2. (a) The acceleration amplitude 1s related to the maximum force by Newton's second
law: Fya = may,. The textbook notes (in the discussion immediately after Eq. 15-7) that
the acceleration amplitude 1s a,, = &' Xy, Where @ is the angular frequency (@ = 27f since
there are 2m radians in one cycle). The frequency 1s the reciprocal of the period: f=1/T=
1/0.20 = 5.0 Hz. so the angular frequency 1s @ = 10n (understood to be valid to two
significant figures). Therefore.

F,..=mae’x, =00.12 keh1 0 rad / 5;2 b0.085 mg=10 N.

(b) Using Eq. 15-12. we obtain

m:\/E = k=me*=(0.12kg)(107 rad/s)’ =1.2x10*N/m.
m

5. THINK The blade of the shaver undergoes simple harmonic motion. We want to find
its amplitude. maxmmum speed and maximum acceleration.

EXPRESS The amplitude x;, 1s half the range of the displacement D. Once the amplitude
1s known. the maximum speed vy, 1s related to the amplitude by v, = aw,,. where o 1s the
angular frequency. Similarly. the maximum acceleration is a, :{:-szm.

ANALYZE (a) The amplitude is x,, = D/2 = (2.0 mm)/2 = 1.0 mm.

(b) The maximum speed vy, 1s related to the amplitude xp by vy = @y, where @ 1s the
angular frequency. Since @ = 2nf. where f1s the frequency.

v, =27 fx, =27(120 Hz)(1.0x10™ m)=0.75 m/s.
(c) The maximum acceleration 1s
a, =*x, =(27f) x, =(27(120 I—Iz)) (1_0><1[]‘3 111)25.? x10° m/s”.

LEARN In SHM. acceleration 1s proportional to the displacement x,,.



9. (a) Making sure our calculator 1s in radians mode. we find
. T
X = G.DCGSI;‘PT[I}Z.O; +—%)! =3.0m
(b) Differentiating with respect to time and evaluating at r = 2.0 s. we find
dx ,.
v :E = —3mb6.0gsin|] 3702.00 +§ =—49 m/s.

(c¢) Differentiating again, we obtain

f?r'l‘ 2 T
a=—=—ph3mn I:-G.O:msﬁSntQ.U:——)! =_27%x10" m/s’
dt - - -3

(d) In the second paragraph after Eq. 15-3. the textbook defines the phase of the motion.
In this case (with = 2.0 s) the phase 1s 3m(2.0) + 7/3 =~ 20 rad.

(e) Comparing with Eq. 15-3. we see that @= 3n rad/s. Therefore. /= @2n=1.5 Hz.

(f) The period 1s the reciprocal of the frequency: T=1/f= 0.67 s.



11. When displaced from equilibrium, the net force exerted by the springs 1s —2kxv acting
in a direction so as to return the block to its equilibrium position (x = 0). Since the

acceleration a=d"x/dr’. Newton's second law yields
7
d-x

m—‘2 = _2kx.
dr

Substituting x = x,, cos(@ + @) and simplifying, we find @* =2k /m. where @ is in
g P g

radians per unif time. Since there are 2w radians in a cycle. and frequency f measures
cycles per second. we obtain

) 7580 N/
= o _ 1 ZA: 1 2('h80N'111):39.6Hz.
2x 2x\m 2m 0.245 kg




13. THINK The mass-spring system undergoes simple harmonic motion. Given the
amplitude and the period. we can determine the corresponding frequency. angular
frequency. spring constant. maximum speed and maximum force.

EXPRESS The angular frequency @ 1s given by @ = 2nf= 2n/T. where fis the frequency
and 7 1s the period. with f= 1/T. The angular frequency is related to the spring constant &
and the mass m by @ = ./k/m . The maximum speed 13, 1s related to the amplitude x,; by

Vip = Gy .
ANALYZE (a) The motion repeats every 0.500 s so the period must be 7'=0.500 s,
(b) The frequency 1s the reciprocal of the period: /= 1/T= 1/(0.500 s) = 2.00 Hz.
(¢) The angular frequency 1s @=2nf=2n(2.00 Hz) = 12.6 rad/s.
(d) We solve for the spring constant & and obtain
k=me = (0.500 kg)(12.6 rad/s)* = 79.0 N/m.
(e) The amplitude 1s x,=35.0 cm = 0.350 m. so the maximum speed 1s
Y = @y, = (12.6 rad/s)(0.350 m) = 4.40 /s,
(f) The maximum force 1s exerted when the displacement is a maximum. Thus, we have

Fo =k =(79.0 N/m)(0.350 m) = 27.6 N.



16. They pass each other at time 7. at x, = x, =1x, where
x,=x, cos(af+¢,) and x,=x cos(ar+dg,).

From this, we conclude that cos(ax + ¢, ) = cos(ax + ¢,) = 1. and therefore that the phases
(the arguments of the cosines) are either both equal to n/3 or one i1s n/3 while the other
1s —m/3. Also at this instant, we have v; =—» # 0 where

v, =—x osm(ar+¢,) and v, =-x osin(ar+g@,).

