Oul/(K + 1).

ANALYZE In one hour, | Qg |=7.54 MJ. With X = 3.8, the work done 13
7.54MJ
=222 ) sowr
3.8+1

The rate at which work is done 1s P W |/Ar =(1.57 x 10°7 )/(36005s) =440 W,

LEARN The greater the value of K., the less the amount of work |77 | required to transfer
the heat.



39. THINK A large (small) value of coefficient of performance K means that less (more)
work would be required to transfer the heat

EXPRESS A Carnot refrigerator working between a hot reservoir at temperature Iy and
a cold reservoir at temperature 71 has a coefficient of performance X that is given by

where T, 1s the temperature of the higher-temperature reservoir. and 77 the temperature

of the lower-temperature reservoir, in Kelvin scale. Equivalently, the coefficient of
performance is the energy Op drawn from the cold reservoir as heat divided by the work
done: K= |O|/|W].

ANALYZE For the refrigerator of this problem. 7y = 96° F = 309 K and 7y = 70° F =
294 K. so

K=(294 K)/(309 K —-294 K) = 19.6.
Thus. with | 77| =1.07J. the amount of heat removed from the room i1s

0L =KW =(19.6)(1.0 ) =201T.

LEARN The Camot awr conditioner in this problem (with X = 19.6) are much more
s efficient than that of the typical room air conditioners ( K = 2.5).



42. The work done by the motor in = 10.0 mun 1s |W] = Pt = (200 W)(10.0 min)(60 s/min)
=1.20 x 10° J. The heat extracted is then

ol
T.-T,  300K-270K

270K) (1.20x10° T
—( ]( )=1.08x10*-"1.

W=

|QL| =K




45. We need nine labels:

Label | Number of molecules on side 1 | Number of molecules on side 2
I 8 0
II 7 1
111 6 2
IV 5 3
vV 4 4
VI 3 5
VII 2 6
VIII 1 7
IX 0 8

The multiplicity # is computing using Eq. 20-20. For example, the multiplicity for label
IV is
8! 40320

r — —

B (53)(3!) (120)(6)

and the corresponding entropy is (using Eq. 20-21)

S=kInw =(1.38x107 J/K) In(56) =5.6x107 J/K.






46. (a) We denote the configuration with » heads out of N trials as (n; N). We use Eq. 20-
20:

50!
(25)(50-25)!

w(25:50)= =1.26x10"

(b) There are 2 possible choices for each molecule: it can either be in side 1 or in side 2
of the box. If there are a total of N independent molecules, the total number of available
states of the N-particle system is

N _  =2x2x2x%...x2=2%"

total
With N = 50. we obtain Ny, = 2" =1.13 x 10",

(c) The percentage of time in question is equal to the probability for the system to be in
the central configuration:

W (25.50 14
p(25;50): ( : )_1.26><10

_ —11.1%.
2% 1.13x10° °

‘With N = 100, we obtain

(d) W(N/2, N)=NV/[(NI2)!]* = 1.01 x 107,



() Neotar = 2" =1.27 x 10°°,

(1) and p(N/2; N) = W(N/2, N)/ Niota1 = 8.0%.

Similarly, for N =200, we obtain

(g) W(N/2, N)=9.25 x 10°%,

(h) Nigta1=1.61 x 10 ®°,

(1) and p(INV/2; N) = 5.7%.

(j) As N increases, the number of available microscopic states increases as 2", so there

are more states to be occupied, leaving the probability less for the system to remain in its
central configuration. Thus, the time spent there decreases with an increase in N.