This leads to sin(ax + ¢h) =— sin(@f + ¢-). This leads us to conclude that the phases have
opposite sign. Thus, one phase 1s /3 and the other phase 1s —z /3 the wf term cancels 1f
we take the phase difference. which 1s seento be 7/3 — (- /3)=2x/3.



19. Both parts of this problem deal with the critical case when the maximum acceleration
becomes equal to that of free fall. The textbook notes (in the discussion immediately after

i . . . 7 . -

Eq. 15-7) that the acceleration amplitude 1s a,, = @ x,,. Where o 1s the angular frequency:;
I ] 2
this 1s the expression we set equal to g = 9.8 m/s".

(a) Using Eq. 15-5 and 7= 1.0 s. we have

2 2
2w e]” -
t’— X, =g=>x,==—==025m

g m
T
(b) Since @ = 2nf. and x,, = 0.050 m 1s given. we find

(Zfrf]zmeg = f=

£ _22Hz
2r \ x,,



23. THINK The maximum force that can be exerted by the surface must be less than the
static frictional force or else the block will not follow the surface in its motion.

EXPRESS The static frictional force is given by f, = 1 F};. where u; 1s the coefficient of

static friction and Fy 1s the normal force exerted by the surface on the block. Since the
block does not accelerate vertically. we know that Fy = mg. where m 1s the mass of the
block. If the block follows the table and moves in simple harmonic motion. the
magnitude of the maximum force exerted on it 1s given by

F=ma,=m a)zxm = ;;:(Eqﬁzxmq

where ay 15 the magnitude of the maximum acceleration. @ 1s the angular frequency. and
f1s the frequency. The relationship @@= 2nf was used to obtain the last form.

ANALYZE We substitute F = m(27/) xn and Fy = mg into F < usFy to obtain m(2mf) xm
< ugng. The largest amplitude for which the block does not slip 1s

o  00.500:9.8 m/s*h
HsE = a —=0.031m.
b27f'g b2 x 2.0 Hzg

X, =

LEARN A larger amplitude would require a larger force at the end points of the motion.
The block slips if the surface cannot supply a larger force.



25. (a) We iterpret the problem as asking for the equilibrium position: that 1s. the block
1s gently lowered until forces balance (as opposed to being suddenly released and allowed
to oscillate). If the amount the spring is stretched 1s x. then we examine force-components
along the incline surface and find

kx=mgsmf — v=" smé _ (14.0 N)sin40.0 =0.0750 m
k 120 N/m

at equilibrium. The calculator is in degrees mode in the above calculation. The distance
from the top of the incline is therefore (0.450 +0.75) m = 0.525 m.

(b) Just as with a vertical spring. the effect of gravity (or one of its components) is simply

to shift the equilibrium position: it does not change the characteristics (such as the period)
of simple harmonic motion. Thus. Eq. 15-13 applies. and we obtain

T:MJM.U N/9.somss® o

120 N/m



27. THINK This problem explores the relationship between energies. both kinetic and
potential, with amplitude mm SHM.

EXPRESS In simple harmonic motion. let the displacement be

x(f) = xy cos(ax + ¢).
The corresponding velocity 1s
V(1) =dx/dt =—cx, sin(ax + ¢).
Using the expressions for x(7) and (). we find the potential and kinetic energies to be

U(t) %M(ﬂ = %ﬂ’ri cos (@t +9)

- ]- 2 1 T . 1 ]
K(t)= Em*r* (1) = Emm‘r}; sin’ (ot + @) = Ehi sin-(@rf + ¢)
where k=m ¢’ is the spring constant and x,, is the amplitude. The total energy is

E=UMN+K(t)= %ﬂ’xi [cosz(mH ?) +5i112(mr+¢5)] = %A’xi.






28. The total mechanical energy is equal to the (maximum) Kinetic energy as it passes
through the equilibrium position (x = 0):

;HH ,,{2 01&2}(08*1115) =0.72 1.

Looking at the graph in the problem. we see that U(x = 10) = 0.5 J. Since the potential
function has the form U(x)=>bx>. the constant is 5=5.0x10"J/em’ . Thus. U(x) =0.72 J
when x =12 cm.

(a) Thus. the mass does turn back before reaching x =15 cm.

(b) It turns back at x =12 cm.



33. The problem consists of two distinct parts: the completely inelastic collision (which is
assumed to occur instantaneously. the bullet embedding itself in the block before the
block moves through significant distance) followed by simple harmonic motion (of mass
m + M attached to a spring of spring constant f).

(a) Momentum conservation readily yields +'= mn/(m + M). With m = 9.5 g. M= 5.4 kg.
and v =630 m/s. we obtain v'=1.1 m/s.

(b) Since v~ occurs at the equilibrium position. then v = vy, for the simple harmonic

motion. The relation v, = ary, can be used to solve for x,. or we can pursue the alternate
(though related) approach of energy conservation. Here we choose the latter:

2.2
— l(nH_M)L—lhz
2

l(mﬂ‘vf)r'z Ly —=
2 2 (m+M) 2

o

Ml m

which simplifies to
mv (9.5x107°kg)(630 mv/s)

RS = =3.3x107 m.
Jﬁ:(mﬂ‘uf) .J(G{]DO N/m)(9.5x107 kg + 5.4kg)










44, To use Eq. 15-29 we need to locate the center of mass and we need to compute the
rotational mertia about 4. The center of mass of the stick shown horizontal in the figure 1s
at A. and the center of mass of the other stick 1s 0.50 m below 4. The two sticks are of

equal mass. so the center of mass of the system is #=1(0.50 m)=0.25m below A, as

shown in the figure. Now, the rotational inertia of the system is the sum of the rotational
mertia I} of the stick shown horizontal in the figure and the rotational mnertia I of the
stick shown vertical. Thus. we have

1 1 2 5 2
I=5L~L=—M+—ML=—ML
12 3 12

where L = 1.00 m and M 1s the mass of a meter stick (which cancels in the next step).
Now. with m = 2M (the total mass). Eq. 15-29 yields

where h = L/4 was used. Thus. T=1.83 s.



50. (a) The rotational inertia of a uniform rod with pivot point at its end is I = mL*/12 +
mL*> = 1/3ML*. Therefore. Eq. 15-29 leads to

-

IMmr _3gl’ _3(98m/s’)(1.55)°

2 = = - =0.84 m.
Mg(L/2) 8x° 8~

T=2m

(b) By energy conservation

=E = K =U

E'bctmmof:vnng end of swing m m

where U= Mg/(1—cos@) with £ being the distance from the axis of rotation to the center
of mass. If we use the small-angle approximation (cos@~1-16" with @ in radians

(Appendix E)). we obtain
L1
—{{}"?Lg)(gﬁma )[2][ 8 ]

where G =0.17 rad. Thus. K= U, = 0.031 J. If we calculate (1 — cos8) directly (without
using the small angle approximation) then we obtain within 0.3% of the same answer.



51. This 1s sumilar to the situation treated i Sample Problem 15.5 — “Physical pendulum,
period and length.” except that O is no longer at the end of the stick. Referring to the
center of mass as C (assumed to be the geometric center of the stick). we see that the
distance between O and C 1s h = x. The parallel axis theorem (see Eq. 15-30) leads to

(a) Minmmizing T by graphing (or special calculator functions) 1s straightforward. but the
standard calculus method (setting the derivative equal to zero and solving) 1s somewhat

awkward. We pursue the calculus method but choose to work with 12g7%/2n instead of T
(it should be clear that 12gT%/2n is a minimum whenever T is a minimum). The result is

d;—ufrz ' diE + 12x] I?
T _ 0=—2 = -~ .12
dx dx X

which vields x=7/4/12 =(1.85 111}-\/1? =0.53 m as the value of x that should produce
the smallest possible value of T.

(b) With L = 1.85 m and x = 0.53 m, we obtamn T = 2.1 s from the expression derived in
part (a).






60. (a) From Hooke’s law, we have

500 ke)(9.8 m/'s”
k =( i}( )=4.El">-<llﬂ'2 N/em.
c111

(b) The amplitude decreasing by 50% during one period of the motion implies

_ 1 2m
e P1Pm = — where T=-"—.
ml"

Since the problem asks us to estimate, we let @' ~ @ = +/k/ m. That is. we let

@' M =9 9rad /s,
500kg

so that T = 0.63 s. Taking the (natural) log of both sides of the above equation., and
rearranging, we find

2 2(500 kg

b=""1n2 R:M[ﬂ.ﬁg) =1.1x10° kg/s.

T 0.63s -

Note: if one worries about the @ ~ @ approximation. it i1s quite possible (though messy)
to use Eq. 15-43 m 1ts full form and solve for b. The result would be (quoting more

figures than are significant)
b= 2In2~mk

. 'V'{{]JI 2:}1 + 47 =1086 kg /s

which 15 1n good agreement with the value gotten “the easy way” above.



61. (a) We set @ = @y and find that the given expression reduces to x,, = F,/be@ at
resonance.

(b) In the discussion immediately after Eq. 15-6. the book introduces the veloecity
amplitude vy = @xp. Thus. at resonance. we have vy = @Fp/bo = Fu/b.

62. With &= 2n/T then Eq. 15-28 can be used to calculate the angular frequencies for the
given pendulums. For the given range of 2.00 < @ < 4.00 (in rad/s), we find only two of
the given pendulums have appropriate values of @: pendulum (d) with length of 0.80 m
(for which @ = 3.5 rad/s) and pendulum () with length of 1.2 m (for which @ = 2.86
rad/s).



